1
|
Sadeghi P, Noroozizadeh S, Alshawabkeh R, Sun NX. Machine Learning-Driven D-Glucose Prediction Using a Novel Biosensor for Non-Invasive Diabetes Management. BIOSENSORS 2025; 15:152. [PMID: 40136949 PMCID: PMC11940286 DOI: 10.3390/bios15030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Developing reliable noninvasive diagnostic and monitoring systems for diabetes remains a significant challenge, especially in the e-healthcare domain, due to computational inefficiencies and limited predictive accuracy in current approaches. The current study integrates machine learning with a molecularly imprinted polymer biosensor for detecting D-glucose in the exhaled breath condensate or aerosol. Advanced models, such as Convolutional Neural Networks and Recurrent Neural Networks, were used to analyze resistance signals, while classical algorithms served as benchmarks. To address challenges like data imbalance, limited samples, and inter-sensor variability, synthetic data generation methods like Synthetic Minority Oversampling Technique and Generative Adversarial Networks were employed. This framework aims to classify clinically relevant glucose levels accurately, enabling non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Pardis Sadeghi
- Electrical & Computer Engineering, W.M. Keck Laboratory for Integrated Ferroics, Northeastern University, Boston, MA 02115, USA; (P.S.); (R.A.)
| | - Shahriar Noroozizadeh
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Heinz College, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rania Alshawabkeh
- Electrical & Computer Engineering, W.M. Keck Laboratory for Integrated Ferroics, Northeastern University, Boston, MA 02115, USA; (P.S.); (R.A.)
| | - Nian Xiang Sun
- Electrical & Computer Engineering, W.M. Keck Laboratory for Integrated Ferroics, Northeastern University, Boston, MA 02115, USA; (P.S.); (R.A.)
- Winchester Technologies, LLC, Burlington, MA 01803, USA
| |
Collapse
|
2
|
Garg S, Singla P, Kaur S, Crapnell RD, Banks CE, Seyedin S, Peeters M. Electroactive Molecularly Imprinted Polymer Nanoparticles (eMIPs) for Label-free Detection of Glucose: Toward Wearable Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403320. [PMID: 39113348 DOI: 10.1002/smll.202403320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Indexed: 11/21/2024]
Abstract
The diagnosis of diabetes mellitus (DM) affecting 537 million adults worldwide relies on invasive and costly enzymatic methods that have limited stability. Electroactive polypyrrole (PPy)-based molecularly imprinted polymer nanoparticles (eMIPs) have been developed that rival the affinity of enzymes whilst being low-cost, highly robust, and facile to produce. By drop-casting eMIPs onto low-cost disposable screen-printed electrodes (SPEs), sensors have been manufactured that can electrochemically detect glucose in a wide dynamic range (1 µm-10 mm) with a limit of detection (LOD) of 26 nm. The eMIPs sensors exhibit no cross reactivity to similar compounds and negligible glucose binding to non-imprinted polymeric nanoparticles (eNIPs). Measurements of serum samples of diabetic patients demonstrate excellent correlation (>0.93) between these eMIPs sensor and the current gold standard Roche blood analyzer test. Finally, the eMIPs sensors are highly durable and reproducible (storage >12 months), showcasing excellent robustness and thermal and chemical stability. Proof-of-application is provided via measuring glucose using these eMIPs sensor in a two-electrode configuration in spiked artificial interstitial fluid (AISF), highlighting its potential for non-invasive wearable monitoring. Due to the versatility of the eMIPs that can be adapted to virtually any target, this platform technology holds high promise for sustainable healthcare applications via providing rapid detection, low-cost, and inherent robustness.
Collapse
Affiliation(s)
- Saweta Garg
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Pankaj Singla
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sarbjeet Kaur
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Shayan Seyedin
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Marloes Peeters
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Kousseff CJ, Wustoni S, Silva RKS, Lifer A, Savva A, Frey GL, Inal S, Nielsen CB. Single-Component Electroactive Polymer Architectures for Non-Enzymatic Glucose Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308281. [PMID: 38520718 PMCID: PMC11251565 DOI: 10.1002/advs.202308281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly.
