1
|
Hamidzade M, Monavari SH, Kiani SJ, Aftabi-Khadar M, Bokharaei-Salim F, Tavakoli A. Enhanced synergistic antiviral effects of thermally expanded graphite and copper oxide nanosheets in the form of a novel nanocomposite against herpes simplex virus type 1. Microb Pathog 2024; 195:106846. [PMID: 39128643 DOI: 10.1016/j.micpath.2024.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is responsible for a wide range of human infections, including skin and mucosal ulcers, encephalitis, and keratitis. The gold standard for treating HSV-1 infections is acyclovir. However, the use of this drug is associated with several limitations such as toxic reactions and the development of drug-resistant strains. So, there is an urgent need to discover and develop novel and effective agents against this virus. For the first time, this study aimed to investigate the antiviral effects of the Thermally Expanded Graphite (TEG)-copper oxide (CuO) nanocomposite against HSV-1 and compare results with its constituent components. After microwave (MW)-assisted synthesis of TEG and CuO nanosheets as well as MW-CuO/TEG nanocomposite and characterization of all these nanomaterials, an MTT assay was used to determine their cytotoxicity. The quantitative real-time PCR was then used to investigate the effects of these nanomaterials on viral load. Three-hour incubation of HSV-1 with TEG nanosheets (500 μg/mL), MW-CuO nanosheets (15 μg/mL), and MW-CuO/TEG nanocomposite (35 μg/mL) resulted in a decrease in viral load with an inhibition rate of 31.4 %, 49.2 %, and 74.4 %, respectively. The results from the post-treatment assay also showed that TEG nanosheets (600 μg/mL), MW-CuO nanosheets (15 μg/mL), and MW-CuO/TEG nanocomposite (10 μg/mL) led to a remarkable decrease in viral load with an inhibition rate of 56.9 %, 63 %, and 99.9 %, respectively. The combination of TEG and MW-CuO nanosheets together and the formation of a nanocomposite structure display strong synergy in their ability to inhibit HSV-1 infection. MW-CuO/TEG nanocomposites can be considered a suitable candidate for the treatment of HSV-1 infection.
Collapse
Affiliation(s)
- Malihe Hamidzade
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Aftabi-Khadar
- Department of Materials Science and Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Vasiliauskienė D, Lukša J, Servienė E, Urbonavičius J. Changes in the Bacterial Communities of Biocomposites with Different Flame Retardants. Life (Basel) 2023; 13:2306. [PMID: 38137906 PMCID: PMC10744946 DOI: 10.3390/life13122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In today's world, the use of environmentally friendly materials is strongly encouraged. These materials derive from primary raw materials of plant origin, like fibrous hemp, flax, and bamboo, or recycled materials, such as textiles or residual paper, making them suitable for the growth of microorganisms. Here, we investigate changes in bacterial communities in biocomposites made of hemp shives, corn starch, and either expandable graphite or a Flovan compound as flame retardants. Using Next Generation Sequencing (NGS), we found that after 12 months of incubation at 22 °C with a relative humidity of 65%, Proteobacteria accounted for >99.7% of the microbiome in composites with either flame retardant. By contrast, in the absence of flame retardants, the abundance of Proteobacteria decreased to 32.1%, while Bacteroidetes (36.6%), Actinobacteria (8.4%), and Saccharobacteria (TM7, 14.51%) appeared. Using the increasing concentrations of either expandable graphite or a Flovan compound in an LB medium, we were able to achieve up to a 5-log reduction in the viability of Bacillus subtilis, Pseudomonas aeruginosa, representatives of the Bacillus and Pseudomonas genera, the abundance of which varied in the biocomposites tested. Our results demonstrate that flame retardants act on both Gram-positive and Gram-negative bacteria and suggest that their antimicrobial activities also have to be tested when producing new compounds.
