1
|
Aubrecht P, Smejkal J, Panuška P, Španbauerová K, Neubertová V, Kaule P, Matoušek J, Vinopal S, Liegertová M, Štofik M, Malý J. Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications. RSC Adv 2024; 14:3617-3635. [PMID: 38268545 PMCID: PMC10804231 DOI: 10.1039/d3ra05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Collapse
Affiliation(s)
- Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Petr Panuška
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Klára Španbauerová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Viktorie Neubertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Pavel Kaule
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
- Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jindřich Matoušek
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| |
Collapse
|
2
|
Cecen B, Karavasili C, Nazir M, Bhusal A, Dogan E, Shahriyari F, Tamburaci S, Buyukoz M, Kozaci LD, Miri AK. Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives. Pharmaceutics 2021; 13:1657. [PMID: 34683950 PMCID: PMC8540732 DOI: 10.3390/pharmaceutics13101657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Organ-on-a-chip technology has been used in testing small-molecule drugs for screening potential therapeutics and regulatory protocols. The technology is expected to boost the development of novel therapies and accelerate the discovery of drug combinations in the coming years. This has led to the development of multi-organ-on-a-chip (MOC) for recapitulating various organs involved in the drug-body interactions. In this review, we discuss the current MOCs used in screening small-molecule drugs and then focus on the dynamic process of drug absorption, distribution, metabolism, and excretion. We also address appropriate materials used for MOCs at low cost and scale-up capacity suitable for high-performance analysis of drugs and commercial high-throughput screening platforms.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA; (A.B.); (E.D.); (A.K.M.)
- Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34010, Turkey
| | - Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Mubashir Nazir
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, India;
| | - Anant Bhusal
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA; (A.B.); (E.D.); (A.K.M.)
| | - Elvan Dogan
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA; (A.B.); (E.D.); (A.K.M.)
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Fatemeh Shahriyari
- Institute of Health Science, Department of Translational Medicine, Ankara Yildirim Beyazit University, Ankara 06800, Turkey;
| | - Sedef Tamburaci
- Izmir Institute of Technology, Graduate Program of Biotechnology and Bioengineering, Gulbahce Campus, Izmir 35430, Turkey;
- Izmir Institute of Technology, Department of Chemical Engineering, Gulbahce Campus, Izmir 35430, Turkey
| | - Melda Buyukoz
- Care of Elderly Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35140, Turkey;
| | - Leyla Didem Kozaci
- Department of Medical Biochemistry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara 06800, Turkey;
| | - Amir K. Miri
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA; (A.B.); (E.D.); (A.K.M.)
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Przekora A, Audemar M, Pawlat J, Canal C, Thomann JS, Labay C, Wojcik M, Kwiatkowski M, Terebun P, Ginalska G, Hermans S, Duday D. Positive Effect of Cold Atmospheric Nitrogen Plasma on the Behavior of Mesenchymal Stem Cells Cultured on a Bone Scaffold Containing Iron Oxide-Loaded Silica Nanoparticles Catalyst. Int J Mol Sci 2020; 21:ijms21134738. [PMID: 32635182 PMCID: PMC7369831 DOI: 10.3390/ijms21134738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Low-temperature atmospheric pressure plasma was demonstrated to have an ability to generate different reactive oxygen and nitrogen species (RONS), showing wide biological actions. Within this study, mesoporous silica nanoparticles (NPs) and FexOy/NPs catalysts were produced and embedded in the polysaccharide matrix of chitosan/curdlan/hydroxyapatite biomaterial. Then, basic physicochemical and structural characterization of the NPs and biomaterials was performed. The primary aim of this work was to evaluate the impact of the combined action of cold nitrogen plasma and the materials produced on proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (ADSCs), which were seeded onto the bone scaffolds containing NPs or FexOy/NPs catalysts. Incorporation of catalysts into the structure of the biomaterial was expected to enhance the formation of plasma-induced RONS, thereby improving stem cell behavior. The results obtained clearly demonstrated that short-time (16s) exposure of ADSCs to nitrogen plasma accelerated proliferation of cells grown on the biomaterial containing FexOy/NPs catalysts and increased osteocalcin production by the cells cultured on the scaffold containing pure NPs. Plasma activation of FexOy/NPs-loaded biomaterial resulted in the formation of appropriate amounts of oxygen-based reactive species that had positive impact on stem cell proliferation and at the same time did not negatively affect their osteogenic differentiation. Therefore, plasma-activated FexOy/NPs-loaded biomaterial is characterized by improved biocompatibility and has great clinical potential to be used in regenerative medicine applications to improve bone healing process.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.W.); (G.G.)