Collapse
Affiliation(s)
| | - Shofarul Wustoni
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raphaela K. S. Silva
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ariel Lifer
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Achilleas Savva
- Bioelectronics SectionDepartment of MicroelectronicsFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Gitti L. Frey
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Sahika Inal
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
4
|
Pratap Singh Raman A, Thakur G, Pandey G, Kumari K, Singh P. An Updated Review on Functionalized Graphene as Sensitive Materials in Sensing of Pesticides. Chem Biodivers 2024; 21:e202302080. [PMID: 38578653 DOI: 10.1002/cbdv.202302080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate sampl es like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on-site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide-graphene complexes, guiding the design and optimization of graphene-based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, and their existing limitations have also been discussed, which need to be solved with future research.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Gauri Thakur
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Indian Institute of Technology, Madras, India
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi- NCR Campus, Delhi-Merrut Road, Modinagar, Ghaziabad, UP, India
| |
Collapse
|
5
|
Mohamad Nor N, Ridhuan NS, Abdul Razak K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. BIOSENSORS 2022; 12:bios12121136. [PMID: 36551103 PMCID: PMC9775494 DOI: 10.3390/bios12121136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
This review covers the progress of nanomaterial-modified electrodes for enzymatic and non-enzymatic glucose biosensors. Fundamental insights into glucose biosensor components and the crucial factors controlling the electrochemical performance of glucose biosensors are discussed in detail. The metal, metal oxide, and hybrid/composite nanomaterial fabrication strategies for the modification of electrodes, mechanism of detection, and significance of the nanomaterials toward the electrochemical performance of enzymatic and non-enzymatic glucose biosensors are compared and comprehensively reviewed. This review aims to provide readers with an overview and underlying concept of producing a reliable, stable, cost-effective, and excellent electrochemical performance of a glucose biosensor.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Nur Syafinaz Ridhuan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
- NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Drissi W, Chelaghmia ML, NACEF MOUNA, Affoune A, Satha H, Kihal R, Fisli H, Boukharouba C, Pontié M. In situ growth of Ni(OH)<sub>2 </sub>nanoparticles on 316L stainless steel foam: An efficient three‐dimensional non‐enzymatic glucose electrochemical sensor in real human blood serum samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - MOUNA NACEF
- Laboratoire danalyses industrielles et genie des materiaux ALGERIA
| | | | | | | | | | - Chahira Boukharouba
- Université 8 Mai 1945 Guelma Faculté des Sciences et de la Technologie ALGERIA
| | | |
Collapse
|
7
|
Anirudhan T, Mani A, Athira V. Molecularly imprinted electrochemical sensing platform for 2-Aminoadipic acid, a diabetes biomarker. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Highly sensitive molecular imprinted voltammetric sensor for resveratrol assay in wine via polyaniline/gold nanoparticles signal enhancement and polyacrylamide recognition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
A facile method for the fabrication of hierarchically structured Ni 2CoS 4 nanopetals on carbon nanofibers to enhance non-enzymatic glucose oxidation. Mikrochim Acta 2021; 188:106. [PMID: 33651208 DOI: 10.1007/s00604-021-04749-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023]
Abstract
Unique Ni2CoS4-carbon nanofiber (CNF) composite nanostructures were fabricated using a simple electrospinning-assisted hydrothermal route and used for the rapid and accurate electrochemical oxidation of glucose in real samples at the trace level. Electrochemical impedance spectroscopy and cyclic voltammetry of unmodified and modified electrodes revealed low charge-transfer resistance and the excellent electrocatalytic sensing of glucose when using the Ni2CoS4-CNF at a low potential due to the combined benefits of the highly conductive Ni2Co2S4 anchored to the large surface area of the CNFs. Amperometric analysis of the fabricated sensor has shown an extremely low limit of detection (0.25 nM) and a large linear range (5-70 nM) for glucose at a working potential of 0.54 V (vs. Hg/HgO). The practicability of the Ni2CoS4-CNF for use in glucose determination was tested withl human saliva, blood plasma, and fruit juice samples. The Ni2CoS4-CNF/GCE showed acceptable recovery values for human saliva (99.1-100.8%), blood plasma (98.6-101.5%), and fruit juice (95.1-105.7%) samples. The proposed sensor also exhibited outstanding electroanalytical characteristics for glucose oxidation in these samples, including reusability, repeatability, and interference resistance, even in the presence of other biological substances and organic and inorganic metal ions.
