1
|
Zhu C, Li Y, Hou T, Gu X, Li X, Sang L, Zhang J. A MPB-intensified tube microreactor system for continuous synthesis of Ag + doped CdS quantum dots. NANOSCALE 2025. [PMID: 40387585 DOI: 10.1039/d5nr01114k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Recent advances in microreactor technology have established these systems as promising platforms for colloidal nanocrystal synthesis. Nevertheless, the continuous production of high-quality doped quantum dots (QDs) with precise control over their optical properties continues to present significant technical challenge. This study introduces a micropacked bed (MPB) intensified tube microreactor system for the efficient and continuous synthesis of Ag+ doped CdS QDs (CdS:Ag+ doped-QDs). Through systematic optimization of reaction parameters, the MPB system achieved a photoluminescent quantum yield (PLQY) of 50.8% under optimized conditions (18 cm MPB filled with 2.0 mm glass beads, 0.2 mL min-1 flow rate, and 70 °C reaction temperature), and the yield increased to 64.6%. These results represent significant improvements over the traditional batch flask method (40% PLQY, 43.01% yield) and the microreactor method (43% PLQY, 48.41% yield). The developed MPB system demonstrates multiple operational advantages: reaction duration reduced to 30 minutes, simplified fluidic architecture requiring only two pumps (vs. three in conventional systems), and enhanced flow rate (0.2 mL min-1vs. 40 μL min-1). Production capacity analysis revealed 6-fold and 2.67-fold increases in CdS:Ag+ doped-QD output compared to the batch flask method and the microreactor method, respectively, per unit time. This continuous flow strategy establishes a viable pathway for industrial-scale synthesis of doped quantum dots with enhanced process efficiency and material quality.
Collapse
Affiliation(s)
- Chuwei Zhu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuxi Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaole Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Le Sang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Huang Z, Ren L. Large Scale Synthesis of Carbon Dots and Their Applications: A Review. Molecules 2025; 30:774. [PMID: 40005085 PMCID: PMC11857885 DOI: 10.3390/molecules30040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications.
Collapse
Affiliation(s)
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
3
|
Rao L, Sun B, Liu Y, Zhang Q, Zhong G, Wen M, Zhang J, Fu T, Niu X. Precise regulation of the multicolor spectrum of carbon dots based on the bionic leaf vein ultrasonic microreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106674. [PMID: 37924614 PMCID: PMC10656244 DOI: 10.1016/j.ultsonch.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Carbon dots (CDs) are a fascinating new type of fluorescent carbon nanomaterial with excellent photoelectric properties. However, preparing long-wavelength and multicolor-emitting CDs has been challenging, limiting their large-scale applications. Fortunately, a new efficient method has been proposed to co-regulate CDs' multicolor spectra using an ultrasonic microreactor. Inspired by plant leaves, a bionic vein microchannel was designed with good fluidity and high energy transfer efficiency. The optimal microchannel structural parameters were determined after investigating the effects of fractal angle, depth-to-width ratio, and inlet angle on the flow uniformity of the microchannel using numerical simulations. The efficiency of ultrasonic energy transfer was improved by directly coupling the microreactor and the sandwich transducer to fabricate the ultrasonic microreactor. Simulation results showed that the ultrasonic microreactor's vibration resonated along the longitudinal direction, and the ultrasonic intensity of the microreactor was maximal and uniform. A high-efficiency and controllable ultrasonic microreactor system was built to synthesize the CDs in situ. The influence of the ultrasound field intensity on CDs' preparation in a microreactor was simultaneously investigated to verify the ultrasound enhancement, and the PLQY of the high-performance CDs was found to be 83.1%. The CDs' multicolor spectra from the blue to the red region can be precisely tuned by adjusting key reaction parameters such as reaction temperature, flow rate, and precursor concentration. This new method shows promising applications in lighting, display, and other fields, making CDs a versatile and exciting new material to explore.
Collapse
Affiliation(s)
- Longshi Rao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Automotive Display and Touch Technologies, Shantou Ultrasonic Display Technology Co., Ltd., Shantou 515041, China.
| | - Bin Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yang Liu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Qing Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Guisheng Zhong
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China.
| | - Mingfu Wen
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Jiayang Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ting Fu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaodong Niu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
4
|
Supajaruwong S, Porahong S, Wibowo A, Yu YS, Khan MJ, Pongchaikul P, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Scaling-up of carbon dots hydrothermal synthesis from sugars in a continuous flow microreactor system for biomedical application as in vitro antimicrobial drug nanocarrier. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2260298. [PMID: 37859865 PMCID: PMC10583617 DOI: 10.1080/14686996.2023.2260298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.
