1
|
Kalındemirtaş FD, Cilasun GE, Kariper A. Enhanced therapeutic efficacy of platinum-doxorubicin nanoparticles on colon and breast cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04080-4. [PMID: 40299021 DOI: 10.1007/s00210-025-04080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
In this study, platinum nanoparticles (PtNPs) were synthesized and their potential to improve the efficacy of doxorubicin (DOX) in cancer treatment was investigated. H2PtCl6, LiAlH4, and trisodium citrate were used during the synthesis of PtNPs. They were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and scanning transmission electron microscopy (STEM). The diameter of the PtNPs was measured to be 21.72 nm without DOX loading and approximately 212 nm after DOX loading (DOX-PtNPs). FTIR confirmed the binding of DOX to PtNPs. In addition, MTT assays showed that DOX-PtNPs have a stronger effect on MCF-7 and HCT116 cancer cells than free DOX, even at low doses. The IC50 value for MCF-7 cells treated with DOX was determined to be 4.81 µg/ml, while it was significantly lower for the DOX-PtNP group at 0.64 µg/ml. A similar trend was observed in HCT116 cells, where the IC50 value for DOX was 5.03 µg/ml, while for DOX-PtNPs it was 0.62 µg/ml. In summary, the activity of DOX in these cells was increased approximately eightfold by PtNPs. Moreover, DOX-PtNPs showed no significant cytotoxic effects on normal HUVEC cells at low doses. Moreover, DOX-PtNPs enhanced apoptotic activity in HCT116 cells without inducing drug resistance as demonstrated by Rho123 staining and annexin/PI analyses. The significance of this study lies in the pioneering use of DOX-PtNPs in colon cancer, the synthesis of smaller PtNPs, the eightfold increase in the efficacy of DOX, and the demonstration that DOX-PtNPs do not significantly increase drug resistance.
Collapse
Affiliation(s)
| | - Gökçe Erdemir Cilasun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Mohammadzadeh Kakhki R, Bolandhemmat H. Synthesis of Ag/CuS doped mineral magnetite nanocomposite with improved photocatalytic activity against tetracycline and diclofenac pollutants. Sci Rep 2024; 14:19009. [PMID: 39152164 PMCID: PMC11329678 DOI: 10.1038/s41598-024-69644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe₃O₄ nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe₃O₄ nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe₃O₄. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe₃O₄ nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.
Collapse
Affiliation(s)
| | - Hadis Bolandhemmat
- Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran
| |
Collapse
|
4
|
Aftab R, Akbar F, Afroz A, Asif A, Khan MR, Rehman N, Zeeshan N. Mentha piperita silver nanoparticle-loaded hydrocolloid film for enhanced diabetic wound healing in rats. J Wound Care 2024; 33:xlviii-lx. [PMID: 38457268 DOI: 10.12968/jowc.2024.33.sup3a.xlviii] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Reema Aftab
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Fatima Akbar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Awais Asif
- Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| |
Collapse
|
5
|
Yerpude ST, Potbhare AK, Bhilkar P, Rai AR, Singh RP, Abdala AA, Adhikari R, Sharma R, Chaudhary RG. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. ENVIRONMENTAL RESEARCH 2023; 231:116148. [PMID: 37211181 DOI: 10.1016/j.envres.2023.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Platinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials. There are several methods to synthesize platinum-based NHs, but biological processes are admirable because of green, economical, sustainable, and non-toxic. Due to the robust physicochemical and biological characteristics of platinum NPs, they are widely employed as nanocatalyst, antioxidant, antipathogenic, and anticancer agents. Indeed, Pt-based NHs are the subject of keen interest and substantial research area for biomedical and clinical applications. Hence, this review systematically studies antimicrobial, biological, and environmental applications of platinum and platinum-based NHs, predominantly for treating cancer and photo-thermal therapy. Applications of Pt NPs in nanomedicine and nano-diagnosis are also highlighted. Pt NPs-related nanotoxicity and the potential and opportunity for future nano-therapeutics based on Pt NPs are also discussed.
Collapse
Affiliation(s)
- Sachin T Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Pavan Bhilkar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Raghvendra P Singh
- Department of Research & Development, Azoth Biotech Pvt. Ltd., Noida, 201306, India.
