1
|
Magi MS, Lopez-Vidal L, García MC, Stempin CC, Marin C, Maletto B, Palma SD, Real JP, Jimenez-Kairuz AF. Organic solvent-free benznidazole nanosuspension as an approach to a novel pediatric formulation for Chagas disease. Ther Deliv 2024; 15:699-716. [PMID: 39101355 DOI: 10.1080/20415990.2024.2380244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Aim: Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues.Methods: BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach. Physicochemical characterizations were conducted on both NS and lyophilized solid-state BNZ-nanocrystals (NC).Results: BNZ-NS exhibited particle size <500 nm, an acceptable polydispersity index (0.23), high Z-potential, and physical stability for at least 90 days. BNZ-NC showed tenfold higher solubility than pure BNZ. Dissolution assays revealed rapid BNZ-NS dissolution. BNZ-NC demonstrated biocompatibility on an eukaryotic cell and enhanced BNZ efficacy against trypomastigotes of Trypanosoma cruzi.Conclusion: BNZ-NS offers a promising alternative, overcoming limitations associated with BNZ for optimized pharmacotherapy.
Collapse
Affiliation(s)
- María Sol Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Lucía Lopez-Vidal
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Mónica Cristina García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Belkys Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Santiago Daniel Palma
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Juan Pablo Real
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Alvaro Federico Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
2
|
Sousa LRD, Duarte THC, Xavier VF, das Mercês AC, Vieira GM, Martins MD, Carneiro CM, dos Santos VMR, dos Santos ODH, Vieira PMDA. Benznidazole-Loaded Polymeric Nanoparticles for Oral Chemotherapeutic Treatment of Chagas Disease. Pharmaceutics 2024; 16:800. [PMID: 38931921 PMCID: PMC11207087 DOI: 10.3390/pharmaceutics16060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chagas disease (CD) is a worldwide public health problem. Benznidazole (BZ) is the drug used to treat it. However, in its commercial formulation, it has significant side effects and is less effective in the chronic phase of the infection. The development of particulate systems containing BZ is therefore being promoted. The objective of this investigation was to develop polymeric nanoparticles loaded with BZ and examine their trypanocidal impact in vitro. Two formulas (BNP1 and BNP2) were produced through double emulsification and freeze drying. Subsequent to physicochemical and morphological assessment, both formulations exhibited adequate yield, average particle diameter, and zeta potential for oral administration. Cell viability was assessed in H9C2 and RAW 264.7 cells in vitro, revealing no cytotoxicity in cardiomyocytes or detrimental effects in macrophages at specific concentrations. BNP1 and BNP2 enhanced the effect of BZ within 48 h using a treatment of 3.90 μg/mL. The formulations notably improved NO reduction, particularly BNP2. The findings imply that the compositions are suitable for preclinical research, underscoring their potential as substitutes for treating CD. This study aids the quest for new BZ formulations, which are essential in light of the disregard for the treatment of CD and the unfavorable effects associated with its commercial product.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Thays Helena Chaves Duarte
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| | - Viviane Flores Xavier
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Aline Coelho das Mercês
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| | - Gabriel Maia Vieira
- Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil; (G.M.V.); (M.D.M.)
| | - Maximiliano Delany Martins
- Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil; (G.M.V.); (M.D.M.)
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Viviane Martins Rebello dos Santos
- Laboratório de Produtos Naturais e de Síntese Orgânica, Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Orlando David Henrique dos Santos
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| |
Collapse
|
3
|
Rossi IV, de Souza DAS, Ramirez MI. The End Justifies the Means: Chagas Disease from a Perspective of the Host- Trypanosoma cruzi Interaction. Life (Basel) 2024; 14:488. [PMID: 38672758 PMCID: PMC11050810 DOI: 10.3390/life14040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The neglected Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi. Despite CD dispersion throughout the world, it prevails in tropical areas affecting mainly poor communities, causing devastating health, social and economic consequences. Clinically, CD is marked by a mildly symptomatic acute phase, and a chronic phase characterized by cardiac and/or digestive complications. Current treatment for CD relies on medications with strong side effects and reduced effectiveness. The complex interaction between the parasite and the host outlines the etiology and progression of CD. The unique characteristics and high adaptability of T. cruzi, its mechanisms of persistence, and evasion of the immune system seem to influence the course of the disease. Despite the efforts to uncover the pathology of CD, there are many gaps in understanding how it is established and reaches chronicity. Also, the lack of effective treatments and protective vaccines constitute challenges for public health. Here, we explain the background in which CD is established, from the peculiarities of T. cruzi molecular biology to the development of the host's immune response leading to the pathophysiology of CD. We also discuss the state of the art of treatments for CD and current challenges in basic and applied science.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Graduate Program in Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| | - Denise Andréa Silva de Souza