Collapse
Affiliation(s)
- Siriboon Supajaruwong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Sirawich Porahong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Chen X, Yu M, Li P, Xu C, Zhang S, Wang Y, Xing X. Recent Progress on Chiral Carbon Dots: Synthetic Strategies and Biomedical Applications. ACS Biomater Sci Eng 2023; 9:5548-5566. [PMID: 37735749 DOI: 10.1021/acsbiomaterials.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The discovery of chiral carbon dots (Ch-CDs) has opened up an exciting new research direction in the field of carbon dots. It not only retains the chirality of the precursor and exhibits highly symmetric chiral optical properties but also has properties such as chemical stability, antibacterial and antitumor properties, and good biocompatibility of carbon dots. Based on these advantages, the application of Ch-CDs in the biomedical field has attracted significant interest among researchers. However, a comprehensive review of the selection of precursors for Ch-CDs, preparation methods, and applications in biomedical fields is still lacking. Here, we summarize their precursor selection and preparation methods based on recent reports on Ch-CDs and provide the first comprehensive review for specific applications in biomedical engineering, such as biosensing, bioimaging, drug carriers, antibacterial and antibiofilm, and enzyme activity modulation. Finally, we discuss application prospects and challenges that need to be overcome. We hope this review will provide valuable guidance for researchers to prepare novel Ch-CDs and facilitate their application in biomedical engineering.
Collapse
Affiliation(s)
- Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Chunning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiyin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanglei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Pascual-Esco A, Lleonart P, Calvo-López A, Alonso-Chamarro J, Puyol M. Live synthesis of selective carbon dots as fluorescent probes for cobalt determination in water with an automatic microanalyzer. Mikrochim Acta 2023; 190:400. [PMID: 37723255 PMCID: PMC10506924 DOI: 10.1007/s00604-023-05975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
A new strategy integrating the straight synthesis of carbon dots (CDs) and their direct use for the determination of heavy metals by means of fluorescence quenching is presented. The proposal consists of a modular analyzer, which includes a low temperature co-fired ceramics (LTCC) microreactor for the synthesis of CDs and a cyclic olefin copolymer (COC) microfluidic platform, which automatically performs a reverse flow injection analysis (rFIA) protocol for the determination of heavy metal ions in water by CD fluorescence quenching. As a proof of concept, nitrogen-doped CDs were synthesized from acrylic acid and ethylenediamine (ED) with quantum yields (QYs) of up to 44%, which are selective to cobalt. With the described system, we synthesized homogeneous CDs without the need for further purification and with the minimum consumption of reagents, and optimized fluorescence measurements can be performed with freshly obtained luminescent nanomaterials that have not undergone decomposition processes. They have an average hydrodynamic diameter of 4.2 ± 0.9 nm and maximum excitation and emission wavelengths at 358 nm and 452 nm, respectively. The system allows the automatic dilution and buffering of the synthesized CDs and the sample prior to the determination of cobalt. The concentration of cobalt was determined with good sensitivity and a limit of detection of 7 μg·L-1 with a linear range of 0.02-1 mg·L-1 of Co2+. Spiked tap water and river water samples were analyzed, obtaining recovery from 98 to 104%. This demonstrates the potential of the equipment as an efficient on-site control system for heavy metal monitoring in water.
Collapse
Affiliation(s)
- Alex Pascual-Esco
- Group of Sensors and Biosensors, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Carrer dels Til·lers s/n, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Pere Lleonart
- Group of Sensors and Biosensors, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Carrer dels Til·lers s/n, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Antonio Calvo-López
- Group of Sensors and Biosensors, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Carrer dels Til·lers s/n, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Julián Alonso-Chamarro
- Group of Sensors and Biosensors, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Carrer dels Til·lers s/n, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Mar Puyol
- Group of Sensors and Biosensors, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Carrer dels Til·lers s/n, Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
7
|
Uriarte D, Gómez N, Canals A, Domini C, Garrido M. On-line carbon dots synthesis using flow injection analysis. Application to aluminium determination in water samples. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
8
|
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A critical review on the environmental applications of carbon dots. CHEMOSPHERE 2023; 313:137308. [PMID: 36410502 DOI: 10.1016/j.chemosphere.2022.137308] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
9
|
Chen L, Wang CF, Liu C, Chen S. Facile Access to Fabricate Carbon Dots and Perspective of Large-Scale Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206671. [PMID: 36479832 DOI: 10.1002/smll.202206671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), fluorescent carbon nanoparticles with particle sizes < 10 nm, are constantly being developed for potential large-scale applications. Recently, methods allow CD synthesis to be carried out on large-scale preparation in a controlled fashion are potentially important for multiple disciplines, including bottom-up strategy, top-down method. In this review, the recent progresses in the research of the methods for large-scale production of CDs and their functionalization are summarized. Especially, the methods of CD synthesis, such as large-scale preparation, hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia microfluidic and other methods, along with functionalization of CDs, are summarized in detail. By promising applications of CDs, there are three aspects have been already reported, such as enhancing mechanical properties, flame retardancy, and energy storage. Also, future development of CDs is prospected.