Collapse
|
10
|
Sun PX, Han XJ, Chen LJ, Chen ZJ, Pan WJ, Zhang Q, Wang J, Yang C. Determination of Glucose by a Molecular Capacitor Array Based Using a 3-(Acrylamido) Phenylboronic Acid Prepared Molecularly Imprinted Polyacrylamide Cryogel. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1890757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pei-Xia Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xiao-Jing Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Li-Jie Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zu-Jia Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wen-Jin Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Sehit E, Drzazgowska J, Buchenau D, Yesildag C, Lensen M, Altintas Z. Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosens Bioelectron 2020; 165:112432. [DOI: 10.1016/j.bios.2020.112432] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
|
12
|
Azargoshasb T, Navid HA, Parvizi R, Heidari H. Evanescent Wave Optical Trapping and Sensing on Polymer Optical Fibers for Ultra-Trace Detection of Glucose. ACS OMEGA 2020; 5:22046-22056. [PMID: 32923763 PMCID: PMC7482082 DOI: 10.1021/acsomega.0c01908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/07/2020] [Indexed: 06/01/2023]
Abstract
Graphene sensitization of glucose-imprinted polymer (G-IP)-coated optical fiber has been introduced as a new biosensor for evanescent wave trapping on the polymer optical fiber to detect low-level glucose. The developed sensor operates based on the evanescent wave modulation principle. Full characterization via atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and N2 adsorption/desorption of as-prepared G-IP-coated optical fibers was experimentally tested. Accordingly, related operational parameters such as roughness and diameter were optimized. Incorporating graphene into the G-IP not only steadily promotes the electron transport between the fiber surface and as-proposed G-IP but also significantly enhances the sensitivity by acting as a carrier for immobilizing G-IP with specific imprinted cavities. The sensor demonstrates a fast response time (5 s) and high sensitivity, selectivity, and stability, which cause a wide linear range (10-100 nM) and a low limit of detection (LOD = 2.54 nM). Experimental results indicate that the developed sensor facilitates online monitoring and remote sensing of glucose in biological liquids and food samples.
Collapse
Affiliation(s)
- Tahereh Azargoshasb
- Department
of Laser and Optical Engineering, University
of Bonab, Bonab 5551761167, Iran
| | - H. Ali Navid
- Department
of Laser and Optical Engineering, University
of Bonab, Bonab 5551761167, Iran
| | - Roghaieh Parvizi
- Department
of Physics, College of Sciences, Yasouj
University, Yasouj 75914-353, Iran
| | - Hadi Heidari
- School
of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
13
|
Okhokhonin A, Stepanova V, Malysheva N, Matern A, Kozitsina A. Enzymeless Electrochemical Glucose Sensor Based on Carboxylated Multiwalled Carbon Nanotubes Decorated with Nickel (II) Electrocatalyst and Self‐assembled Molecularly Imprinted Polyethylenimine. ELECTROANAL 2020. [DOI: 10.1002/elan.202060177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Okhokhonin
- Institute of Chemical Engineering of Ural Federal University Russia 620002 Ekaterinburg Mira street, 19
| | - V. Stepanova
- Institute of Chemical Engineering of Ural Federal University Russia 620002 Ekaterinburg Mira street, 19
| | - N. Malysheva
- Institute of Chemical Engineering of Ural Federal University Russia 620002 Ekaterinburg Mira street, 19
| | - A. Matern
- Institute of Chemical Engineering of Ural Federal University Russia 620002 Ekaterinburg Mira street, 19
| | - A. Kozitsina
- Institute of Chemical Engineering of Ural Federal University Russia 620002 Ekaterinburg Mira street, 19
| |
Collapse
|
14
|
