1
|
Qin L, Cao H, Liu X, Zhang D, Wu L. Low-Intensity Pulsed Ultrasound Promotes Osteogenesis in Porous Titanium Alloys Through miR-1187/BMP4 Pathway. FASEB J 2025; 39:e70583. [PMID: 40317956 PMCID: PMC12060846 DOI: 10.1096/fj.202403395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
The repair of critical-sized bone defects remains a significant clinical challenge. Low-intensity pulsed ultrasound (LIPUS), in combination with porous titanium alloy (PTi) scaffolds, has emerged as a promising therapeutic strategy. However, its molecular mechanism remains unclear. This study aimed to investigate the role of bone morphogenetic protein 4 (BMP4) and microRNA-1187 (miR-1187) in LIPUS-mediated osteogenesis in PTi scaffolds. In vitro, the expression of BMP4 and miR-1187 in MC3T3-E1 cells following LIPUS stimulation was assessed using quantitative real-time PCR (RT-qPCR), western blotting, ELISA, alkaline phosphatase (ALP) activity assay, and staining techniques. A luciferase reporter assay confirmed BMP4 as a direct target of miR-1187. Functional studies demonstrated that BMP4 overexpression and miR-1187 inhibition promoted osteoblast differentiation, whereas BMP4 knockdown and miR-1187 overexpression suppressed osteogenesis. In vivo, a BMP4 knockdown rat model was established by si-BMP4 injection into mandibular defects and evaluated new bone formation using micro-CT and histological analyses. LIPUS stimulation significantly upregulated BMP4 expression, promoted new bone formation in PTi scaffolds, and partially rescued the inhibitory effects of BMP4 silencing. These findings establish BMP4 as a key regulator in LIPUS-enhanced osteogenesis via miR-1187 suppression. This mechanistic insight supports the combined use of LIPUS and PTi scaffolds for bone defect repair and highlights BMP4 as a potential therapeutic target to further enhance bone regeneration in LIPUS-stimulated scaffold therapies.
Collapse
Affiliation(s)
- Limei Qin
- Department of Prosthodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Hongjuan Cao
- Department of Prosthodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Xiaohan Liu
- Department of Prosthodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Di Zhang
- Department of Prosthodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Lin Wu
- Department of Prosthodontics, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
2
|
Marcotulli M, Barbetta A, Scarpa E, Bini F, Marinozzi F, Ruocco G, Casciola CM, Scognamiglio C, Carugo D, Cidonio G. Jingle Cell Rock: Steering Cellular Activity With Low-Intensity Pulsed Ultrasound (LIPUS) to Engineer Functional Tissues in Regenerative Medicine. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1973-1986. [PMID: 39289118 DOI: 10.1016/j.ultrasmedbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Martina Marcotulli
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Edoardo Scarpa
- Infection Dynamics Laboratory, Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Gentics (INGM), Milan, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Chiara Scognamiglio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Gianluca Cidonio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK; Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Liu X, Cheng R, Cao H, Wu L. 3D-Cultured MC3T3-E1-Derived Exosomes Promote Endothelial Cell Biological Function under the Effect of LIPUS. Biomolecules 2024; 14:1154. [PMID: 39334920 PMCID: PMC11430381 DOI: 10.3390/biom14091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Porous Ti-6Al-4V scaffold materials can be used to heal massive bone defects because they can provide space for vascularisation and bone formation. During new bone tissue development, rapid vascular ingrowth into scaffold materials is very important. Osteoblast-derived exosomes are capable of facilitating angiogenesis-osteogenesis coupling. Low-intensity pulsed ultrasound (LIPUS) is a physical therapy modality widely utilised in the field of bone regeneration and has been proven to enhance the production and functionality of exosomes on two-dimensional surfaces. The impact of LIPUS on exosomes derived from osteoblasts cultured in three dimensions remains to be elucidated. In this