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| | - Marcel Ivan Ramirez
- Graduate Program in Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
- Laboratory of Cell Biology, Carlos Chagas Institute/Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba 81310-020, PR, Brazil;
| |
Collapse
|
4
|
Oliveira ACDJ, Silva EB, Oliveira TCD, Ribeiro FDOS, Nadvorny D, Oliveira JWDF, Borrego-Sánchez A, Rodrigues KADF, Silva MS, Rolim-Neto PJ, Viseras C, Silva-Filho EC, Silva DAD, Chaves LL, Soares MFDLR, Soares-Sobrinho JL. pH-responsive phthalate cashew gum nanoparticles for improving drugs delivery and anti-Trypanosoma cruzi efficacy. Int J Biol Macromol 2023; 230:123272. [PMID: 36649864 DOI: 10.1016/j.ijbiomac.2023.123272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emilliany Bárbara Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thaisa Cardoso de Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Daniella Nadvorny
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - César Viseras
- Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Ethylferulate-loaded nanoemulsions as a novel anti-inflammatory approach for topical application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Arrua EC, Hartwig O, Loretz B, Goicoechea H, Murgia X, Lehr CM, Salomon CJ. Improving the oral delivery of benznidazole nanoparticles by optimizing the formulation parameters through a design of experiment and optimization strategy. Colloids Surf B Biointerfaces 2022; 217:112678. [PMID: 35816885 DOI: 10.1016/j.colsurfb.2022.112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Chagas disease is a neglected tropical disease affecting the American continent and also some regions of Europe. Benznidazole, approved by FDA, is a drug of choice but its poor aqueous solubility may lead to a low bioavailability and efficacy. Therefore, the aim of this study was to formulate nanoparticles of benznidazole for improving its solubility, dissolution and permeability. A Plackett-Burman design was applied to identify the effect of 5 factors over 4 responses. Then, a Central Composite design was applied to estimate the values of the most important factors leading to the best compromise between highest nanoprecipitation efficiency, drug solubility and lower particle size. The optimized nanoparticles were evaluated for in vitro drug release in biorelevant media, stability studies and transmission electron microscopy. Biocompatibility and permeability of nanoparticles were evaluated on the Caco-2 cell line. The findings of the optimization process indicated that concentration of drug and stabilizer influenced significantly the particle size while concentration of stabilizer and organic/water phase volume ratio mainly influenced the drug solubility. Stability studies suggested that benznidazole nanoparticles were stable after 12 months at different temperatures. Minimal interactions of those nanoparticles and mucin glycoproteins suggested favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of the optimized formulation and showed an increased permeation through the Caco-2 cells. Thus, this study confirmed the suitability of the design of experiment and optimization approach to elucidate critical parameters influencing the quality of benznidazole nanoparticles, which could lead to a more efficient management of Chagas disease by oral route.
Collapse
Affiliation(s)
- Eva C Arrua
- Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000 Rosario, Argentina
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Héctor Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Claudio J Salomon
- Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000 Rosario, Argentina; Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
7
|
In Vitro Validation of Antiparasitic Activity of PLA-Nanoparticles of Sodium Diethyldithiocarbamate against Trypanosoma cruzi. Pharmaceutics 2022; 14:pharmaceutics14030497. [PMID: 35335875 PMCID: PMC8954078 DOI: 10.3390/pharmaceutics14030497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite responsible for Chagas disease, which affects millions around the world and is not treatable in its chronic stage. Sodium diethyldithiocarbamate is a compound belonging to the carbamate class and, in a previous study, demonstrated high efficacy against T. cruzi, showing itself to be a promising compound for the treatment of Chagas disease. This study investigates the encapsulation of sodium diethyldithiocarbamate by poly-lactic acid in nanoparticles, a system of biodegradable nanoparticles that is capable of reducing the toxicity caused by free DETC against cells and maintaining the antiparasitic activity. The nanosystem PLA-DETC was fabricated using nanoprecipitation, and its physical characterization was measured via DLS, SEM, and AFM, demonstrating a small size around 168 nm and a zeta potential of around −19 mv. Furthermore, the toxicity was determined by MTT reduction against three cell lines (VERO, 3T3, and RAW), and when compared to free DETC, we observed a reduction in cell mortality, demonstrating the importance of DETC nanoencapsulation. In addition, the nanoparticles were stained with FITC and put in contact with cells for 24 h, followed by confirmation of whether the nanosystem was inside the cells. Lastly, the antiparasitic activity against different strains of T. cruzi in trypomastigote forms was determined by resazurin reduction and ROS production, which demonstrated high efficacy towards T. cruzi equal to that of free DETC.
