1
|
Ścibik Ł, Ochońska D, Gołda-Cępa M, Kwiecień K, Pamuła E, Kotarba A, Brzychczy-Włoch M. Sonochemical Deposition of Gentamicin Nanoparticles at the PCV Tracheostomy Tube Surface Limiting Bacterial Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3765. [PMID: 37241392 PMCID: PMC10222746 DOI: 10.3390/ma16103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The use of nanotechnology in the production of medical equipment has opened new possibilities to fight bacterial biofilm developing on their surfaces, which can cause infectious complications. In this study, we decided to use gentamicin nanoparticles. An ultrasonic technique was used for their synthesis and immediate deposition onto the surface of tracheostomy tubes, and their effect on bacterial biofilm formation was evaluated. METHODS Polyvinyl chloride was functionalized using oxygen plasma followed by sonochemical formation and the embedment of gentamicin nanoparticles. The resulting surfaces were characterized with the use of AFM, WCA, NTA, FTIR and evaluated for cytotoxicity with the use of A549 cell line and for bacterial adhesion using reference strains of S. aureus (ATCC® 25923™) and E. coli (ATCC® 25922™). RESULTS The use of gentamicin nanoparticles significantly reduced the adhesion of bacterial colonies on the surface of the tracheostomy tube for S. aureus from 6 × 105 CFU/mL to 5 × 103 CFU/mL and for E. coli from 1.655 × 105 CFU/mL to 2 × 101 CFU/mL, and the functionalized surfaces did not show a cytotoxic effect on A549 cells (ATTC CCL 185). CONCLUSIONS The use of gentamicin nanoparticles on the polyvinyl chloride surface may be an additional supporting method for patients after tracheostomy in order to prevent the colonization of the biomaterial by potentially pathogenic microorganisms.
Collapse
Affiliation(s)
- Łukasz Ścibik
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Kraków, Poland; (M.G.-C.); (A.K.)
- Department of Otolaryngology and Oncological Surgery of the Head and Neck, 5th Military Hospital with Polyclinic in Krakow, 1-3 Wrocławska Street, 30-901 Kraków, Poland
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Kraków, Poland; (M.G.-C.); (A.K.)
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Kraków, Poland; (M.G.-C.); (A.K.)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| |
Collapse
|
2
|
de Mello Gindri I, Silveira da Silva L, Vitor Salmoria G, Rodrigo de Mello Roesler C. Ibuprofen-loaded UHMWPE for orthopedics applications: preliminary evaluation of mechanical and biological properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Rajesh K, Ghosh S, Islam A, Rangaswamy MK, Haldar S, Roy P, Keshri AK, Lahiri D. Multilayered porous hydroxyapatite coating on Ti6Al4V implant with enhanced drug delivery and antimicrobial properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
5
|
张 一, 张 宪, 胡 中, 任 兴, 王 茜, 王 志. [Research progress on antibacterial properties of porous medical implant materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1478-1485. [PMID: 33191710 PMCID: PMC8171714 DOI: 10.7507/1002-1892.202001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The antibacterial properties of porous medical implant materials were reviewed to provide guidance for further improvement of new medical implant materials. METHODS The literature related to the antibacterial properties of porous medical implant materials in recent years was consulted, and the classification, characteristics and applications, and antibacterial methods of porous medical implant materials were reviewed. RESULTS Porous medical implant materials can be classified according to surface pore size, preparation process, degree of degradation in vivo, and material source. It is widely used in the medical field due to its good biocompatibility and biomechanical properties. Nevertheless, the antibacterial properties of porous medical implant materials themselves are not obvious, and their antibacterial properties need to be improved through structural modification, overall modification, and coating modification. CONCLUSION At present, coating modification as the mainstream modification method for improving the antibacterial properties of porous medical materials is still a research hotspot. The introduction of new antibacterial substances provides a new perspective for the development of new coated porous medical implant materials, so that the porous medical implant materials have a more reliable antibacterial effect while taking into account biocompatibility.