- Correspondence: (A.P.); (S.H.); (D.D.); Tel.: +48-814487026 (A.P.)
| | - Maïté Audemar
- IMCN Institute, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| | - Joanna Pawlat
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland; (J.P.); (M.K.); (P.T.)
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; (C.C.); (C.L.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Jean-Sébastien Thomann
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg;
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; (C.C.); (C.L.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08019 Barcelona, Spain
| | - Michal Wojcik
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.W.); (G.G.)
| | - Michal Kwiatkowski
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland; (J.P.); (M.K.); (P.T.)
| | - Piotr Terebun
- Chair of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland; (J.P.); (M.K.); (P.T.)
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (M.W.); (G.G.)
| | - Sophie Hermans
- IMCN Institute, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
- Correspondence: (A.P.); (S.H.); (D.D.); Tel.: +48-814487026 (A.P.)
| | - David Duday
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg;
- Correspondence: (A.P.); (S.H.); (D.D.); Tel.: +48-814487026 (A.P.)
| |
Collapse
|
4
|
Sánchez-Torres S, Díaz-Ruíz A, Ríos C, Olayo MG, Cruz GJ, Olayo R, Morales J, Mondragón-Lozano R, Fabela-Sánchez O, Orozco-Barrios C, Coyoy-Salgado A, Orozco-Suárez S, González-Ruiz C, Álvarez-Mejía L, Morales-Guadarrama A, Buzoianu-Anguiano V, Damián-Matsumura P, Salgado-Ceballos H. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:58. [PMID: 32607849 DOI: 10.1007/s10856-020-06395-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased βIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as βIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI. The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and βIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of βIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.
Collapse
Affiliation(s)
- Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, CP, 09340, Mexico
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
| | - Araceli Díaz-Ruíz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez S.S.A, Mexico city, CP, 14269, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez S.S.A, Mexico city, CP, 14269, Mexico
| | - María G Olayo
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | - Guillermo J Cruz
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana, Mexico City, CP, 09340, Mexico
| | - Juan Morales
- Departamento de Física, Universidad Autónoma Metropolitana, Mexico City, CP, 09340, Mexico
| | - Rodrigo Mondragón-Lozano
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Omar Fabela-Sánchez
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, San Rafael Atlixco 186, 09340, Iztapalapa, CDMX, México
- Catedrático CONACyT-Centro de Investigación en Química Aplicada, Enrique Reyna H. No. 140, San José de los Cerritos, Saltillo, Coahuila, 25294, México
| | - Carlos Orozco-Barrios
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Angélica Coyoy-Salgado
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
| | - Cristian González-Ruiz
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Escuela Superior de Medicina-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laura Álvarez-Mejía
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | | | - Vinnitsa Buzoianu-Anguiano
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
| | - Pablo Damián-Matsumura
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, CP, 09340, Mexico
| | - Hermelinda Salgado-Ceballos
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México.
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico.
| |
Collapse
|
5
|
X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Esbah Tabaei PS, Ghobeira R, Cools P, Rezaei F, Nikiforov A, Morent R, De Geyter N. Comparative study between in-plasma and post-plasma chemical processes occurring at the surface of UHMWPE subjected to medium pressure Ar and N2 plasma activation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Sticker D, Geczy R, Häfeli UO, Kutter JP. Thiol-Ene Based Polymers as Versatile Materials for Microfluidic Devices for Life Sciences Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10080-10095. [PMID: 32048822 DOI: 10.1021/acsami.9b22050] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While there is a steady growth in the number of microfluidics applications, the search for an optimal material that delivers the diverse characteristics needed for the numerous tasks is still nowhere close to being settled. Often overlooked and still underrepresented, the thiol-ene family of polymer materials has an enormous potential for applications in organs-on-a-chip, droplet productions, microanalytics, and point of care testing. In this review, the main characteristics of the thiol-ene materials are given, and advantages and drawbacks with respect to their potential in microfluidic chip fabrication are critically assessed. Select applications, which exploit the versatility of the thiol-ene polymers, are presented and discussed. It is concluded that, in particular, the rapid prototyping possibility combined with the material's resulting mechanical strength, solvent resistance, and biocompatibility, as well as the inherently easy surface functionalization, are strong factors to make thiol-ene polymers strong contenders for promising future materials for many biological, clinical, and technical lab-on-a-chip applications.