Collapse
|
8
|
García MC, Eberhardt N, Sanmarco LM, Ponce NE, Jimenez-Kairuz AF, Aoki MP. Improved efficacy and safety of low doses of benznidazole-loaded multiparticulate delivery systems in experimental Chagas disease therapy. Eur J Pharm Sci 2021; 164:105912. [PMID: 34133985 DOI: 10.1016/j.ejps.2021.105912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 06/12/2021] [Indexed: 11/26/2022]
Abstract
Benznidazole (BZ) is a first-line drug for the treatment of Chagas disease; however, it presents several disadvantages that could hamper its therapeutic success. Multiparticulate drug delivery systems (MDDS) are promising carriers to improve the performance of drugs. We developed BZ-loaded MDDS intended for improving Chagas disease therapy. To assess their efficacy and safety, Trypanosoma (T) cruzi infected BALB/c mice were orally treated with free BZ or BZ-MDDS at different regimens (doses of 50 and 100 mg/kg/day, administered daily or at 2- or 5-days intervals) and compared with infected non-treated (INT) mice. At 100 mg/kg/day, independent of the administration regimen, both treatments were able to override the parasitemia, and at 50 mg/kg/day significantly reduced it compared to INT mice. BZ-MDDS at a dose of 100 mg/kg/day administered every 5 days (BZ-MDDS 100-13d) induced the lowest cardiac parasite load, indicating an improved efficacy with lower total dose of BZ when loaded to the MDDS. Reactive oxygen species produced by leukocytes were higher in INT and mice treated with BZ at 50 mg/kg/day compared to 100 mg/kg/day, likely because of persistent infection. BZ-MDDS treatments markedly reduced heart and liver injury markers compared to INT mice and those receiving the standard treatment. Therefore, BZ-MDDS exhibited enhanced activity against T. cruzi infection even at lower doses and reduced administration frequency compared to free BZ while increasing the treatment safety. They likely avoid undesired side effects of BZ by keeping a sustained concentration, avoiding plasmatic drug peaks. BZ-MDDS evidenced significant improvements in experimental Chagas disease treatment and can be considered as a potential improved therapeutic alternative against this illness.
Collapse
Affiliation(s)
- Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET-UNC, Córdoba, Argentina.
| | - Natalia Eberhardt
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET-UNC, Córdoba, Argentina.
| | - Liliana M Sanmarco
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET-UNC, Córdoba, Argentina.
| | - Nicolás E Ponce
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET-UNC, Córdoba, Argentina.
| | - Alvaro F Jimenez-Kairuz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET-UNC, Córdoba, Argentina.
| | - Maria P Aoki
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET-UNC, Córdoba, Argentina.
| |
Collapse
|
9
|
Ribeiro SB, de Araújo AA, Oliveira MMB, dos Santos Silva AM, da Silva-Júnior AA, Guerra GCB, Brito GADC, Leitão RFDC, de Araújo Júnior RF, Garcia VB, Vasconcelos RC, de Medeiros CACX. Effect of Dexamethasone-Loaded PLGA Nanoparticles on Oral Mucositis Induced by 5-Fluorouracil. Pharmaceutics 2021; 13:53. [PMID: 33406583 PMCID: PMC7823510 DOI: 10.3390/pharmaceutics13010053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023] Open
Abstract
Oral mucositis (OM) is characterized by the presence of severe ulcers in the oral region that affects patients treated with chemotherapy. It occurs in almost all patients who receive radiotherapy of the head and neck, as well as patients who undergo hematopoietic cell transplantation. The pathophysiology of OM is complex, and there is no effective therapy. The aim of this study was to evaluate the effect of dexamethasone-loaded poly(d,l-Lactic-co-glycolic) nanoparticles (PLGA-DEX NPs) on an OM model induced in hamsters. The NPs were synthesized using the emulsification-solvent evaporation method and were characterized by the size, zeta potential, encapsulation efficiency, atomic force microscopy, physicochemical stability, and the in vitro release. The OM was induced by the administration of 5-FU on the first and second days and mechanical trauma on the 4th day of the experiment. PLGA-DEX NPs were administered to treat OM. The animals were euthanized on the 10th day. Macroscopic and histopathological analyses were performed, measurement of malonaldehyde (MDA) and ELISA was used to determine the levels of IL-1β and TNF-α. Immunoexpressions of NF-κB, COX-2, and TGF-β were determined by immunohistochemistry, and qRT-PCR was used to quantify the gene expression of the GILZ, MKP1, and NF-κB p65. The PLGA-DEX NPs (0.1 mg/kg) significantly reduced macroscopic and histopathological scores, decreased MDA, TNF-α and IL-1β levels, immunostaining for NF-κB, COX-2, TGF-β, and suppressed NF-κB p65 mRNA expression, but increased GILZ and MKP1 expression.