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A and M University at Qatar POB, 23784, Doha, Qatar.
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| |
Collapse
|
6
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
7
|
Green Synthesis of Platinum Nanoparticles by Nymphaea tetragona flower Extract and their skin lightening, antiaging effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Barroso Peixoto
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | | | | | - Rafael Oliveira Defendi
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | - Rúbia Michele Suzuki
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| |
Collapse
|
9
|
Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, Hamblin MR, Mirzaei SA, Soleimanpour H, Dehghani S, Dehkordi FF, Mirzaei H. Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles. Front Pharmacol 2022; 13:797804. [PMID: 35281900 PMCID: PMC8904935 DOI: 10.3389/fphar.2022.797804] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer is the main cause of morbidity and mortality worldwide, excluding infectious disease. Because of their lack of specificity in chemotherapy agents are used for cancer treatment, these agents have severe systemic side effects, and gradually lose their therapeutic effects because most cancers become multidrug resistant. Platinum nanoparticles (PtNPs) are relatively new agents that are being tested in cancer therapy. This review covers the various methods for the preparation and physicochemical characterization of PtNPs. PtNPs have been shown to possess some intrinsic anticancer activity, probably due to their antioxidant action, which slows tumor growth. Targeting ligands can be attached to functionalized metal PtNPs to improve their tumor targeting ability. PtNPs-based therapeutic systems can enable the controlled release of drugs, to improve the efficiency and reduce the side effects of cancer therapy. Pt-based materials play a key role in clinical research. Thus, the diagnostic and medical industries are exploring the possibility of using PtNPs as a next-generation anticancer therapeutic agent. Although, biologically prepared nanomaterials exhibit high efficacy with low concentrations, several factors still need to be considered for clinical use of PtNPs such as the source of raw materials, stability, solubility, the method of production, biodistribution, accumulation, controlled release, cell-specific targeting, and toxicological issues to human beings. The development of PtNPs as an anticancer agent is one of the most valuable approaches for cancer treatment. The future of PtNPs in biomedical applications holds great promise, especially in the area of disease diagnosis, early detection, cellular and deep tissue imaging, drug/gene delivery, as well as multifunctional therapeutics.
Collapse
Affiliation(s)
- Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Kashan, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028 Doornfontein, Johannesburg, South Africa
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Soleimanpour
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Hosny M, Fawzy M, El-Fakharany EM, Omer AM, El-Monaem EMA, Khalifa RE, Eltaweil AS. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:106806. [DOI: 10.1016/j.jece.2021.106806] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
11
|
Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103517] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Bhattacharya S, Halder M, Sarkar A, Pal P, Das A, Kundu S, Mandal DP, Bhattacharjee S. Investigating in vitro and in vivo anti-tumor activity of Curvularia-based Platinum nanoparticles. J Environ Pathol Toxicol Oncol 2022; 41:13-32. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022039940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Khan MAR, Mamun MSA, Ara MH. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Abstract
Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.
Collapse
|
15
|
Liu K, Zhao Y, Zhang L, He M, Lin W, Sun H, Liu Z, Hu J, Wang L. Biocompatible Platinum Nanoclusters Prepared Using Bitter Gourd Polysaccharide for Colorimetric Detection of Ascorbic Acid. Biomolecules 2021; 11:647. [PMID: 33924809 PMCID: PMC8146894 DOI: 10.3390/biom11050647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Ascorbic acid is an organic compound with antioxidant properties that can protect the human body from the threat of free radicals. Therefore, it is important to detect the existence and measure the concentration of ascorbic acid to regulate its content in the human body. In this work, we prepared bitter gourd polysaccharide (BGP)-stabilized platinum nanoclusters (Pt-BGP NCs) by reacting BGP with K2PtCl4. Pt-BGP NCs and catalyzed the decomposition of H2O2 to generate •OH radicals, which could oxidize TMB to form oxidized TMB (oxTMB), indicating their peroxidase-like properties. The kinetics followed the Michaelis-Menten equation. Furthermore, the colorimetric detection of ascorbic acid using Pt-BGP NCs showed high selectivity and a low detection limit of 0.191 μM. The accuracy of real sample detection using Pt-BGP NCs was as high as 98.9%. More importantly, Pt-BGP NCs had high cell biocompatibility and extremely low hemolysis rate due to the component of BGP. In summary, the prepared Pt-BGP NCs with reductive activity and good biocompatibility have good application prospects in colorimetric detection of ascorbic acid.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Yu Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Mengmeng He
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Haotian Sun
- Ocean NanoTech, LLC, San Diego, CA 92126, USA;
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; (K.L.); (Y.Z.); (L.Z.); (M.H.); (Z.L.); (J.H.)