Chang HW, Su CW, Tian JH, Tsai YC. Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere. SENSORS 2020; 20:s20154340. [PMID: 32759678 PMCID: PMC7436182 DOI: 10.3390/s20154340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 μM with high sensitivity of 2734.4 μA mM-1 cm-2, excellent detection limit of 2.98 μM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, 2, Lienda, Miaoli 36063, Taiwan;
| | - Chia-Wei Su
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
| | - Jia-Hao Tian
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
- Correspondence: ; Tel.: +886-4-2285-7257
| |
Collapse
|
15
|
Li X, Lin D, Lu K, Chen X, Yin S, Li Y, Zhang Z, Tang M, Chen G. Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand. Anal Chim Acta 2020; 1122:31-38. [DOI: 10.1016/j.aca.2020.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
|
16
|
Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020). Biosens Bioelectron 2020; 159:112165. [DOI: 10.1016/j.bios.2020.112165] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
17
|
Safadi BN, Gonçalves JM, Castaldelli E, Matias TA, Rossini PO, Nakamura M, Angnes L, Araki K. Lamellar FeOcPc‐Ni/GO Composite‐Based Enzymeless Glucose Sensor. ChemElectroChem 2020. [DOI: 10.1002/celc.202000138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bill N. Safadi
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Josué M. Gonçalves
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Evandro Castaldelli
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Tiago A. Matias
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
- Center for Natural and Human Sciences (CCNH)Federal University of ABC (UFABC) Av. dos Estados 5001 Santo Andre, SP 09210-580 Brazil
| | - Pamela O. Rossini
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Marcelo Nakamura
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Lucio Angnes
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| |
Collapse
|
18
|
A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110216. [DOI: 10.1016/j.msec.2019.110216] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
|
19
|
|
20
|
Xiao F, Li H, Yan X, Yan L, Zhang X, Wang M, Qian C, Wang Y. Graphitic carbon nitride/graphene oxide(g-C 3N 4/GO) nanocomposites covalently linked with ferrocene containing dendrimer for ultrasensitive detection of pesticide. Anal Chim Acta 2019; 1103:84-96. [PMID: 32081192 DOI: 10.1016/j.aca.2019.12.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022]
Abstract
We report herein the design of a novel electrochemical sensing strategy for sensitive detection of pesticide based on graphitic carbon nitride (g-C3N4)/graphene oxide(GO) nanocomposite covalently bound to a ferrocene containing dendrimer(Fc-TED). The g-C3N4 with sufficient N atoms for providing lone pairs of electrons to an electron acceptor so as to enhance the adsorption towards organic molecules. The Fc-TED dendrimers with the native redox signaling center (Fe3+/Fe2+) can increase the electron transition of g-C3N4 from valence to conduction band. While GO can accelerate the electron transfer from g-C3N4 surface and Fc-TED to glassy carbon electrode(GCE), which would amplify the electrochemical signal of g-C3N4/GO/Fc-TED/GCE sensor and then improve the sensing performance. It is found that the fabricated electrode demonstrated an admirable electrochemical sensing performance towards metolcarb in terms of low detection limit (8.3 nM), wide concentration range (0.045-213 μM) and rapid response time (2s). The proposed sensor can selectively detect the metolcarb and easily discriminated metolcarb from the possible interfering species. The practical applicability of the sensor was successfully evaluated in real vegetable sample and achieved satisfactory recoveries with good precision and accuracy.
Collapse
Affiliation(s)
- Fengjuan Xiao
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China.