Collapse
Affiliation(s)
| | | | | | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Saulėtekio al. 11, 10223 Vilnius, Lithuania; (D.V.); (J.L.); (E.S.)
| |
Collapse
|
3
|
Xiang N, Zhou Z, Ma X, Zhang H, Xu X, Chen Y, Guo Z. The In Situ Preparation of Ni-Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules 2023; 28:molecules28104128. [PMID: 37241869 DOI: 10.3390/molecules28104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni-Zn ferrite intercalated EG (NZF/EG) is provided in order to promote the insertion of Ni-Zn ferrite particles (NZF) into the interlayers of EG. The NZF/EG composite is in situ prepared via thermal treatment of Ni-Zn ferrite precursor intercalated graphite (NZFP/GICs) at 900 °C, where NZFP/GICs is obtained through chemical coprecipitation. The morphology and phase characterization demonstrate the successful cation intercalation and NZF generation in the interlayers of EG. Furthermore, the molecular dynamics simulation shows that the magnetic particles in the EG layers tend to disperse on the EG layers rather than aggregate into larger clusters under the synergy of van der Waals forces, repulsive force, and dragging force. The radar wave attenuation mechanism and performance of NZF/EG with different NZF ratios are analyzed and discussed in the range of 2-18 GHz. The NZF/EG with the NZF ratio at 0.5 shows the best radar wave attenuation ability due to the fact that the dielectric property of the graphite layers is well retained while the area of the heterogeneous interface is increased. Therefore, the as-prepared NZF/EG composites have potential application value in attenuating radar centimeter waves.
Collapse
Affiliation(s)
- Ning Xiang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zunning Zhou
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoxia Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Huichao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyuan Xu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yongpeng Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zerong Guo
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Augaitis N, Šeputytė-Jucikė J, Członka S, Kremensas A, Kairytė A, Vėjelis S, Balčiūnas G, Vaitkus S. Performance Analysis of Loose-Fill Thermal Insulation from Wood Scobs Coated with Liquid Glass, Tung Oil, and Expandable Graphite Mixture. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093326. [PMID: 37176206 PMCID: PMC10179529 DOI: 10.3390/ma16093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The current study presents the results of monitoring the behavior of loose-fill thermal insulating material for buildings made of wood scobs (WS), which were coated with one, two, and three component-based coatings from liquid glass (LG), tung oil (TO), and expandable graphite (EG). The thermal conductivity of samples in the dry state and under normal laboratory conditions, short-term water absorption by partial immersion, surface wettability, and water vapor permeability were evaluated, and regression equations describing the variations in numerical values of specified properties under different amounts of each coating component were presented. It was shown that LG and TO act as hydrophobic layers that, in conjunction, reduce water absorption by a maximum of 274%, have a contact angle equal to 86°, and lower thermal conductivity by 55% in the dry state due to the specifics of the layer formed on the surface of WS. The addition of EG to LG coating resulted in insignificantly changed water absorption and thermal conductivity values, indicating the potential of this material to be used to improve the fire resistance of wood-based composites in the future. The results showed that the three-component layer of LG/TO/EG reduces water absorption by a maximum of 72%, increases thermal conductivity in the dry state by a minimum of 0.4%, and increases the contact angle to 81° at 100 wt.% LG. The changes in water vapor permeability of all compositions were determined to be insignificant.
Collapse
Affiliation(s)
- Nerijus Augaitis
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Jurga Šeputytė-Jucikė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Sylwia Członka
- Institute of Polymer and Dye Technology, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Arūnas Kremensas
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Sigitas Vėjelis
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Giedrius Balčiūnas
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| | - Saulius Vaitkus
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų st. 28, LT-08217 Vilnius, Lithuania
| |
Collapse
|
5
|