Collapse
Affiliation(s)
- Susana Barbosa Ribeiro
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Aurigena Antunes de Araújo
- Post Graduate Program Dental Sciences, Post Graduate Program Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Maisie Mitchele Barbosa Oliveira
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Alaine Maria dos Santos Silva
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Post Graduate Program Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil; (A.M.d.S.S.); (A.A.d.S.-J.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Post Graduate Program Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil; (A.M.d.S.S.); (A.A.d.S.-J.)
| | - Gerlane Coelho Bernardo Guerra
- Post Graduate Program Biochemistry and Molecular Biology, Post Graduate Program Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Gerly Anne de Castro Brito
- Post Graduate Program Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Delmiro de Farias St, Rodolfo Teófilo, Fortaleza CE 60416-030, Brazil; (G.A.d.C.B.); (R.F.d.C.L.)
| | - Renata Ferreira de Carvalho Leitão
- Post Graduate Program Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Delmiro de Farias St, Rodolfo Teófilo, Fortaleza CE 60416-030, Brazil; (G.A.d.C.B.); (R.F.d.C.L.)
| | - Raimundo Fernandes de Araújo Júnior
- Post Graduate Program Functional and Structural Biology, Post Graduate Program Health Science, Department of Morphology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Vinícius Barreto Garcia
- Post Graduate Program Health Science, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil;
| | | | - Caroline Addison Carvalho Xavier de Medeiros
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
- Post Graduate Program Biochemistry and Molecular Biology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil
| |
Collapse
|
10
|
Oliveira ACDJ, Chaves LL, Ribeiro FDOS, de Lima LRM, Oliveira TC, García-Villén F, Viseras C, de Paula RCM, Rolim-Neto PJ, Hallwass F, Silva-Filho EC, Alves da Silva D, Soares-Sobrinho JL, Soares MFDLR. Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydr Polym 2020; 254:117226. [PMID: 33357841 DOI: 10.1016/j.carbpol.2020.117226] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Chemical modification of polysaccharides is an important approach for their transformation into customized matrices that suit different applications. Microwave irradiation (MW) has been used to catalyze chemical reactions. This study developed a method of MW-initiated synthesis for the production of phthalated cashew gum (Phat-CG). The structural characteristics and physicochemical properties of the modified biopolymers were investigated by FTIR, GPC, 1H NMR, relaxometry, elemental analysis, thermal analysis, XRD, degree of substitution, and solubility. Phat-CG was used as a matrix for drug delivery systems using benznidazole (BNZ) as a model drug. BNZ is used in the pharmacotherapy of Chagas disease. The nanoparticles were characterized by size, PDI, zeta potential, AFM, and in vitro release. The nanoparticles had a size of 288.8 nm, PDI of 0.27, and zeta potential of -31.8 mV. The results showed that Phat-CG has interesting and promising properties as a new alternative for improving the treatment of Chagas disease.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Thaisa Cardoso Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain; Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
11
|
Colloidal properties of self-assembled cationic hyperbranched-polyethyleneimine covered poly lactide-co-glycolide nanoparticles: Exploring modified release and cell delivery of methotrexate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Phytol-Loaded Solid Lipid Nanoparticles as a Novel Anticandidal Nanobiotechnological Approach. Pharmaceutics 2020; 12:pharmaceutics12090871. [PMID: 32933144 PMCID: PMC7558427 DOI: 10.3390/pharmaceutics12090871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Phytol is a diterpene alcohol and can be found as a product of the metabolism of chlorophyll in plants. This compound has been explored as a potential antimicrobial agent, but it is insoluble in water. In this study, we describe a novel approach for an interesting anticandidal drug delivery system containing phytol. Different formulations of phytol-loaded solid lipid nanoparticles (SLN) were designed and tested using a natural lipid, 1,3-distearyl-2-oleyl-glycerol (TG1). Different compositions were considered to obtain three formulations with 1:10, 1:5, and 1:3 w/w phytol/TG1 ratios. All the formulations were prepared by emulsification solvent evaporation method and had their physicochemical properties assessed. The biocompatibility assay was performed in the HEK-293 cell line and the antifungal efficacy was demonstrated in different strains of Candida ssp., including different clinical isolates. Spherical and uniform SLN (<300 nm, PdI < 0.2) with phytol-loading efficiency >65% were achieved. Phytol-loaded SLN showed a dose-dependent cytotoxic effect in the HEK-293 cell line. The three tested formulations of phytol-loaded SLN considerably enhanced the minimal inhibitory concentration of phytol against 15 strains of Candida spp. Considering the clinical isolates, the formulations containing the highest phytol/TG1 ratios showed MICs at 100%. Thus, the feasibility and potential of phytol-loaded SLN was demonstrated in vitro, being a promising nanocarrier for phytol delivery from an anticandidal approach.