| |
Collapse
|
16
|
Fahmy SA, Fawzy IM, Saleh BM, Issa MY, Bakowsky U, Azzazy HMES. Green Synthesis of Platinum and Palladium Nanoparticles Using Peganum harmala L. Seed Alkaloids: Biological and Computational Studies. NANOMATERIALS 2021; 11:nano11040965. [PMID: 33918743 PMCID: PMC8103518 DOI: 10.3390/nano11040965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
This study reports a facile and eco-friendly method for the green synthesis of platinum and palladium nanoparticles (Pt NPs and Pd NPs) using Peganum harmala seed alkaloid fraction. The ζ-potential of the synthesized Pt NPs, Pd NPs and Pt–Pd NPs were −11.2 ± 0.5, −9.7 ±1.2, and −12.7 ± 2.1 mV; respectively. Transmission electron microscopy (TEM) revealed the formation of spherical-shaped nanoparticles with smooth margins. The mean diameters of the synthesized Pt NPs, Pd NPs, and Pt–Pd NPs were determined using TEM analysis and were found to be 20.3 ± 1.9, 22.5 ± 5.7, and 33.5 ± 5.4 nm, respectively. The nanoparticles’ bioreduction was confirmed by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, and their organic contents were determined by thermal gravimetric analysis (TGA). The Pt–Pd NPs mixture showed more pronounced antioxidant activity of 843.0 ± 60 μM Trolox equivalent (TE)/mg NPs compared to the individual Pt NPs (277.3 ± 13.5 μM TE/mg NPs) and Pd NPs (167.6 ± 4.8 μM TE/mg NPs). Furthermore, the Pt–Pd NPs exhibited significant cytotoxic activities against lung cancer (A549) and breast adenocarcinoma (MCF-7) cells, IC50 of 8.8 and 3.6 µg/mL, respectively; as compared to Pt NPs (IC50 of 10.9 and 6.7 µg/mL, respectively) and Pd NPs (IC50 of 31 and 10.8 µg/mL, respectively and compared to carboplatin (IC50 of 23 and 9.5 µg/mL, respectively). Moreover, molecular docking studies were conducted to explore the possible anticancer and antioxidant mechanisms of the biogenic nanoparticles. Pt NPs, Pd NPs, and their mixture showed inhibitory activity against cysteine proteinase, which supports their high antitumor activity, but moderate antioxidant activity. In conclusion, Pd-Pt NPs mixture prepared using harmala seed alkaloid fraction showed potential as effective antineoplastic agents.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo 11835, Egypt; (S.A.F.); (B.M.S.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital AL109AB, Cairo 11835, Egypt
| | - Iten M. Fawzy
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt;
| | - Basma M. Saleh
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo 11835, Egypt; (S.A.F.); (B.M.S.)
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- Correspondence: (U.B.); (H.M.E.-S.A.); Tel.: +49-6421-28-25884 (U.B.); +2-02-2615-2559 (H.M.E.-S.A.); Fax: +2-02-2795-7565 (H.M.E.-S.A.)
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo 11835, Egypt; (S.A.F.); (B.M.S.)