Zhang L, Sun Y, Sun J, Cao F. Efficient Cr(vi) removal by expanded graphite synergized with oxalic acid under UV irradiation. RSC Adv 2023; 13:11547-11556. [PMID: 37063732 PMCID: PMC10098653 DOI: 10.1039/d3ra01207g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Expanded graphite (EG), an easily-obtained carbon material with the potential of transferring electrons, was utilized successfully in the removal of hazardous hexavalent chromium (Cr(vi)) by environment-friendly oxalic acid (Ox) under UV irradiation. EG with a unique worm-like structure was obtained via a facile microwave treatment. The results showed that the EG + Ox + UV system had optimum performance, removing 99.32% of the Cr(vi) (1 mM) within 60 min at pH = 3, and the kinetic rate constant of Cr(vi) elimination was 7.95 mol L-1 min-1. Three components are potentially involved in the Cr(vi) elimination mechanism by the EG + Ox + UV system: (1) the direct electron transfer (DET) pathway of the EG-Ox-Cr(vi) through the acceleration effect of EG caused the majority removal of Cr(vi) under UV; (2) ·CO2 - generated from Ox photolysis was used to reduce some Cr(vi); (3) ·CO2 - created from Cr(vi)-Ox complexes in the solution through the photoinduced electron transfer (PET) pathway also reduced a little Cr(vi). Overall, the efficient removal of Cr(vi) by the EG + Ox + UV system provided new ideas for future research on Cr(vi) treatment.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Yanqing Sun
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Jie Sun
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| | - Fengming Cao
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China
| |
Collapse
|
6
|
Zheng M, Wang J, Fu D, Ren B, Song X, Kan K, Zhang X. Anchored growth of highly dispersed LDHs nanosheets on expanded graphite for fluoride adsorption properties and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130068. [PMID: 36303341 DOI: 10.1016/j.jhazmat.2022.130068] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new composite with layered double hydroxides (LDHs) anchored grown on expanded graphite (EG) interlayers was prepared by vacuum-assisted intercalation and hydrothermal method. Both sides of EG were completely covered by highly dispersed LDHs nanosheets and formed a sandwich-like structure. The unique structure made expanded graphite/layered double hydroxides (EG/LDHs) composites which had excellent F- adsorption performance. The adsorption performance of F- on EG/LDHs was evaluated, and the results indicated that the adsorption process was consistent with the pseudo-second-order kinetic model and the Langmuir model. Pseudo-second-order kinetic model indicated that the adsorption sites were the main factor in the adsorption process. Moreover, the maximum adsorption capacity (Qm) reached 63.21 mg·g-1 at 30 min at room temperature, which was better than most of the same type of adsorbents. The highly dispersed of LDHs anchored growth on EG overcame the disadvantage of aggregation, which exposed more adsorption sites and improved the removal efficiency of F-. In addition, the effects of pH, anion interference, different water quality, and regeneration tests on the EG/LDHs composites were also analyzed, showing that the composites have good stability.
Collapse
Affiliation(s)
- Mingming Zheng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China
| | - Jue Wang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China
| | - Dong Fu
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China
| | - Binqiao Ren
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China
| | - Xiaoxiao Song
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China
| | - Kan Kan
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China.
| | - Xiaochen Zhang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, PR China.
| |
Collapse
|
7
|
Vasiliauskienė D, Boris R, Balčiūnas G, Kairytė A, Urbonavičius J. Impact of Cellulolytic Fungi on Biodegradation of Hemp Shives and Corn Starch-Based Composites with Different Flame-Retardants. Microorganisms 2022; 10:microorganisms10091830. [PMID: 36144432 PMCID: PMC9503418 DOI: 10.3390/microorganisms10091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Biocomposite boards (BcBs) composed of hemp shives and corn starch are known as thermal insulating or structural building materials. Therefore, they must be stable during exploitation. However, BcBs are exposed to microorganisms present in the environment, and it is of great interest to investigate the biodegradation behaviour of these materials. This work identified microorganisms growing on BcBs that contain either Flovan CGN or expandable graphite as flame retardants and selected fungi such as Rhizopus oryzae and Aspergillus fumigatus to test the way they affect the materials of interest. For this purpose, the enzymatic activity of cellulases and amylases produced by these organisms were determined. In addition, the apparent density as well as compressive strength of the affected boards were evaluated. The results showed that apparent density and compressive strength deteriorated in BcB composition with the Flovan CGN flame retardant. At the same time, the level of deterioration was lower when the expandable graphite was used, suggesting that it also acts as an antimicrobial agent. A scanning electronic microscopy analysis was employed to monitor the growth of microorganisms in the BcBs. Such analysis demonstrated that, regardless of BcB composition, fungi easily penetrate into the middle layers of the material.