study, exosomes produced by osteoblasts on porous Ti-6Al-4V scaffold materials under LIPUS and non-ultrasound stimulated conditions were co-cultured with endothelial cells. The findings indicated that the exosomes were consistently and stably taken up by the endothelial cells. Compared to the non-ultrasound group, the LIPUS group facilitated endothelial cell proliferation and angiogenesis. After 24 h of co-culture, the migration ability of endothelial cells in the LIPUS group was 17.30% higher relative to the non-ultrasound group. LIPUS may represent a potentially viable strategy to promote the efficacy of osteoblast-derived exosomes to enhance the angiogenesis of porous Ti-6Al-4V scaffold materials.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Rui Cheng
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Hongjuan Cao
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Lin Wu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| |
Collapse
|
4
|
Luo W, Wang Y, Wang Z, Jiao J, Yu T, Jiang W, Li M, Zhang H, Gong X, Chao B, Liu S, Wu X, Wang J, Wu M. Advanced topology of triply periodic minimal surface structure for osteogenic improvement within orthopedic metallic screw. Mater Today Bio 2024; 27:101118. [PMID: 38975238 PMCID: PMC11225863 DOI: 10.1016/j.mtbio.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Metallic screws are one of the most common implants in orthopedics. However, the solid design of the screw has often resulted in stress shielding and postoperative loosening, substantially impacting its long-term fixation effect after surgery. Four additive manufacturing porous structures (Fischer-Koch S, Octet, Diamond, and Double Gyroid) are now introduced into the screw to fix those issues. Upon applying the four porous structures, elastic modulus in the screw decreased about 2∼15 times to reduce the occurrence of stress shielding, and bone regeneration effect on the screw surface increased about 1∼50 times to improve bone tissue regrowing. With more bone tissue regrowing on the inner surface of porous screw, a stiffer integration between screw and bone tissue will be achieved, which improves the long-term fixation of the screw tremendously. The biofunctions of the four topologies on osteogenesis have been fully explored, which provides an advanced topology optimization scheme for the screw utilized in orthopedic fixation.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuhui Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Hall TAG, Theodoridis K, Kohli N, Cegla F, van Arkel RJ. Active osseointegration in an ex vivo porcine bone model. Front Bioeng Biotechnol 2024; 12:1360669. [PMID: 38585711 PMCID: PMC10995341 DOI: 10.3389/fbioe.2024.1360669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Achieving osseointegration is a fundamental requirement for many orthopaedic, oral, and craniofacial implants. Osseointegration typically takes three to 6 months, during which time implants are at risk of loosening. The aim of this study was to investigate whether osseointegration could be actively enhanced by delivering controllable electromechanical stimuli to the periprosthetic bone. First, the osteoconductivity of the implant surface was confirmed using an in vitro culture with murine preosteoblasts. The effects of active treatment on osseointegration were then investigated in a 21-day ex vivo model with freshly harvested cancellous bone cylinders (n = 24; Ø10 mm × 5 mm) from distal porcine femora, with comparisons to specimens treated by a distant ultrasound source and static controls. Cell viability, proliferation and distribution was evident throughout culture. Superior ongrowth of tissue onto the titanium discs during culture was observed in the actively stimulated specimens, with evidence of ten-times increased mineralisation after 7 and 14 days of culture (p < 0.05) and 2.5 times increased expression of osteopontin (p < 0.005), an adhesive protein, at 21 days. Moreover, histological analyses revealed increased bone remodelling at the implant-bone interface in the actively stimulated specimens compared to the passive controls. Active osseointegration is an exciting new approach for accelerating bone growth into and around implants.