- Correspondence: (U.B.); (H.M.E.-S.A.); Tel.: +49-6421-28-25884 (U.B.); +2-02-2615-2559 (H.M.E.-S.A.); Fax: +2-02-2795-7565 (H.M.E.-S.A.)
| |
Collapse
|
17
|
Liu Y, Hu F, Zhao L. Effect of Nano-Platinum on Proliferation and Apoptosis of Non-Small Cell Lung Cancer Cells via P53 Pathway. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:903-908. [PMID: 33183422 DOI: 10.1166/jnn.2021.18629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper studies the non-small cell lung cancer with interventional treatment of polyethylene imine-coated platinum nanoclusters. The relationship between the inhibition of non-small cell lung cancer cell proliferation, apoptosis, and the expression of its related apoptotic protein p53. Apoptosis experiments were applied was used to detect the effect of nanoplatin on A549 cells. Western blot was used to detect the expression of p53 protein in A549 cells after nanoplatin treatment. We co-cultured nanoplatin with cells for 4 hours and performed nuclear staining. Observed by laser confocal microscopy, we found that nanoplatin can enter the nucleus and cytoplasm of non-small cell lung cancer A549 cells, and the phenomenon of drug entering the nucleus is very obvious. Treatment of non-small cell lung cancer with A549 cells at different concentrations of nanoplatin for 24 hours, with the increase of the concentration, the proliferation inhibition rate of non-small cell lung cancer gradually increased. Treatment of cisplatin-resistant non-small cell lung cancer cells with different concentrations of nanoplatin for 24 hours, as the concentration increases, the proliferation inhibition rate of non-small cell lung cancer gradually increases. After treatment of A549 cells with different concentrations of nanoplatin for 24 hours, the apoptosis rate of A549 cells gradually increased with the increase of drug concentration. Finally, we conclude that nanoplatin has not only inhibitory and pro-apoptotic effects on non-small cell lung cancer cells, but also fluorescent labeling. Compared with cisplatin, nanoplatin can significantly inhibit the proliferation of non-small cell lung cancer cells and overcome its cisplatin resistance. The p53-related signaling pathway may participate in the process of apoptosis and reverse the process of cisplatin resistance, but the specific mechanism and whether there are other signaling pathways involved Further research is needed.
Collapse
Affiliation(s)
- Yiqun Liu
- Department of Oncology, Cixi Hospital Affiliated to Wenzhou Medical University, Cixi, Ningbo, 315300, Zhejiang Province, China
| | - Fangjuan Hu
- Second Department of Internal Medicine, Qingdao Cancer Hospital, Qingdao, 266042, Shandong Province, China
| | - Long Zhao
- Department of Respiration, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| |
Collapse
|
18
|
Fahmy SA, Preis E, Bakowsky U, Azzazy HMES. Platinum Nanoparticles: Green Synthesis and Biomedical Applications. Molecules 2020; 25:E4981. [PMID: 33126464 PMCID: PMC7662215 DOI: 10.3390/molecules25214981] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Platinum nanoparticles (PtNPs) have superior physicochemical properties and great potential in biomedical applications. Eco-friendly and economic approaches for the synthesis of PtNPs have been developed to overcome the shortcomings of the traditional physical and chemical methods. Various biogenic entities have been utilized in the green synthesis of PtNPs, including mainly plant extracts, algae, fungi bacteria, and their biomedical effects were assessed. Other biological derivatives have been used in the synthesis of PtNPs such as egg yolk, sheep milk, honey, and bovine serum albumin protein. The green approaches for the synthesis of PtNPs have reduced the reaction time, the energy required, and offered ambient conditions of fabrication. This review highlights the state-of-the-art methods used for green synthesis of PtNPs, synthesis parameters, and their reported biomedical applications.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
- School of Pharmacy, University of Hertfordshire-Egypt hosted by GAF, R5 New Garden City, New Administrative Capital AL109AB, Cairo 11835, Egypt
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| |
Collapse
|
19
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
20
|
Patti F, Palmioli A, Vitalini S, Bertazza L, Redaelli M, Zorzan M, Rubin B, Mian C, Bertolini C, Iacobone M, Armanini D, Barollo S, Airoldi C, Iriti M, Pezzani R. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front Pharmacol 2020; 10:1647. [PMID: 32116670 PMCID: PMC7025550 DOI: 10.3389/fphar.2019.01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023] Open
Abstract