Collapse
Affiliation(s)
- Dovilė Vasiliauskienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Renata Boris
- Laboratory of Composite Materials, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Giedrius Balčiūnas
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5274-4840
| |
Collapse
|
8
|
Goudarzi R, Hashemi Motlagh G. Relationship between pore structure with residual pore and mechanical properties of expanded graphite nanocomposites at varying molding pressures. J Appl Polym Sci 2021. [DOI: 10.1002/app.50994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahimeh Goudarzi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Ghodratollah Hashemi Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
9
|
Wang T, Dissanayake PD, Sun M, Tao Z, Han W, An N, Gu Q, Xia D, Tian B, Ok YS, Shang J. Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: Role of iodine doping and reactive species. ENVIRONMENTAL RESEARCH 2021; 197:111026. [PMID: 33744265 DOI: 10.1016/j.envres.2021.111026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Here we developed the functionalized biochar as low-cost and heavy metal-free photocatalysts via a facile iodine doping method, which exhibit efficient adsorption and visible-light-driven photocatalytic degradation of representative organic pollutants, phenol and tetracycline. On one hand, iodine doping elevates the adsorption via creating extra pores, e.g., the adsorbed amounts of phenol by iodine-doped WSP and OSR biochar are increased by 161.8% and 146.3%, respectively, which in turn facilitates the photocatalytic oxidation of the adsorbed pollutants. On the other hand, iodine doping leads to the strong photo-induced excitation and remarkably reduced charge carrier transfer resistance, boosting the photocatalytic activity of iodine-doped biochar by more than 20 orders towards organic pollutants (e.g., phenol) degradation. The systematic analysis of reactive species reveals the active roles of O2-, H2O2, 1O2, OH, electrons, and holes in photocatalytic process and identifies O2- to be the major contributor. This work affords a facile approach to generating porous and visible-light-driven photocatalyst from biomass for efficient adsorbing and degrading organic pollutants, opening up an avenue to turn biowaste into biomaterials for sustainable environmental remediation.
Collapse
Affiliation(s)
- Tianqi Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518060, China
| | - Zeyu Tao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518060, China
| | - Wei Han
- College of Land and Environment, Shenyang Agricultural University, NO. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Ning An
- College of Land and Environment, Shenyang Agricultural University, NO. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Qinfen Gu
- The Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Microwave-Assisted Preparation of Zirconium Intercalated Expanded Graphite for Chlorpyrifos Determination in Honey. Chromatographia 2021. [DOI: 10.1007/s10337-020-03992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
DC electrical conductivity retention and antibacterial aspects of microwave-assisted ultrathin CuO@polyaniline composite. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01201-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Safaei M, Taran M, Jamshidy L, Imani MM, Mozaffari HR, Sharifi R, Golshah A, Moradpoor H. Optimum synthesis of polyhydroxybutyrate-Co 3O 4 bionanocomposite with the highest antibacterial activity against multidrug resistant bacteria. Int J Biol Macromol 2020; 158:477-485. [PMID: 32278598 DOI: 10.1016/j.ijbiomac.2020.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
Increased multidrug resistant (MDR) bacteria are considered one of the most challenging problems of the present century. The present study aimed to identify the optimum conditions for synthesis of Polyhydroxybutyrate-Co3O4 bionanocomposite with the highest antibacterial activity via in situ synthesis. Nine experiments with different amounts of polyhydroxybutyrate (PHB) biopolymer and Co3O4 nanoparticles and different stirring times were designed using Taguchi method. The antibacterial activity of synthesized nanocomposites against Staphylococcus aureus and Escherichia coli was evaluated using colony forming units (CFU) and disc diffusion methods. The characterizations of products were studied by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The synthesized bionanocomposites completely prevented the growth of bacteria under the conditions of experiments 5 (Co3O4 4 mg/ml, PHB 1 mg/ml and stirring time: 90 min) and 9 (Co3O4 8 mg/ml, PHB 2 mg/ml and stirring time: 60 min). The results showed that nanocomposite formation improved structural properties, thermal stability and antibacterial activity. PHB-Co3O4 bionanocomposite can be used in various fields of pharmacy, medicine and dentistry due to its desirable antibacterial properties.