Collapse
|
13
|
Alves JSF, Silva AMDS, da Silva RM, Tiago PRF, de Carvalho TG, de Araújo Júnior RF, de Azevedo EP, Lopes NP, Ferreira LDS, Gavioli EC, da Silva-Júnior AA, Zucolotto SM. In Vivo Antidepressant Effect of Passiflora edulis f. flavicarpa into Cationic Nanoparticles: Improving Bioactivity and Safety. Pharmaceutics 2020; 12:E383. [PMID: 32326277 PMCID: PMC7238140 DOI: 10.3390/pharmaceutics12040383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
A variety of neuroactive flavonoids can be found in the species of the Passiflora genus; however, their difficulty in crossing the blood-brain barrier limits their in vivo neuropharmacological activity. In this study, cationic nanoparticles were developed as a novel nanocarrier for improving the antidepressant activity of Passiflora edulis f. flavicarpa leaf extract. Formulations obtained using Eudragit E PO polymethylmethacrylate copolymer, as polymeric matrix had their physicochemical properties investigated. The analytical content of the flavonoids vicenin-2, orientin, isoorientin, vitexin, and isovitexin was determined in the plant extract. Small-sized and spherical nanoparticles loaded with Passiflora edulis f. flavicarpa were obtained with positive zeta potential and high encapsulation efficiency. In addition, the nanosystems were shown to be stable for at least 6 months. The antidepressant activity of P. edulis extract (50 and 100 mg/kg) as well as the extract-loaded nanoparticles (5 mg/kg) were investigated in mice using the forced swimming test, where the latter increased the potency of the former by 10-fold. In addition, histopathological and biochemical analysis confirmed the biocompatibility of the extract-loaded nanoparticles. This study demonstrated that the Eudragit cationic nanoparticles were able to improve the antidepressant activity of P. edulis in the central nervous system of mice.
Collapse
Affiliation(s)
- Jovelina Samara Ferreira Alves
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59.012-570, Brazil;
| | - Alaine Maria dos Santos Silva
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Graduate Program in Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59.012-570, Brazil (A.A.d.S.-J.)
| | - Rodrigo Moreira da Silva
- Nucleus Research in Natural and Synthetic Products (NPPNS), Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14.040-903, Brazil; (R.M.d.S.); (N.P.L.)
| | - Pamella Rebeca Fernandes Tiago
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal 59.078-970, Brazil; (P.R.F.T.); (E.C.G.)
| | - Thais Gomes de Carvalho
- Graduate Program in Health Sciences, Departament of Morfology, Federal University of Rio Grande do Norte (UFRN), Natal 59.078-970, Brazil; (T.G.d.C.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Graduate Program in Health Sciences, Departament of Morfology, Federal University of Rio Grande do Norte (UFRN), Natal 59.078-970, Brazil; (T.G.d.C.); (R.F.d.A.J.)
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities—Universidade Potiguar (UnP), Natal 59.056-000, Brazil;
| | - Norberto Peporine Lopes
- Nucleus Research in Natural and Synthetic Products (NPPNS), Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14.040-903, Brazil; (R.M.d.S.); (N.P.L.)
| | - Leandro De Santis Ferreira
- Laboratory of Quality Control of Medications (LCQMed), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59.012-570, Brazil;
| | - Elaine Cristina Gavioli
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal 59.078-970, Brazil; (P.R.F.T.); (E.C.G.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Graduate Program in Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59.012-570, Brazil (A.A.d.S.-J.)
| | - Silvana Maria Zucolotto
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59.012-570, Brazil;
| |
Collapse
|
14
|
Barrera MG, Tejada G, Leonardi D, Lamas MC, Salomón CJ. A Novel Prototype Device for Microencapsulation of Benznidazole: In Vitro/In Vivo Studies. AAPS PharmSciTech 2020; 21:112. [PMID: 32236813 DOI: 10.1208/s12249-020-01659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
This study was aimed to design a simple and novel prototype device for the production of polymeric microparticles. To prove the effectiveness of this device, benznidazole microparticles using chitosan as carrier and NaOH, KOH, or SLS as counter ions were used. For comparison, benznidazole microparticles were prepared by the conventional dripping technique (syringe and gauge) using the same excipients. Microparticles were characterized in terms of encapsulation efficiency, particle shape, size and surface topography, crystallinity characteristics, thermal behavior, and dissolution rate. Then, the pharmacokinetic parameters were evaluated after the oral administration of the microparticles to healthy Wistar rats. The prepared formulations, by means of this device, showed good drug encapsulation efficiency (> 70%). Release studies revealed an increased dissolution of benznidazole from chitosan microparticles prepared using the novel device. It achieved more than 90% in 60 min, while those of the conventional microparticles and raw drug achieved 65% and 68%, respectively, during the same period. Almost spherical benznidazole microparticles with a smooth surface and size around 10-30 μm were observed using scanning electron microscopy. Thermal analysis and X-ray diffraction studies suggested a partial reduction of drug crystallinity. Moreover, the relative oral bioavailability of the novel benznidazole microparticles showed that the area under the curve for the microencapsulated drug was 10.3 times higher than the raw drug. Thus, these findings indicate that the designed glass prototype device is a useful alternative to formulate benznidazole polymeric microparticles with improved biopharmaceutical properties and could be useful for other therapeutic microparticulate systems.