Mint [Mentha longifolia (L.) Hudson] is an aromatic plant that belongs to Lamiaceae family. It is traditionally used as herbal tea in Europe, Australia and North Africa and shows numerous pharmacological effects, such as spasmolytic, antioxidant, antimicrobial and anti-hemolytic. Recently, its antiproliferative role has been suggested in a small number of tumor cell models, but no data are available on adrenocortical carcinoma, a malignancy with a survival rate at 5 years of 20%-30% which frequently metastasize. This work aimed to study the effects of Mentha longifolia L. crude extract (ME) on two adrenocortical tumor cell models (H295R and SW13 cells). Chemical composition of ME was assessed by gas-chromatography/mass spectrometry and NMR spectroscopy analysis. Brine shrimp lethality assay showed ME effects at >0.5 µg/µl (p < 0.05). Cell viability and vitality were determined by MTT, SRB, and trypan blue assays in H295R and SW13 cells. The anti-proliferative effects of ME were more evident in SW13 cells at 72 h (ME > 0.5 µg/µl, p < 0.05). Combination of ME with mitotane (approved drug for adrenocortical carcinoma) seemed not to reinforce the efficacy of the herb. As control, human fibroblasts were treated with ME with no effect on cell viability. Clonogenic assay was concordant with previous cell viability tests (ME > 0.5 µg/µl, p < 0.05), while Wright staining demonstrated the presence of both necrotic and apoptotic cells. Cell cycle analysis showed a strong increase in subG0/G1 phase, related to cell death. Furthermore, MAPK and PI3k/Akt pathways were modulated by Western blot analysis when treating cells with ME alone or combined with mitotane. The crude methanolic extract of wild mountain mint can decrease cell viability, vitality and survival of adrenocortical tumor cell models, in particular of SW13 cells. These data show the potential anticancer effects of ME, still more work is needed to corroborate these findings.
Collapse
Affiliation(s)
- Felicia Patti
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessandro Palmioli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, Milano, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Liettoli di Campolongo Maggiore, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Beatrice Rubin
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Cristina Bertolini
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Maurizio Iacobone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milano, Italy
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| |
Collapse
|
21
|
Zhao Y, Zhang J, Xie D, Sun H, Yu S, Guo X. Ultra-small and biocompatible platinum nanoclusters with peroxidase-like activity for facile glucose detection in real samples. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:747-761. [PMID: 31984864 DOI: 10.1080/09205063.2020.1716298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The highly sensitive glucose detection based on the peroxidase-like properties of nanoclusters has been gained great interest. In this work, Pericarpium Citri Reticulatae polysaccharide (PCRP) stabilized platinum nanoclusters (Pt-PCRP NCs) were prepared by a green method in which potassium tetrachloroplatinate and PCRP were simply mixed without addition of other agents. Platinum nanoclusters (Pt NCs) had ultra-small size of 1.26 ± 0.34 nm. The hydrodynamic size of Pt-PCRP NCs was 29.7 nm, and zeta potential of which was -12.0 mV. Pt-PCRP NCs showed high biocompatibility toward HeLa cells and red blood cells. In addition, Pt-PCRP NCs catalyzed the decomposition of H2O2 to produce •OH, which further oxidized colorless 3,3'5,5'-tetramethylbenzidine (TMB) to blue oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), exhibiting peroxidase-like property. The kinetics followed the Michaelis-Menten equation. More importantly, the colorimetric method for glucose detection using Pt-PCRP NCs had high selectivity and low detection limit for 0.38 μM. The established method based on Pt-PCRP NCs was used to precisely detect glucose detection in human serum, saliva, and sweat. Taken together, the prepared ultra-small and biocompatible Pt-PCRP NCs have good potential glucose applications in clinical diagnosis in the future.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Jin Zhang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, China
| | - Danyang Xie
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shuqian Yu
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaolei Guo
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
22
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
23
|
Surya C, Arul John NA, Pandiyan V, Ravikumar S, Amutha P, Sobral AJ, Krishnakumar B. Costus speciosus leaf extract assisted CS-Pt-TiO2 composites: Synthesis, characterization and their bio and photocatalytic applications. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Potbhare AK, Chaudhary RG, Chouke PB, Yerpude S, Mondal A, Sonkusare VN, Rai AR, Juneja HD. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:783-793. [PMID: 30889753 DOI: 10.1016/j.msec.2019.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/28/2023]
Abstract