Collapse
Affiliation(s)
- Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mojtaba Taran
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ladan Jamshidy
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamid Reza Mozaffari
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Goudarzi R, Motlagh GH. An Insight into the Diffusion of Unsaturated Polyester (UP) Resin into Expanded Graphite (EG) to Improve the Mechanical Properties of the UP/EG Composites. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1747231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- R. Goudarzi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - G. H. Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
AlAmer M, Zamani S, Fok K, Satish A, Lim AR, Joo YL. Facile Production of Graphenic Microsheets and Their Assembly via Water-Based, Surfactant-Aided Mechanical Deformations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8944-8951. [PMID: 31994382 DOI: 10.1021/acsami.9b22824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Expandable graphite (EG) and few-layer graphene (FLG) have proven to be instrumental materials for various applications. The production of EG and FLG has been limited to batch processes using numerous intercalating agents, especially organic acids. In this study, a Taylor-Couette reactor (TCR) setup is used to expand and exfoliate natural graphite and produce a mixture of EG and FLG in aqueous solutions using an amphiphilic dispersant and a semiflexible stabilizer. Laminar Couette flow structure and high shear rates are achieved via the rotation of the outer cylinder while the inner cylinder is still, which circumvents vortex formation because of the suppression of centrifugal forces. Our results reveal that the level of expansion and exfoliation using an aqueous solution and a TCR is comparable to that using commercial EG (CEG) synthesized by intercalating sulfuric acid. More importantly, the resultant EG and FLG flakes are more structurally homogeneous than CEG, the ratio of FLG to EG increases with increasing shearing time, and the produced FLG sheets exhibit large lateral dimensions (>10 μm). The aqueous solutions of EG and FLG are wet-spun to produce ultralight fibers with a bulk density of 0.35 g/cm3. These graphene fibers exhibit a mechanical strength of 0.5 GPa without any modification or thermal treatment, which offers great potential in light-weight composite applications.
Collapse
Affiliation(s)
- Mohammed AlAmer
- Robert Fredrick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Somayeh Zamani
- Robert Fredrick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Kristi Fok
- Robert Fredrick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Aishwarya Satish
- Robert Fredrick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Ae Ran Lim
- Analytical Laboratory of Advanced Ferroelectric Crystals and Department of Science Education , Jeonju University , Jeonju 55069 , South Korea
| | - Yong Lak Joo
- Robert Fredrick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
15
|
Efficient removal of organic contaminant via activation of potassium persulfate by γ-Fe2O3/α-MnO2 nanocomposite. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Goudarzi R, Hashemi Motlagh G. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 2019; 5:e02595. [PMID: 31646209 PMCID: PMC6804370 DOI: 10.1016/j.heliyon.2019.e02595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022] Open
Abstract
The pore structure of expanded graphite (EG) including pore volume, pore size distribution and surface area is investigated by mercury porosimetry, nitrogen adsorption and SEM. Also, the diffusion of silicone oil molecules as macromolecules with different molecular weights into EG pores is studied. Various EG samples were prepared by the sudden heating of graphite intercalated compound (GIC) with varying particle size of 35, 50, 80 and 200 meshes in an electrical furnace at temperatures of 700, 800 and 900 °C. The EGs were characterized by FTIR to evaluate the presence of functional groups. It was found that the exfoliation process has not significantly introduced oxygen functional groups such as epoxy and carboxyl groups to the EG structure. Therefore the chemical structure of the EG is very close to pristine graphite. The mercury porosimetry results showed a broad range of total pore area from 5 to 31 m2/g for the EGs. The particle size of GIC and exfoliation temperature showed strong effects on the pore size of EG. The mercury intrusion porosimetry and nitrogen adsorption isotherms revealed that μm-pores are dominant as compared with nm-pores in all EG samples. The diffusion of silicone oils as macromolecular guests with three different viscosities was experimentally studied to analyze the diffusion facts of EG as the host. It was observed that as the exfoliation temperature decreases, the sorption capacity decreases; and EG samples prepared from the GICs with smaller particle size have lower sorption capacity. Sorption experiments also showed that the whole pore volume of EG is not filled with silicone oil leading to this fact that EG includes relatively closed pores. A new model was suggested for the sorption capacity of EG as a function of the pore area of EG and the square root of molecular weight of silicone oil.