Collapse
Affiliation(s)
- Thomas A G Hall
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Konstantinos Theodoridis
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nupur Kohli
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Frederic Cegla
- Non-Destructive Evaluation Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Luo L, Cao H, Zhou L, Zhang G, Wu L. Anti-resorption role of low-intensity pulsed ultrasound (LIPUS) during large-scale bone reconstruction using porous titanium alloy scaffolds through inhibiting osteoclast differentiation. BIOMATERIALS ADVANCES 2023; 154:213634. [PMID: 37783002 DOI: 10.1016/j.bioadv.2023.213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Ti6Al4V biomaterials combine with low-intensity pulsed ultrasound (LIPUS) has been reported with great bone regeneration capacity. It is important to better understand how LIPUS benefits bone microenvironment to seek for target of therapeutic medicine. Osteoclast differentiation plays a crucial role in bone resorption. Recent advances in molecular biology have revealed that N6-methyladenosine (m6A) RNA modifications can modulate biological processes, but their role in bone biology, particularly in osteoclast differentiation, remains unclear. We aim to understand how LIPUS regulates bone microenvironment especially osteoclast formation during bone regeneration to provide new therapeutic options for preventing and delaying bone resorption, thus with better bone regeneration efficiency. RESULTS 1. LIPUS promoted bone ingrowth and bone maturity while inhibiting osteoclast formation within Ti6Al4V scaffolds in large-scale bone defect model. 2. LIPUS was found to inhibit osteoclast differentiation by decreasing the overall expression of osteoclast markers in vitro. 3. LIPUS decreases RNA m6A-modification level through upregulating FTO expression during osteoclast differentiation during. 4. Inhibiting FTO expression and function leads to less inhibition during osteoclast differentiation. CONCLUSION LIPUS suppresses osteoclast differentiation during bone regeneration through reducing m6A modification of osteoclastic RNAs by up regulating FTO expression.
Collapse
Affiliation(s)
- Lin Luo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Hongjuan Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Liang Zhou
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Guangdao Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| |
Collapse
|
7
|
Jia W, Zhou Z, Zhan W. Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound. J Funct Biomater 2023; 14:504. [PMID: 37888169 PMCID: PMC10607075 DOI: 10.3390/jfb14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical biophysical stimulating strategies, which have significant effects on improving the function of organs or treating diseases by causing the salutary response of body, have shown many advantages, such as non-invasiveness, few side effects, and controllable treatment process. As a critical technique for stimulation, the low intensity pulsed ultrasound (LIPUS) has been explored in regulating osteogenesis, which has presented great promise in bone repair by delivering a combined effect with biomaterials. This review summarizes the musculoskeletal biomaterials that can be synergized with LIPUS for enhanced biomedical application, including bone regeneration, spinal fusion, osteonecrosis/osteolysis, cartilage repair, and nerve regeneration. Different types of biomaterials are categorized for summary and evaluation. In each subtype, the verified biological mechanisms are listed in a table or graphs to prove how LIPUS was effective in improving musculoskeletal tissue regeneration. Meanwhile, the acoustic excitation parameters of LIPUS that were promising to be effective for further musculoskeletal tissue engineering are discussed, as well as their limitations and some perspectives for future research. Overall, coupled with biomimetic scaffolds and platforms, LIPUS may be a powerful therapeutic approach to accelerate musculoskeletal tissue repair and even in other regenerative medicine applications.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
8
|
Tian C, Liu H, Zhao C, Zhang C, Wang W. A Numerical Study on Mechanical Effects of Low-Intensity Pulsed Ultrasound on Trabecular Bone and Osteoblasts. J Biomech Eng 2023; 145:1156067. [PMID: 36629007 DOI: 10.1115/1.4056658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The lack of sufficient mechanical stimulation to the human bone, results in disuse osteoporosis. Low-intensity pulsed ultrasound (LIPUS) promotes fracture healing and the treatment of disuse osteoporosis, but its biomechanical mechanism remains unknown. Simulative research on the mechanical effects of LIPUS on disuse trabecular bone and osteoblasts have been performed. The von Mises stress of disuse trabecular bone and osteoblasts obviously increased under LIPUS irradiation. The average von Mises stress of osteoblasts were two orders of magnitude higher under the irradiation of simulant LIPUS than that without LIPUS irradiation, and the von Mises stress of osteoblasts was positively correlated with the amplitude of sound pressure excitation. The results showed that LIPUS irradiation could obviously improve the mechanical micro-environment of trabecular bone and osteoblasts to alleviate the lack of mechanical stimulation. The results of the research can reveal the biomechanical mechanism of LIPUS in the treatment of disuse osteoporosis to some extent and provide theoretical guidance for clinical treatment of disuse osteoporosis through physical methods.