Collapse
Affiliation(s)
- Drago Sticker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Reka Geczy
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Che K, Lyu P, Wan F, Ma M. Investigations on Aging Behavior and Mechanism of Polyurea Coating in Marine Atmosphere. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3636. [PMID: 31694185 PMCID: PMC6862547 DOI: 10.3390/ma12213636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022]
Abstract
In this investigation, the aging behaviors of polyurea coating exposed to marine atmosphere for 150 days were studied and the mechanism was analyzed. The influences on surface and mechanical properties, surface morphology, thermal stability behavior, as well as chemical changes evolution of the coating were investigated. By attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), changes in the chemical properties of polyurea coatings before (PCB) and after 150 d (PCA) of aging were analyzed, and emphasis was given to the effect of aging on functional group change, the hydrogen bonding behavior, and phase separated morphology. The results displayed prominent chain scission during aging, such as N-H, C=O, and C-O-C and the hydrogen bonded urea carbonyl content showed a decrease trend. The relative content of soft and hard segments showed a significant change, which increased the degree of phase separation.
Collapse
Affiliation(s)
| | - Ping Lyu
- School of Civil Engineering, Qingdao university of technology, Qingdao 266033, China; (K.C.); (M.M.)
| | - Fei Wan
- School of Civil Engineering, Qingdao university of technology, Qingdao 266033, China; (K.C.); (M.M.)
| | | |
Collapse
|
9
|
Przekora A. Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations. Int J Mol Sci 2019; 20:E435. [PMID: 30669519 PMCID: PMC6359292 DOI: 10.3390/ijms20020435] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of engineering of biomaterials is to fabricate implantable biocompatible scaffold that would accelerate regeneration of the tissue and ideally protect the wound against biodevice-related infections, which may cause prolonged inflammation and biomaterial failure. To obtain antimicrobial and highly biocompatible scaffolds promoting cell adhesion and growth, materials scientists are still searching for novel modifications of biomaterials. This review presents current trends in the field of engineering of biomaterials concerning application of various modifications and biophysical stimulation of scaffolds to obtain implants allowing for fast regeneration process of bone and cartilage as well as providing long-lasting antimicrobial protection at the site of injury. The article describes metal ion and plasma modifications of biomaterials as well as post-surgery external stimulations of implants with ultrasound and magnetic field, providing accelerated regeneration process. Finally, the review summarizes recent findings concerning the use of piezoelectric biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, W. Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
10
|
Wang W, Wei Z, Sang L, Wang Y, Zhang J, Bian Y, Li Y. Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Komez A, Buyuksungur S, Hasirci V, Hasirci N. Effect of chemical structure on properties of polyurethanes: Temperature responsiveness and biocompatibility. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518783233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyurethanes are known as one of the most biocompatible and inherently blood-compatible materials and have a wide range of applications in the medical field due to their controllable structure and properties. Durability, elasticity, elastomeric structure, fatigue resistance, versatility, and easy acceptance by the biological media after the application makes these polymers preferable in medical area. In this study, polyurethane films were prepared using poly(propylene-ethylene glycol) and either toluene-2,4-diisocyanate or 4,4′-methylenediphenyl diisocyanate without adding any other ingredients such as solvent, catalyst, or chain extender to prevent negative effects of leachable molecules. Mechanical tests were performed at room temperature while swelling tests were conducted in water and phosphate-buffered saline at 4°C, 25°C, and 37°C. Temperature responsiveness was observed for the samples synthesized using toluene-2,4-diisocyanate and poly(propylene-ethylene glycol). These samples had more than 100% swelling at 4°C and about 4% swelling at 25°C and 37°C. Cytocompatibility tests were performed by culturing the samples and their extracts with mouse fibroblast cells (L929). Viability of human umbilical vein endothelial cells was studied to examine the compatibility of the films for blood contacting devices. Both toluene-2,4-diisocyanate and 4,4-methylenediphenyl diisocyanate–based polyurethane films showed no cytotoxic effect and good biocompatibility. Oxygen plasma treatment enhanced hydrophilicity of the films. After plasma treatment, human umbilical vein endothelial cell attachment on toluene-2,4-diisocyanate–based polyurethane films improved and 4,4-methylenediphenyl diisocyanate–based polyurethane films maintained their high cell affinity. Polyurethanes presenting temperature responsiveness, high biocompatibility, and high affinity for human umbilical vein endothelial cells were synthesized in medical purity and in a reaction media involving only diisocyanate and diol components without addition of any solvent, chain extender, or catalyst. Polyurethanes with these properties and as produced in this study are reported for the first time in the literature.
Collapse
Affiliation(s)
- Aylin Komez
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Buyuksungur
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
12
|
Liu H, Jiang Y, Tan W, Wang X. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment. MATERIALS 2017; 11:ma11010029. [PMID: 29278367 PMCID: PMC5793527 DOI: 10.3390/ma11010029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/16/2022]
Abstract
Due to their large compatibility difference, polyethylene (PE) and polyoxymethylene (POM) cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.
Collapse
Affiliation(s)
- Huixia Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yingjie Jiang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wensheng Tan
- Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing, Changzhou College of Information Technology, Changzhou 213164, China.
| | - Xiao Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|