Collapse
|
17
|
Preparation and antibacterial effects of Ag/AgCl-doped quaternary ammonium-modified silicate hybrid antibacterial material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:177-184. [DOI: 10.1016/j.msec.2018.12.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023]
|
18
|
Safaei M, Taran M, Imani MM. Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:323-329. [PMID: 31029325 DOI: 10.1016/j.msec.2019.03.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
In this study, the antifungal activity rate of alginate-CuO bionanocomposite was assessed against Aspergillus niger using colony forming units (CFU) and disc diffusion methods. Employing the Taguchi method, nine experiments were designed for the synthesis of alginate-CuO nanocomposite with the highest antifungal activity. The nanocomposite synthesized under the conditions of experiment 5 (4 mg/mL CuO nanoparticles and 1 mg/mL alginate biopolymer with stirring time of 90 min) showed the greatest inhibition rate on fungal growth (83.17%). In the optimum conditions for the synthesis of alginate-CuO nanocomposite with the highest antifungal activity the second level of CuO NPs (14.14%), alginate biopolymer (8.16%) and stirring time (5.63%) showed the best improvement performance on inhibiting the fungal growth. The results of ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) confirmed the formation of alginate-CuO nanocomposite. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of alginate biopolymer and CuO nanoparticles were improved by the formation of the nanocomposite. Due to the favorable properties of alginate-CuO nanocomposite, its antifungal feature can be used in various biomedical fields.
Collapse
Affiliation(s)
- Mohsen Safaei
- Oral and Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mojtaba Taran
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep 2019; 9:4170. [PMID: 30862854 PMCID: PMC6414503 DOI: 10.1038/s41598-019-40916-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Antibacterial screening of graphene-tin oxide nanocomposites synthesized from carbonized wood and coconut shell is investigated against Pseudomonas aeruginosa for the first time. Efficient and facile one step hydrothermal process adopted in the present work for the synthesis of graphene-tin oxide nanoparticles provides an ideal method for the economic large-scale production of the same. Graphene-tin oxide nanocomposites derived from wood charcoal possess a spherical morphology whereas rod like structures are seen in the case of coconut shell derivatives. An excitation independent fluorescence response is observed in graphene-tin oxide nanohybrids while graphene oxide nanostructures exhibited an excitation dependent behavior. These hydrophilic nanostructures are highly stable and exhibited no sign of luminescence quenching or particle aggregation even after a storage of 30 months. Bactericidal effects of the nanostructures obtained from coconut shell is found to be relatively higher compared to those procured from wood. This variation in antibacterial performance of the samples is directly related to their morphological difference which in turn is heavily influenced by the precursor material used. MIC assay revealed that coconut shell derived graphene-tin oxide composite is able to inhibit the bacterial growth at a lower concentration (250 μg/mL) than the other nanostructures. Nanocomposites synthesized from agro-waste displayed significantly higher antimicrobial activity compared to the precursor and graphene oxide nanostructures thereby making them excellent candidates for various bactericidal applications such as disinfectants, sanitary agents etc.
Collapse
|
20
|
Cheng KF, Yang FC, Wu KH, Liu XM. Evaluation and efficacy of metal oxides in terms of antibacterial activity and toxic chemical degradation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:615-622. [DOI: 10.1016/j.msec.2018.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/20/2018] [Accepted: 08/11/2018] [Indexed: 11/30/2022]
|
21
|
Abureesh MA, Oladipo AA, Mizwari ZM, Berksel E. Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug. Int J Biol Macromol 2018; 116:417-425. [DOI: 10.1016/j.ijbiomac.2018.05.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
|
22
|
Liu J, Rojas-Andrade MD, Chata G, Peng Y, Roseman G, Lu JE, Millhauser GL, Saltikov C, Chen S. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. NANOSCALE 2017; 10:158-166. [PMID: 29143052 DOI: 10.1039/c7nr07367d] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synthesis of new, highly active antibacterial agents has become increasingly important in light of emerging antibiotic resistance. In the present study, ZnO/graphene quantum dot (GQD) nanocomposites were produced by a facile hydrothermal method and characterized by an array of microscopic and spectroscopic measurements, including transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis and photoluminescence spectroscopy. Antibacterial activity of the ZnO/GQD nanocomposites was evaluated with Escherichia coli within the context of minimum inhibitory concentration and the reduction of the number of bacterial colonies in a standard plate count method, in comparison to those with ZnO and GQD separately. It was found that the activity was markedly enhanced under UV photoirradiation as compared to that in ambient light. This was ascribed to the enhanced generation of reactive oxygen species under UV photoirradiation, with minor contributions from membrane damage, as manifested in electron paramagnetic resonance and fluorescence microscopic measurements. The results highlight the significance of functional nanocomposites based on semiconductor nanoparticles and graphene derivatives in the development of effective bactericidal agents.
Collapse
Affiliation(s)
- Junli Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | | | | | | | | | | | | | | | | |
Collapse
|