Collapse
Affiliation(s)
- Congbiao Tian
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Chaohui Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
9
|
Liu X, Sun K, Xu P, Yu Z, Lei Z, Zhou H, Li J, Li X, Zhu Z, Wang H, Chen C, Bai X. Effect of Low-Intensity Pulsed Ultrasound on the Graft-Bone Healing of Artificial Ligaments: An In Vitro and In Vivo Study. Am J Sports Med 2022; 50:801-813. [PMID: 35289229 DOI: 10.1177/03635465211063158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND As many researchers have focused on promoting the graft-bone healing of artificial ligaments, even with numerous chemical coatings, identifying a biosafe, effective, and immediately usable method is still important clinically. PURPOSE (1) To determine whether a low-intensity pulsed ultrasound system (LIPUS) promotes in vitro cell viability and osteogenic differentiation and (2) to assess the applicability and effectiveness of LIPUS in promoting the graft-bone healing of artificial ligaments in vivo. STUDY DESIGN Controlled laboratory study. METHODS Polyethylene terephthalate (PET) sheets and grafts were randomly assigned to control and LIPUS groups. MC3T3-E1 preosteoblasts were cultured on PET sheets. Cell viability and morphology were evaluated using a live/dead viability assay and scanning electron microscopy. Alkaline phosphatase activity, calcium nodule formation, and Western blot were evaluated for osteogenic differentiation. For in vivo experiments, the effect of LIPUS was evaluated via an extra-articular graft-bone healing model in 48 rabbits: the osteointegration and new bone formation were tested by micro-computed tomography and histological staining, and the graft-bone bonding was tested by biomechanical testing. RESULTS Cell viability was significantly higher in the LIPUS group as compared with control (living and dead compared between control and LIPUS groups, P = .0489 vs P = .0489). Better adherence of cells and greater development of extracellular matrix were observed in the LIPUS group. Furthermore, LIPUS promoted alkaline phosphatase activity, calcium nodule formation, and the protein expression of collagen 1 (P = .0002) and osteocalcin (P = .0006) in vitro. Micro-computed tomography revealed higher surrounding bone mass at 4 weeks and newly formed bone mass at 8 weeks in the LIPUS group (P = .0014 and P = .0018). Histological analysis showed a narrower interface and direct graft-bone contact in the LIPUS group; the surrounding bone area at 4 weeks and the mass of newly formed bone at 4 and 8 weeks in the LIPUS group were also significantly higher as compared with control (surrounding bone, P < .0001; newly formed bone, P = .0016 at 4 weeks and P = .005 at 8 weeks). The ultimate failure load in the LIPUS group was significantly higher than in the control group (P < .0001 at 4 weeks; P = .0008 at 8 weeks). CONCLUSION LIPUS promoted the viability and osteogenic differentiation of MC3T3-E1 preosteoblasts in vitro and enhanced the graft-bone healing of PET artificial ligament in vivo. CLINICAL RELEVANCE LIPUS is an effective physical stimulation to enhance graft-bone healing after artificial ligament implantation.