Collapse
|
15
|
dos Santos Silva AM, de Caland LB, de Melo Doro PN, de S. L. Oliveira ALC, de Araújo-Júnior RF, Fernandes-Pedrosa MF, do Egito EST, da Silva-Junior AA. Hydrophilic and hydrophobic polymeric benznidazole-loaded nanoparticles: Physicochemical properties and in vitro antitumor efficacy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109830. [PMID: 31349502 DOI: 10.1016/j.msec.2019.109830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Among several bioactive peptides identified from the venom glands of the Tityus stigmurus scorpion, one peptide with hypotensive action (TistH, Tityus stigmurus Hypotensin) showed multifunctional and biotechnological applications. The maximum efficacy of this class of compounds can be achieved by immobilizing it in specific and suitable biomaterials or suitable carriers. In this study, distinct entrapment methods of TistH in chitosan nanoparticles was tested using its incorporation (CN-TistH-Inc) or adsorption (CN-TistH-Ads) methods by ionotropic gelification. Physico-chemical properties as well as biocompatibility and antifungal efficacy were assessed for different samples. Atomic force microscopy and field emission gun scanning electronic microscopy images associated with particle size measurements demonstrated that the two methods induced cationic spherical, small (< 160 nm), and narrow-sized (PdI about 0.3) nanoparticles, even after peptide loading greater than 96.5%, which was confirmed using Fourier transform infrared spectroscopy. The colloidal suspensions showed to be stable for 8 weeks and were able to induce the desired slow in vitro peptide release. Cytotoxicity assays performed in normal cells originated from murine macrophages (RAW 264.7) and kidneys of African green monkeys (Vero E6) suggested biocompatibility of samples. The CN-TistH-Inc and CN-TistH-Ads showed a minimal inhibitory concentration of 89.2 μg.mL-1 against Candida albicans, 11.1 μg.mL-1 for C. parapsilosis and C. tropicalis, confirmed by minimum fungicidal concentrations assay. Moreover, the TistH-loaded cross-linked chitosan nanoparticles significantly reduced the biofilm formation of clinical yeast sepsis of C. tropicalis and C. krusei, as well as clinical yeasts of vulvovaginal candidiasis of C. albicans. In this approach, biodegradable nanocarriers prepared using simple and reproducible methods demonstrated the ability to deliver the TistH peptide from T. stigmurus and improve its antifungal efficacy.
Collapse
|
17
|
Self-Assembled Benznidazole-Loaded Cationic Nanoparticles Containing Cholesterol/Sialic Acid: Physicochemical Properties, In Vitro Drug Release and In Vitro Anticancer Efficacy. Int J Mol Sci 2019; 20:ijms20092350. [PMID: 31083590 PMCID: PMC6539689 DOI: 10.3390/ijms20092350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.
Collapse
|
18
|
Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces 2019; 177:169-177. [PMID: 30731393 DOI: 10.1016/j.colsurfb.2019.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Benznidazole (BNZ) is the drug of choice for the treatment of Chagas disease in many countries. However, its low water solubility produces low and/or variable oral bioavailability. Thus, the aim of this work was to formulate micro- and nanoparticles based on Eudragit® RS PO and Eudragit® RL PO as a convenient approach to increase the dissolution rate of BNZ. The microparticles were obtained by means of spray-drying process while the nanoparticles were prepared through the nanoprecipitation technique and further freeze-drying. The results indicated that nanoparticles were obtained in 86% yield while microparticles were obtained in 68% yield. In both cases, the encapsulation efficiency of particles was greater than 78% while drug loading capacity was nearly 24% w/w and 18% w/w, after spray-drying and freeze-drying procedures, respectively. Images of scanning electron microscopy showed that the particles obtained by spray-drying and freeze-drying were in the micrometer and nanometer scale, respectively. FT-IR spectra of BNZ-loaded particles obtained by both methods showed characteristic bands of BNZ confirming that part of drug remained on their surface. Thermal analysis revealed that the drug crystallinity after both methods decreased. Physical stability evaluation of the nanoparticles confirmed that Pluronic® F68 was suitable to keep the particles size in a range of 300 nm after 70 days storage at 4 ± 2 °C. In-vitro release studies showed increased dissolution rate of drug from the particles obtained by both methods respect to untreated BNZ. The kinetics of drug release in acid media followed the Higuchi kinetics indicating drug diffusion mechanism from particles.