Collapse
Affiliation(s)
- Lintao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
10
|
Rao L, Zhang Q, Sun B, Wen M, Zhang J, Zhong G, Fu T, Niu X. Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their Application in Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3132. [PMID: 36144918 PMCID: PMC9503501 DOI: 10.3390/nano12183132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Carbon dots (CDs) are attracting much interest due to their excellent photoelectric properties and wide range of potential applications. However, it is still a challenge to regulate their bandgap emissions to achieve full-color CDs with high emissions. Herein, we propose an approach for producing full-color emissive CDs by employing a solvent engineering strategy. By only tuning the volume ratio of water and dimethylformamide (H2O/DMF), the photoluminescence (PL) emission wavelengths of the CDs can be changed from 451 to 654 nm. Different fluorescence features of multicolor CDs were systematically investigated. XRD, SEM, TEM, Abs/PL/PLE, XPS, and PL decay lifetime characterizations provided conclusive evidence supporting the extent to which the solvent controlled the dehydration and carbonization processes of the precursors, leading to a variation in their emission color from red to blue. The as-prepared CDs exhibited excellent and stable fluorescence performance even after being heated at 80 °C for 48 h and with UV light continuously irradiated for 15 h. Based on their excellent fluorescent properties and photothermal stability, bright multicolor light-emitting diodes with a high CRI of up to 91 were obtained. We anticipate that these full-color emissive CDs are beneficial for applications in lighting, display, and other fields.
Collapse
Affiliation(s)
- Longshi Rao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Qing Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Bin Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Mingfu Wen
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Jiayang Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Guisheng Zhong
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ting Fu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaodong Niu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
11
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
12
|
Lin L, Xia Y, Wen H, Lu W, Li Z, Xu H, Zhou J. Green and continuous microflow synthesis of fluorescent carbon quantum dots for bio‐imaging application. AIChE J 2022. [DOI: 10.1002/aic.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liangliang Lin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Yuan Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongyu Wen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wentong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Ziyang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hujun Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Juan Zhou
- School of Life Sciences and Health Engineering Jiangnan University Wuxi China
| |
Collapse
|
13
|
Continuous synthesis of TiO2-supported noble metal nanoparticles and their application in ammonia borane hydrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Carbon quantum dots with green fluorescence as a probe for detecting uric acid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02071-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
|
16
|
Yuan H, Ren T, Luo Q, Huang Y, Huang Y, Xu D, Guo X, Li X, Wu Y. Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126166. [PMID: 34492942 DOI: 10.1016/j.jhazmat.2021.126166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution is one of the primary challenges of water pollution, and the fabrication of highly effective, green and non-toxic adsorbents for heavy metals is urgently required on the basis of environmental and sustainable development strategies. Here, we report a novel fluorescent wood (FW) with effective adsorption ability (maximum theoretical adsorption capacity of 98.14 mg/g for hexavalent chromium [Cr(VI)]), good fluorescence properties (absolute quantum yield of 12.8%), non-cytotoxicity (cell viability of >90%) and high detection sensitivity and selectivity for Cr(VI). The FW was formed using a process involving delignification, infiltration with carbon dots, and free-radical polymerization with acrylic acid. Mechanistic analysis confirmed that the reconstructed 3D porous structure of the FW provided many effective sorption sites, such as amino, hydroxyl and carboxyl groups. This improved the adsorption ability and stabilized the fluorescence signal, which enhanced the detection ability. These factors give the novel FW considerable potential for use in the removal of Cr(VI) ions from wastewater.