Collapse
Affiliation(s)
- Xingwang Liu
- The Sports Medicine Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Sun
- Department of Orthopedics, the General Hospital of Fushun Mining Bureau of Liaoning Province, Fushun, China
| | - Pengzhi Xu
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| | - Zhongshen Yu
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| | - Zeming Lei
- The Hand Surgery 5 Ward of Central Hospital, Shenyang Medical College, Shenyang, China
| | - Huihui Zhou
- Department of Orthopedics, the General Hospital of Benxi Iron and Steel Industry Group of Liaoning Health Industry Group, Benxi, China
| | - Jutao Li
- Department of Thyroid and Breast Surgery, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Xi Li
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| | - Zhiyong Zhu
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| | - Huisheng Wang
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xizhuang Bai
- Department of Orthopedics, the People's Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Cai K, Jiao Y, Quan Q, Hao Y, Liu J, Wu L. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO 3/TC4 using low-intensity pulsed ultrasound. Bioact Mater 2021; 6:4073-4082. [PMID: 33997494 PMCID: PMC8090998 DOI: 10.1016/j.bioactmat.2021.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Developing bioactive materials for bone implants to enhance bone healing and bone growth has for years been the focus of clinical research. Barium titanate (BT) is an electroactive material that can generate electrical signals in response to applied mechanical forces. In this study, a BT piezoelectric ceramic coating was synthesized on the surface of a TC4 titanium alloy, forming a BT/TC4 material, and low-intensity pulsed ultrasound (LIPUS) was then applied as a mechanical stimulus. The combined effects on the biological responses of MC3T3-E1 cells were investigated. Results of scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction showed that an uniform nanospheres -shaped BT coating was formed on TC4 substrate. Piezoelectric behaviors were observed using piezoelectric force microscopy with the piezoelectric coefficient d33 of 0.42 pC/N. Electrochemical measures indicated that LIPUS-stimulated BT/TC4 materials could produce a microcurrent of approximately 10 μA/cm2. In vitro, the greatest osteogenesis (cell adhesion, proliferation, and osteogenic differentiation) was found in MC3T3-E1 cells when BT/TC4 was stimulated using LIPUS. Furthermore, the intracellular calcium ion concentration increased in these cells, possibly because opening of the L-type calcium ion channels was promoted and expression of the CaV1.2 protein was increased. Therefore, the piezoelectric BT/TC4 material with LIPUS loading synergistically promoted osteogenesis, rending it a potential treatment for early stage formation of reliable bone-implant contact.
Collapse
Affiliation(s)
- Kunzhan Cai
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Quan Quan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Yulin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jie Liu
- Department of Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| |
Collapse
|
12
|
Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res 2021; 9:16. [PMID: 33692342 PMCID: PMC7946898 DOI: 10.1038/s41413-020-00124-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanobiological stimuli, such as low-intensity pulsed ultrasound (LIPUS), have been shown to promote bone regeneration and fresh fracture repair, but the fundamental biophysical mechanisms involved remain elusive. Here, we propose that a mechanosensitive ion channel of Piezo1 plays a pivotal role in the noninvasive ultrasound-induced mechanical transduction pathway to trigger downstream cellular signal processes. This study aims to investigate the expression and role of Piezo1 in MC3T3-E1 cells after LIPUS treatment. Immunofluorescence analysis shows that Piezo1 was present on MC3T3-E1 cells and could be ablated by shRNA transfection. MC3T3-E1 cell migration and proliferation were significantly increased by LIPUS stimulation, and knockdown of Piezo1 restricted the increase in cell migration and proliferation. After labeling with Fluo-8, MC3T3-E1 cells exhibited fluorescence intensity traces with several high peaks compared with the baseline during LIPUS stimulation. No obvious change in the fluorescence intensity tendency was observed after LIPUS stimulation in shRNA-Piezo1 cells, which was similar to the results in the GsMTx4-treated group. The phosphorylation ratio of ERK1/2 in MC3T3-E1 cells was significantly increased (P < 0.01) after LIPUS stimulation. In addition, Phalloidin-iFluor-labeled F-actin filaments immediately accumulated in the perinuclear region after LIPUS stimulation, continued for 5 min, and then returned to their initial levels at 30 min. These results suggest that Piezo1 can transduce LIPUS-induced mechanical signals into intracellular calcium. The influx of Ca2+ serves as a second messenger to activate ERK1/2 phosphorylation and perinuclear F-actin filament polymerization, which regulate the proliferation of MC3T3-E1 cells.