Collapse
Affiliation(s)
- 一 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 宪高 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 中岭 胡
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 兴宇 任
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 茜 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 志强 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
- 华北理工大学临床医学院(河北唐山 063000)School of Clinical Medicine, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| |
Collapse
|
6
|
Silva LSD, Gindri IDM, Salmoria GV, Roesler CRDM. Physicochemical characterization, drug release and mechanical analysis of ibuprofen-loaded uhmwpe for orthopedic applications. POLIMEROS 2020. [DOI: 10.1590/0104-1428.04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
| | | | - Gean Vitor Salmoria
- Universidade Federal de Santa Catarina, Brasil; Universidade Federal de Santa Catarina, Brasil
| | | |
Collapse
|
7
|
Comparative study on the efficacy of the UHMWPE surface modification by chemical etching and electrostatic spraying method for drug release by orthopedic implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110117. [DOI: 10.1016/j.msec.2019.110117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/19/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022]
|
8
|
Rajesh K, Rangaswamy MK, Zhang C, Haldar S, Kumarasamy M, Agarwal A, Roy P, Lahiri D. Surface Modified Metallic Orthopedic Implant for Sustained Drug Release and Osteocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:4181-4192. [DOI: 10.1021/acsabm.9b00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kanike Rajesh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Manoj Kumar Rangaswamy
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Cheng Zhang
- Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Swati Haldar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Murali Kumarasamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Arvind Agarwal
- Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
9
|
|
10
|
Manoj Kumar R, Rajesh K, Haldar S, Gupta P, Murali K, Roy P, Lahiri D. Surface modification of CNT reinforced UHMWPE composite for sustained drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Alendronate Release from UHMWPE-Based Biomaterials in Relation to Particle Size of the GUR Powder for Manufacturing. MATERIALS 2019; 12:ma12111832. [PMID: 31174252 PMCID: PMC6600958 DOI: 10.3390/ma12111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) is widely used in endoprosthetics and has been the subject of countless studies. This project investigates the dependence of alendronate (AL) release on the molecular weight of the UHMWPE used (GUR1020 and GUR1050). A 0.5 wt% AL was added to the UHMWPE during the production of the moldings. In addition to the 14-day release tests, biocompatibility tests such as live dead assay, cell proliferation assay (WST) and Lactate dehydrogenase test (LDH) with MG-63 cells as well as a tensile test according to DIN EN ISO 527 were carried out. The released AL concentration was determined by HPLC. A continuous release of the AL was observed over the entire period of 2 weeks. In addition, a correlation between molar mass and AL release was demonstrated. The GUR1020 showed a release four times higher than the GUR1050. Both materials have no negative influence on the proliferation of MG-63 cells. This was also confirmed in the live/dead assay by the increase in cell count. No cytotoxicity was detected in the LDH test. The addition of 0.5 wt% AL increased the elongation at break for GUR1020 by 23% and for GUR1050 by 49%. It was demonstrated that the choice of UHMWPE has an influence on the release of AL. The particle size in particular has a strong influence on the release behavior.
Collapse
|
12
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
13
|
Ai C, Sheng D, Chen J, Cai J, Wang S, Jiang J, Chen S. Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis. Int J Nanomedicine 2017; 12:7737-7750. [PMID: 29118579 PMCID: PMC5659221 DOI: 10.2147/ijn.s148845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ultra-high-molecular-weight polyethylene (UHMWPE) has been applied in orthopedics, as the materials of joint prosthesis, artificial ligaments, and sutures due to its advantages such as high tensile strength, good wear resistance, and chemical stability. However, postoperative osteolysis induced by UHMWPE wear particles and poor bone–implant healing interface due to scarcity of osseointegration is a significant problem and should be solved imperatively. In order to enhance its affinity to bone tissue, vascular endothelial growth factor (VEGF) was loaded on the surface of materials, the loading was performed by silk fibroin (SF) coating to achieve a controlled-release delivery. Several techniques including field emission scanning electron microscopy (FESEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) and water contact angle measurement were used to validate the effectiveness of introduction of SF/VEGF. The result of ELISA demonstrated that the release of VEGF was well maintained up to 4 weeks. The modified UHMWPE was evaluated by both in vitro and in vivo experiments. According to the results of FESEM and cell counting kit-8 (CCK-8) assay, bone marrow mesenchymal stem cells cultured on the UHMWPE coated with SF/VEGF and SF exhibited a better proliferation performance than that of the pristine UHMWPE. The model rabbit of anterior cruciate ligament reconstruction was used to observe the graft–bone healing process in vivo. The results of histological evaluation, microcomputed tomography (micro-CT) analysis, and biomechanical tests performed at 6 and 12 weeks after surgery demonstrated that graft–bone healing could be significantly improved due to the effect of VEGF on angiogenesis, which was loaded on the surface by SF coating. This study showed that the method loading VEGF on UHMWPE by SF coating played an effective role on the biological performance of UHMWPE and displayed a great potential application for anterior cruciate ligament reconstruction.
Collapse
Affiliation(s)
- Chengchong Ai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Siheng Wang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jia Jiang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|