Collapse
|
19
|
de Oliveira EG, Machado PRL, Farias KJS, da Costa TR, Melo DMA, Lacerda AF, de Freitas Fernandes-Pedrosa M, Cornélio AM, da Silva-Junior AA. Tailoring structural properties of spray-dried methotrexate-loaded poly (lactic acid)/poloxamer microparticle blends. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:12. [PMID: 30617752 DOI: 10.1007/s10856-018-6214-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Drug delivery systems can overcome cancer drug resistance, improving the efficacy of chemotherapy agents. Poly (lactic acid) (PLA) microparticles are an interesting alternative because their hydrophobic surface and small particle size could facilitate interactions with cells. In this study, two poloxamers (PLX 407 and 188) were applied to modulate the structural features, the drug release behavior and the cell viability from spray-dried microparticles. Five formulations with different PLA: PLX blend ratio (100:0, 75:25, 50:50, 25:50, and 0:100) were well-characterized by SEM, particle size analysis, FTIR spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis (XRD). The spray-dried microparticles showed higher drug loading, spherical-shape, and smaller particle size. The type of poloxamer and blend ratio affected their structural and functional properties such as morphology, crystallinity, blend miscibility, drug release rate, and cell viability. The methotrexate (MTX), a model drug, was loaded in amorphous spray-dried microparticles. Moreover, the drug release studies demonstrated that PLX induced a leaching-effect of MTX from PLA: PLX blends, suggesting the formation of MTX/PLX micelles in aqueous medium. This finding was better established by cell viability assays. Therefore, biocompatible PLA: PLX blends showed promising in vitro results, and further in vivo studies will be performed to evaluate the performance of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Edilene Gadelha de Oliveira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Paula Renata Lima Machado
- Department of Clinical Analysis, Federal University of Rio Grande do Norte, UFRN, Av. Gal. Gustavo Cordeiro de Farias s/n, Petropolis, 59012-570, Natal, RN, Brazil
| | - Kleber Juvenal Silva Farias
- Department of Clinical Analysis, Federal University of Rio Grande do Norte, UFRN, Av. Gal. Gustavo Cordeiro de Farias s/n, Petropolis, 59012-570, Natal, RN, Brazil
| | - Tiago R da Costa
- Institute of Chemistry, Federal University of Rio Grande do Norte, UFRN, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Dulce Maria Araújo Melo
- Institute of Chemistry, Federal University of Rio Grande do Norte, UFRN, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Ariane Ferreira Lacerda
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Alianda Maira Cornélio
- Department of Morphology, Federal University of Rio Grande do Norte, UFRN, Lagoa Nova, 59072-970, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
20
|
Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection. Pharmaceutics 2018; 10:pharmaceutics10040255. [PMID: 30513856 PMCID: PMC6320969 DOI: 10.3390/pharmaceutics10040255] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Chloroquine diphosphate (CQ) is a hydrophilic drug with low entrapment efficiency in hydrophobic nanoparticles (NP). Herpes simplex virus type 1 (HSV-1) is an enveloped double-stranded DNA virus worldwide known as a common human pathogen. This study aims to develop chloroquine-loaded poly(lactic acid) (PLA) nanoparticles (CQ-NP) to improve the chloroquine anti- HSV-1 efficacy. CQ-NP were successfully prepared using a modified emulsification-solvent evaporation method. Physicochemical properties of the NP were monitored using dynamic light scattering, atomic force microscopy, drug loading efficiency, and drug release studies. Spherical nanoparticles were produced with modal diameter of <300 nm, zeta potential of −20 mv and encapsulation efficiency of 64.1%. In vitro assays of CQ-NP performed in Vero E6 cells, using the MTT-assay, revealed different cytotoxicity levels. Blank nanoparticles (B-NP) were biocompatible. Finally, the antiviral activity tested by the plaque reduction assay revealed greater efficacy for CQ-NP compared to CQ at concentrations equal to or lower than 20 µg mL−1 (p < 0.001). On the other hand, the B-NP had no antiviral activity. The CQ-NP has shown feasible properties and great potential to improve the antiviral activity of drugs.
Collapse
|
21
|
Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Tailoring microstructural, drug release properties, and antichagasic efficacy of biocompatible oil-in-water benznidazol-loaded nanoemulsions. Int J Pharm 2018; 555:36-48. [PMID: 30448310 DOI: 10.1016/j.ijpharm.2018.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022]
Abstract
This study explored the transition of lamellar-type liquid crystal (LLC) to biocompatible oil-in-water nanoemulsions able to modify benznidazole (BNZ) release and target the drug to cells infected with the T. cruzi parasite. Three cosolvents (2methylpyrrolidone [NMP], polyethylene glycol [POL], and propylene glycol [PRO] were tested to induce the transition of anisotropic LLC systems to isotropic nanoemulsions. Mixtures of soy phosphatidylcholine with sodium oleate stabilized the dispersions of medium chain triglyceride in water. Rheological measurements, polarized microscopy, and small angle X-ray scattering demonstrated that there is a phase transition from LLC to desired nanoemulsions. These small and narrow droplet-sized nanocarriers exhibited some advantages and promising features, such as the enhanced BNZ aqueous solubility and slow drug release rate. In vitro cell biocompatibility of formulations was assessed in the Vero E6 and SiHa cell lines. Drug-loaded nanoemulsions inhibited the epimastigote growth of the T. cruzi parasite (IC50 0.208 ± 0.052 μg mL-1) and reduced its infective life form trypomastigote (IC50 0.392 ± 0.107 μg mL-1). The oil-in-water nanoemulsions were demonstrated as promising biocompatible liquid drug delivery systems capable of improving the BNZ trypanocidal activity for the treatment of Chagas disease.