Collapse
|
13
|
Zhang G, Zhao P, Lin L, Qin L, Huan Z, Leeflang S, Zadpoor AA, Zhou J, Wu L. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:39. [PMID: 33553332 PMCID: PMC7859759 DOI: 10.21037/atm-20-3829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the in vitro performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively. The results demonstrated that such modification enhanced the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSC). Here, we take the next step by assessing the therapeutic potential of 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications for bone regeneration in a rabbit bone defect model. Methods 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications were implanted into the femoral condyle of the rabbits, the Ti-6Al-4V scaffolds without surface modification were used as the control. At week 3, 6, and 9 after the implantation, micro-computed tomography (micro-CT) imaging, fluorescence double-labeling to determine the mineral apposition rate (MAR), and histological analysis of non-decalcified sections were performed. Results We found significantly higher volumes of regenerated bone, significantly higher values of the relevant bone morphometric parameters, clear signs of bone matrix apposition and maturation, and the evidence of progressed angiogenesis and blood vessel formation in the groups where the bioactive glass was added as a coating, particularly the MGB group. Conclusions The MBG coating resulted in enhanced osteoconduction and vascularization in bone defect healing, which was attributed to the release of silicon and calcium ions and the presence of a nano-mesoporous structure on the surface of the MBG specimens.
Collapse
Affiliation(s)
- Guangdao Zhang
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Lin
- The First People's Hospital of Shenyang, Shenyang, China
| | - Limei Qin
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Sander Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Liu W, Yang D, Wei X, Guo S, Wang N, Tang Z, Lu Y, Shen S, Shi L, Li X, Guo Z. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J Biomater Appl 2020; 35:544-552. [PMID: 32660363 DOI: 10.1177/0885328220942906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Porous titanium scaffolds can provide sufficient mechanical support and bone growth space for large segmental bone defect repair. However, they fail to restore the physiological environment of bone tissue. Barium titanate (BaTiO3) is considered a smart material that can produce an electric field in response to dynamic force. Low-intensity pulsed ultrasound stimulation (LIPUS), as a kind of micromechanical wave, can not only promote bone repair but also induce BaTiO3 to generate an electric field. In our studies, BaTiO3 was coated on porous Ti6Al4V and LIPUS was externally applied to observe the influence of the piezoelectric effect on the repair of large bone defects in vitro and in vivo. The results show that the piezoelectric effect can effectively promote the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro as well as bone formation and growth into implants in vivo. This study provides an optional alternative to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and osseointegration for the repair of large bone defects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinghui Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuo Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ning Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Tang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yajie Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuning Shen
- Department of Orthopedics, Hospital of Peoples Liberate Army, Nanchang, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Rahimi A, Case N. Computational model to evaluate modulation of the acoustic field in an ultrasonic bioreactor by incorporation of a water layer bounded by an acoustic absorbent boundary layer. ULTRASONICS 2020; 103:106086. [PMID: 32070827 DOI: 10.1016/j.ultras.2020.106086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Ultrasonic bioreactors have been used for in vitro experimentation to study cellular responses to low-intensity pulsed ultrasound. The presence of an air interface in these bioreactors contributes to variability in the acoustic pressure field, reducing experimental reproducibility. A multiphysics finite element model was developed to simulate the acoustic field in an in-dish ultrasonic bioreactor, where the transducer is immersed in culture medium above the dish surface, and the effects of replacing air below the dish in the bioreactor with a water layer bounded by an acoustic absorbent layer were evaluated. Frequency domain simulations showed that the spatially-averaged pressure at the dish surface alternated between a minimum and maximum level as the distance between the dish and transducer increased. The ratio of the maximum to minimum level was 6.5-fold when the air interface was present, and this ratio dropped to 1.8-fold with replacement of the air interface. However, radial pressure variability was present with or without the air interface in the bioreactor model. Time-dependent simulations showed that the increase in acoustic pressure to a maximum level after US signal activation and the pressure drop after signal cessation were faster when the water-coupled non-reflective layer was used to replace the air layer below the dish, generating a pressure pattern that more closely followed the applied pulsed ultrasound signal due to reduced wave reflection and interference. Overall, this work showed that having water rather than air in contact with the lower dish surface when paired with an acoustic absorbent layer resulted in a less variable pressure field, providing an improved bioreactor design for in vitro experiments.