| | - Hongli Li
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Xinrui Yan
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Lu Yan
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Xuefei Zhang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Meng Wang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Cheng Qian
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Yiqi Wang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Lv Y, Qu Q, Li C, Zhu T. Acrylamide-Modified 3-Aminopropyltriethoxysilanes Hybrid Monomer for Highly Selective Imprinting Recognition of Theophylline. J Chromatogr Sci 2019; 58:75-82. [PMID: 31879774 DOI: 10.1093/chromsci/bmz106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/05/2018] [Accepted: 10/31/2019] [Indexed: 01/20/2023]
Abstract
The hybrid monomer synthesized with 3-aminopropyltriethoxysilanes and acrylamide was applied for synthesis of molecularly imprinting polymers, and the obtained polymers were used as sorbent in solid-phase extraction for purification of theophylline (THP) in green tea. The static adsorption curves showed better molecular recognition ability and binding capability of the polymers for the target. On the optimized condition, a method was developed for increasing extraction of THP with satisfactory recovery of 93.7%. Good calibration linearity obtained in a range of 5-500 μg·mL-1. The recoveries at three spiked levels ranged from 86.7% to 100.7% with relative standard deviations ≤6.6% (n = 3). The result showed that the obtained polymers exhibited highly selective imprinting recognition to the analyte, and the number of templates was an important factor affecting the selective recognition ability of polymers. The proposed method with hybrid monomer imprinting polymers was successfully applied for purification of THP in green tea.
Collapse
Affiliation(s)
- Yaying Lv
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qi Qu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Caiwen Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
22
|
Fu Y, Jin W. Facile synthesis of core-shell CuS-Cu 2S based nanocomposite for the high-performance glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110120. [PMID: 31546467 DOI: 10.1016/j.msec.2019.110120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Glucose detection is of great importance for the medical diagnosis, food biotechnology and pharmaceutical analysis. In this study, we synthesized a core-shell CuS-Cu2S decorated carbon nanotube-graphene nanocomposite via a facile hydrothermal method. It exhibits great sensing performance towards glucose with wide linear range ranging from 0.001 to 2 mM, ultra-sensitivity of 1923 μA·cm-2·mM-1 and 0.33 μM detection limit in alkaline solutions. The excellent electrocatalytic activity originates from the synergistic effect between heterogeneous copper sulfides structures and carbon nanomaterials. Besides, the fabricate sensor also has great durability, selectivity and great potential for practical applications.
Collapse
Affiliation(s)
- Yanqiu Fu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Liu Y, Chen P, Zheng S, Xing Y, Huang C. Novel fluorescent sensor using molecularly imprinted silica microsphere‐coated CdSe@CdS quantum dots and its application in the detection of 2,4,6‐trichlorophenol from environmental water samples. LUMINESCENCE 2019; 34:680-688. [DOI: 10.1002/bio.3653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Liu
- College of Chemistry and Life ScienceZhejiang Normal University Jinhua China
| | - Piaopiao Chen
- College of Chemistry and Life ScienceZhejiang Normal University Jinhua China
| | - Shan Zheng
- College of Chemistry and Life ScienceZhejiang Normal University Jinhua China
| | - Yichen Xing
- College of Chemistry and Life ScienceZhejiang Normal University Jinhua China
| | - Chaobiao Huang
- College of Chemistry and Life ScienceZhejiang Normal University Jinhua China
- Zhejiang Normal University Xingzhi College Jinhua China
| |
Collapse
|
24
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Diouf A, Bouchikhi B, El Bari N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1196-1209. [DOI: 10.1016/j.msec.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 11/30/2022]
|
26
|
Sumaryada T, Sandy Gunawan M, Perdana S, Arjo S, Maddu A. A Molecular Interaction Analysis Reveals the Possible Roles of Graphene Oxide in a Glucose Biosensor. BIOSENSORS 2019; 9:E18. [PMID: 30696069 PMCID: PMC6468508 DOI: 10.3390/bios9010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
In this paper, we report the molecular docking study of graphene oxide and glucose oxidase (GOx) enzyme for a potential glucose biosensing application. The large surface area and good electrical properties have made graphene oxide as one of the best candidates for an enzyme immobilizer and transducer in the biosensing system. Our molecular docking results revealed that graphene oxide plays a role as a GOx enzyme immobilizer in the glucose biosensor system since it can spontaneously bind with GOx at specific regions separated from the active sites of glucose and not interfering or blocking the glucose sensing by GOx in an enzyme-assisted biosensor system. The strongest binding affinity of GOx-graphene oxide interaction is -11.6 kCal/mol and dominated by hydrophobic interaction. Other modes of interactions with a lower binding affinity have shown the existence of some hydrogen bonds (H-bonds). A possibility of direct sensing (interaction) model of glucose by graphene oxide (non-enzymatic sensing mechanism) was also studied in this paper, and showed a possible direct glucose sensing by graphene oxide through the H-bond interaction, even though with a much lower binding affinity of -4.2 kCal/mol. It was also found that in a direct glucose sensing mechanism, the sensing interaction can take place anywhere on the graphene oxide surface with almost similar binding affinity.