Collapse
|
23
|
Gláucia-Silva F, Torres-Rêgo M, Rocha Soares KS, Damasceno IZ, Tambourgi DV, Silva-Júnior AAD, Fernandes-Pedrosa MDF. A biotechnological approach to immunotherapy: Antivenom against Crotalus durissus cascavella snake venom produced from biodegradable nanoparticles. Int J Biol Macromol 2018; 120:1917-1924. [PMID: 30287370 DOI: 10.1016/j.ijbiomac.2018.09.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Snakebite envenoming is a tropical disease neglected worldwide. In Brazil, the Crotalus durissus cascavella (CDC) snake belongs to a genus with venom of highest lethality. A search for new immunoadjuvants aimed to expand the therapeutic alternatives to improve vaccines and antivenom. This approach proposed to produce small and narrow-sized cationic CDC venom-loaded chitosan nanoparticles (CHNP) able to induce antibody response against the CDC venom. The ionic gelation method induced the formation of stable and slightly smooth spherical nanoparticles (<160 nm) with protein loading efficiency superior to 90%. The interactions between venom proteins and CHNP assessed using FT-IR spectroscopy corroborated with the in vitro release behavior of proteins from nanoparticles. Finally, the immunization animal model using BALB/c mice demonstrated the higher effectiveness of CDC venom-loaded CHNP compared to aluminum hydroxide, a conventional immunoadjuvant. Thus, CHNPs loaded with CDC venom exhibited a promising biotechnological approach to immunotherapy.
Collapse
Affiliation(s)
- Fiamma Gláucia-Silva
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Karla Samara Rocha Soares
- Graduate Program on Biochemistry, Bioscience Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59072-970 Natal, Brazil.
| | - Igor Zumba Damasceno
- Department of Materials Engineering, Technology Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59078-970 Natal, Brazil.
| | - Denise Vilarinho Tambourgi
- Laboratory of Immunochemistry, Instituto Butantan, Avenida Vital Brasil, 1500, Instituto Butantan, São Paulo 05503-000, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Graduate Program on Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil; Graduate Program on Biochemistry, Bioscience Center, University Campus, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Lagoa Nova, 59072-970 Natal, Brazil.
| |
Collapse
|
24
|
García MC, Martinelli M, Ponce NE, Sanmarco LM, Aoki MP, Manzo RH, Jimenez-Kairuz AF. Multi-kinetic release of benznidazole-loaded multiparticulate drug delivery systems based on polymethacrylate interpolyelectrolyte complexes. Eur J Pharm Sci 2018; 120:107-122. [PMID: 29705213 DOI: 10.1016/j.ejps.2018.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 01/05/2023]
Abstract
Interpolyelectrolyte complexes (IPEC) formulated as multiparticulate drug delivery systems (MDDS) are interesting carriers to improve drug' performance. Benznidazole (BZ) is the first-line drug for Chagas treatment; however, it presents side effects and toxicity, conditioning its efficacy and safety. The goal of this work was to obtain novel MDDS composed by IPEC based on different polymethacrylate carriers loaded with BZ and to investigate in vitro drug delivery performance for oral administration. Physicochemical characterizations were studied and preclinical studies in a murine model of acute Chagas disease were also performed. The MDDS composed by BZ-loaded IPEC based on polymethacrylates were obtained by casting solvent followed by wet granulation methods with yields >83%. FT-IR demonstrated ionic interaction between the polyelectrolytes. Confocal microscopy, DSC and PXRD revealed a fraction uniformly distributed of free BZ on the multiparticles. The rheological evaluation of the MDDS showed adequate flow features for their formulation in hard gelatin-capsules. The type and composition of IPEC conditioned the modulation of BZ release and fluid uptake results. MDDS based on more hydrophylic Eudragit® showed very fast dissolution (Q15min > 85%), while an extended release (Q120min ≤ 40%) for the hydrophobic ones was observed. Capsules containing a combination of two MDDS with different release profile of BZ showed promising properties to improve Chagas disease pharmacotherapy in the preliminary in vivo assay performed, in which the BZ-loaded MDDS exhibited efficacy to reduce parasitemia, while decreasing the levels of liver injury markers in comparison to BZ conventional treatment. Multi-kinetic BZ delivery systems developed are interesting pharmaceutical alternatives to improve the treatment of Chagas disease.
Collapse
Affiliation(s)
- Mónica C García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica - UNITEFA (CONICET-UNC), Córdoba, Argentina.
| | - Marisa Martinelli
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET and Laboratorio de Materiales Poliméricos (LAMAP), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Nicolás E Ponce
- Instituto de Investigación Médica "M. y M. Ferreyra", INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Liliana M Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología CIBICI (CONICET-UNC), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - María P Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología CIBICI (CONICET-UNC), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Rubén H Manzo
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica - UNITEFA (CONICET-UNC), Córdoba, Argentina.
| | - Alvaro F Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica - UNITEFA (CONICET-UNC), Córdoba, Argentina.
| |
Collapse
|