Collapse
Affiliation(s)
- Abdolrasol Rahimi
- Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Natasha Case
- Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
16
|
Liu X, Hu Y, Wu L, Li S. Effects of collimated and focused low-intensity pulsed ultrasound stimulation on the mandible repair in rabbits. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:98. [PMID: 32175391 DOI: 10.21037/atm.2019.12.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background This study was to evaluate the effects of low-intensity collimated pulse ultrasound (LICU) and low-intensity focused-pulse ultrasound (LIFU) stimulation on the osteogenesis in the porous silicon carbide (SiC) scaffold implanted in the rabbit mandible. Methods Rabbits were randomly divided into LIFU group, LICU group and control group (without ultrasound treatment). The intensities of LICU and LIFU were 30 and 300 mW/cm2, respectively. The subcutaneous and subperiosteal temperatures were measured continuously during the 20-min ultrasound treatment. Then, the porous SiC scaffolds were implanted into the mandible, followed by LICU or LIFU once daily, and the quantity and structure of bone were assessed by methylene blue-acid fuchsin staining and micro-CT at 3, 6 and 9 weeks after implantation. Results The changes in the subcutaneous and subperiosteal temperatures during LICU and LIFU were less than 1 °C. The bone mass increased and the structure of bone tissues became more mature over time. The bone mass and mean pore occupancy fraction (POF) in the LIFU group were significantly greater than in the LICU group at three time points (P<0.05). Bone ingrowth in different directions was observed, and the new bone formation in the mesial, distal, top, and lingual sides of the implants in the LIFU group was greater than in the LICU group and control group (P<0.05). Conclusions LIFU and LICU may effectively promote bone formation in the mandible scaffold, and LIFU significantly accelerates bone formation in both buccal side and lingual side of the scaffold.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Ying Hu
- Department of Pediatric Dentistry, Dalian Stomatological Hospital, Dalian 116021, China
| | - Lin Wu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Shujun Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
17
|
Li J, Wen J, Li B, Li W, Qiao W, Shen J, Jin W, Jiang X, Yeung KWK, Chu PK. Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700678. [PMID: 29610729 PMCID: PMC5827567 DOI: 10.1002/advs.201700678] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/19/2017] [Indexed: 05/19/2023]
Abstract
Understanding cell-biomaterial interactions is critical for the control of cell fate for tissue engineering and regenerative medicine. Here, cerium oxide nanoparticles (CeONPs) are applied at different Ce4+/Ce3+ ratios (i.e., 0.46, 1.23, and 3.23) to titanium substrate surfaces by magnetron sputtering and vacuum annealing. Evaluation of the cytotoxicity of the modified surface to cultured rat bone marrow mesenchymal stem cells (BMSCs) reveals that the cytocompatibility and cell proliferation are proportional to the increases in Ce4+/Ce3+ ratio on titanium surface. The bone formation capability induced by these surface modified titanium alloys is evaluated by implanting various CeONP samples into the intramedullary cavity of rat femur for 8 weeks. New bone formation adjacent to the implant shows a close relationship to the surface Ce4+/Ce3+ ratio; higher Ce4+/Ce3+ ratio achieves better osseointegration. The mechanism of this in vivo outcome is explored by culturing rat BMSCs and RAW264.7 murine macrophages on CeONP samples for different durations. The improvement in osteogenic differentiation capability of BMSCs is directly proportional to the increased Ce4+/Ce3+ ratio on the titanium surface. Increases in the Ce4+/Ce3+ ratio also elevate the polarization of the M2 phenotype of RAW264.7 murine macrophages, particularly with respect to the healing-associated M2 percentage and anti-inflammatory cytokine secretion. The manipulation of valence states of CeONPs appears to provide an effective modulation of the osteogenic capability of stem cells and the M2 polarization of macrophages, resulting in favorable outcomes of new bone formation and osseointegration.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Department of PhysicsDepartment of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Jin Wen
- Department of ProsthodonticsNinth People's Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineShanghai200011China
| | - Bin Li
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Wan Li
- Department of PhysicsDepartment of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| | - Wei Qiao
- Dental Materials ScienceApplied Oral SciencesFaculty of DentistryThe University of Hong KongHong Kong999077China
| | - Jie Shen
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Weihong Jin
- Department of PhysicsDepartment of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| | - Xinquan Jiang
- Department of ProsthodonticsNinth People's Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineShanghai200011China
| | - Kelvin W. K. Yeung
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong999077China
| |
Collapse
|