Collapse
Affiliation(s)
- Tony Sumaryada
- Department of Physics, Bogor Agricultural University, Bogor 16680, Indonesia.
| | | | - Salahuddin Perdana
- Department of Physics, Bogor Agricultural University, Bogor 16680, Indonesia.
| | - Sugianto Arjo
- Program Studi Pendidikan Fisika, FKIP, Universitas HAMKA, Jakarta 13830, Indonesia.
| | - Akhiruddin Maddu
- Department of Physics, Bogor Agricultural University, Bogor 16680, Indonesia.
| |
Collapse
|
27
|
Xiao F, Guo M, Wang J, Yan X, Li H, Qian C, Yu Y, Dai D. Ferrocene-terminated dendrimer functionalized graphene oxide layered sensor toward highly sensitive evaluation of Di(2-ethylhexyl) phthalate in liquor samples. Anal Chim Acta 2018; 1043:35-44. [DOI: 10.1016/j.aca.2018.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
|
28
|
Nguyen TT, Huy BT, Hwang SY, Vuong NM, Pham QT, Nghia NN, Kirtland A, Lee YI. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor. NANOTECHNOLOGY 2018; 29:205501. [PMID: 29480163 DOI: 10.1088/1361-6528/aab229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.
Collapse
Affiliation(s)
- Thu-Thuy Nguyen
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li M, Xue XY, Wang Y, An FQ, Hu TP, Gao JF. Preparation of Surface Imprinted Polymer D301-g
-IIPDMC and its Recognition Selectivity Performance towards AuCl4
−. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Li
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Xiao-yan Xue
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Yong Wang
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Fu-qiang An
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Tuo-ping Hu
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| | - Jian-feng Gao
- Chemical Department; North University of China; Taiyuan 030051 People's Republic of China
| |
Collapse
|
30
|
Topkaya SN, Ozyurt VH, Cetin AE, Otles S. Nitration of tyrosine and its effect on DNA hybridization. Biosens Bioelectron 2017; 102:464-469. [PMID: 29182929 DOI: 10.1016/j.bios.2017.11.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
One major marker of nitrosative stress is the formation of 3-Nitrotyrosine (3-NT) from Tyrosine (Tyr) by adding a nitro group (-NO2) with nitrating agents. Nitration of Tyr often causes loss of protein activity and is linked with many diseases. In this article, we detect 3-NT and discriminate it from Tyr with Differential Pulse Voltammetry (DPV) as it is a very important biomarker. We first examined redox (oxidation/reduction) properties and stability of 3-NT in detail. Second, we provided the Tyr and 3-NT discrimination with DPV and compared with the chromatography. We then explored the interaction of 3-NT and DNA oligonucleotides. Our findings demonstrate that 3-NT can be used as a new electrochemical indicator, which is able to detect hybridization of probe (single stranded DNA-ssDNA) and hybrid (double stranded DNA-dsDNA) both via 3-NT reduction and guanine oxidation signal changes at the same time. The signal differences enabled us to distinguish ssDNA and dsDNA without using a label or a tag. Moreover, we achieved to detect hybridization of DNA by using the reduction signal of 3-NT obtained at -0.4V vs. Ag/AgCl. More importantly, we observed the changes of the reduction signals of 3-NT after the interaction of probe and hybrid sequences. We showed that 3-NT signal decreases more with hybrid than the probe. Our platform, for the first time, demonstrates the detection of hybridization both guanine oxidation and indicator reduction signal changes at the same time. Moreover, we, for the first time, demonstrated the interaction between 3-NT and DNA.
Collapse
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Celebi University, Izmir, Turkey.
| | - Vasfiye Hazal Ozyurt
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Arif E Cetin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Semih Otles
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|