In the present article we have developed an eco-friendly, phytosynthetic, cost-effective and straightforward method for the synthesis of nearly monodisperse CuO nanospheres (NSP) using leaf extracts of medicinal plants Phyllanthus reticulatus (PR) and Conyza bonariensis (CB) as novel green reducing agents. Copper nitrate (Cu (NO3)2) was used as a precursor. The stoichiometric ratio of both leaf extracts (PR/CB) and Cu(NO3)2 was standardized for the synthesis of NSP. During formation of CuO NSP, a color of solution gradually changed from light greenish-blue to black with a number of intermediate stages and it correlated to the reduction reaction catalyzed by phytochemicals. As-synthesized materials were characterized in detail at the structural, electronic level and morphological authentication by XRD, FT-IR, EDS, UV-DRS, Raman, XPS, SEM, TEM, BET and AFM. SEM studies of phytosynthesized materials revealed nearly monodisperse nanospheres, while TEM rendered average particles size 4-14 nm. Also, AFM profiles suggested a homogenized nature of the nanospheres. Then, the antioxidant property was obtained by α, α-diphenyl-β-picrylhydrazyl (DPPH). Ethanolic, methanolic extracts were used for the antioxidant activity, while ascorbic acid was used as a standard medium. Each plant extract exhibited noteworthy antioxidant activity. Moreover, the antibacterial activity of CuO NSP (PR/CB) was tested against human pathogenic bacteria viz. gram-positive Staphylococcus aureus, Klebsiella pneumoniae, and gram-negative Escherichia coli. Result rendered effective antibacterial activity against Escherichia coli.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, Maharashtra, India
| | - Ratiram Gomaji Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, Maharashtra, India.
| | - Prashant B Chouke
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, Maharashtra, India
| | - Sachin Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, Maharashtra, India
| | - Aniruddha Mondal
- Discipline of Inorganic Materials and Catalysis, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Vaishali N Sonkusare
- Post Graduate Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts, Science and Commerce, Kamptee 441001, Maharashtra, India
| | - Harjeet D Juneja
- Post Graduate Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| |
Collapse
|
25
|
Yazdian-Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS, Abnous K, Taghdisi SM. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm 2019; 45:603-610. [PMID: 30633594 DOI: 10.1080/03639045.2019.1569029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To explore the effect of combination therapy of epirubicin (Epi) and melittin (Mel) to cancer cells, calcium carbonate nanoparticles (CCN), as carriers, were developed which were modified with MUC1-Dimer aptamers as targeting agents. Both Epi and Mel were delivered at the same time to cancer cells overexpressing the target of MUC1 aptamer, mucin 1 glycoproteins (MCF7 and C26 cells). CCN were prepared with a water-in-oil emulsion method. Epi and Mel were separately encapsulated in CCN and the nanoparticles were modified with MUC1-Dimer aptamers. In vitro studies, including MTT assay, flow cytometry analysis and fluorescence imaging were applied to investigate the targeting and cell proliferation inhibition capabilities of MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex in the target (MCF-7 and C26 cells) and nontarget (HepG2) cells. Also, the function of the developed complexes was analyzed using in vivo tumor growth inhibition. The release of Epi from MUC1-Dimer aptamer-CCN-Epi complex was pH-sensitive. Cellular uptake studies showed more internalization of the MUC1-Dimer aptamer-CCN-Epi complex into MCF-7 and C26 cells (target) compared to HepG2 cells (nontarget). Interestingly, the MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex indicated very low toxicity as compared to target cells. Moreover, co-delivery of Epi and Mel using the mixture of MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex exhibited strong synergistic cytotoxicity in MCF-7 and C26 cells. Furthermore, the presented complexes had a better function to control tumor growth in vivo compared to free Epi.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- a Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences , Sari , Iran
| | - Atefeh Arab
- b Department of Pharmaceutical Biotechnology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Houshang Rafatpanah
- d Faculty of Medicine, Department of Immunology , Immunology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Bahreyni
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Sadat Nabavinia
- e Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Pharmacognosy , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Khalil Abnous
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- f Targeted Drug Delivery Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
26
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|