Collapse
Affiliation(s)
- Hanmeng Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tingting Ren
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiuyan Luo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yifeng Huang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dong Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xianjun Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
17
|
Li Y, Wang YQ, Liu D, Gao Y, Wang SN, Qiu H. Dual-Emission Ratiometric Fluorescent Probe Based on Lanthanide-Functionalized Carbon Quantum Dots for White Light Emission and Chemical Sensing. ACS OMEGA 2021; 6:14629-14638. [PMID: 34124486 PMCID: PMC8190926 DOI: 10.1021/acsomega.1c01745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)3/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)3/Tb(TFA)3 under different wavelengths. More significantly, FCQDs-Tb(TFA)3 was selected as a sensitive probe for sensing metal cations due to excellent photoluminescence properties, revealing a unique capability of FCQDs-Tb(TFA)3 of detecting Fe(III) cations with high efficiency and selectivity. Furthermore, the sensing experiment results indicated that FCQDs-Tb(TFA)3 is ideal as a fluorescent nanoprobe for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.158 μM, which is superior to many other previous related research studies. This pioneering work provides a new idea and method for constructing a dual-emission ratio sensor based on carbon quantum dots and also extends the potential application in the biological and environmental fields.
Collapse
|
18
|
Rahal M, Atassi Y, Alghoraibi I. Quenching photoluminescence of Carbon Quantum Dots for detecting and tracking the release of Minocycline. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Cheng Y, Ling SD, Geng Y, Wang Y, Xu J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. NANOSCALE ADVANCES 2021; 3:2180-2195. [PMID: 36133767 PMCID: PMC9417800 DOI: 10.1039/d0na00933d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.
Collapse
Affiliation(s)
- Yu Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Si Da Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuhao Geng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yundong Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Process Intensification Approach Using Microreactors for Synthesizing Nanomaterials-A Critical Review. NANOMATERIALS 2021; 11:nano11010098. [PMID: 33406661 PMCID: PMC7823899 DOI: 10.3390/nano11010098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials have found many applications due to their unique properties such as high surface-to-volume ratio, density, strength, and many more. This review focuses on the recent developments on the synthesis of nanomaterials using process intensification. The review covers the designing of microreactors, design principles, and fundamental mechanisms involved in process intensification using microreactors for synthesizing nanomaterials. The microfluidics technology operates in continuous mode as well as the segmented flow of gas–liquid combinations. Various examples from the literature are discussed in detail highlighting the advantages and disadvantages of microfluidics technology for nanomaterial synthesis.
Collapse
|
21
|
Du X, Wang C, Wu G, Chen S. The Rapid and Large‐Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiang‐Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
22
|
Du XY, Wang CF, Wu G, Chen S. The Rapid and Large-Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angew Chem Int Ed Engl 2020; 60:8585-8595. [PMID: 32410267 DOI: 10.1002/anie.202004109] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Carbon quantum dots (CDs) have inspired vast interest because of their excellent photoluminescence (PL) performances and their promising applications in optoelectronic, biomedical, and sensing fields. The development of effective approaches for the large-scale production of CDs may greatly promote the further advancement of their practical applications. In this Minireview, the newly emerging methods for the large-scale production of CDs are summarized, such as microwave, ultrasonic, plasma, magnetic hyperthermia, and microfluidic techniques. The use of the available strategies for constructing CD/polymer composites with intriguing solid-state PL is then described. Particularly, the multiple roles of CDs are emphasized, including as fillers, monomers, and initiators. Moreover, typical applications of CD/polymer composites in light-emitting diodes, fluorescent printing, and biomedicine are outlined. Finally, we discuss current problems and speculate on their future development.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
23
|
Li GX, Li Q, Cheng R, Chen S. Synthesis of quantum dots based on microfluidic technology. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Khater A, Abdelrehim O, Mohammadi M, Azarmanesh M, Janmaleki M, Salahandish R, Mohamad A, Sanati-Nezhad A. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches. LAB ON A CHIP 2020; 20:2175-2187. [PMID: 32420570 DOI: 10.1039/d0lc00300j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (φ: 0.1 to 1). The numerical simulations show that φ and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Collapse
Affiliation(s)
- Asmaa Khater
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Zhang Y, Xue Y, Lu S, Yang H, Yang L, Ding C, Yu S. Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS OMEGA 2020; 5:8219-8229. [PMID: 32309732 PMCID: PMC7161025 DOI: 10.1021/acsomega.0c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) have attracted tremendous attention for their outstanding advantages in luminescence. Here, α-amino-substituted lysine derivatives with the determined chemical structure were employed as precursors to obtain bright and highly stable fluorescent CDs through a facile hydrothermal route. The relationships among the chemical structure of precursors, CD fluorescence, and particle size were investigated. The results indicated that increased numbers of functional groups in precursors could promote the degree of cross-linking and lead to a smaller size, better fluorescent properties, and stronger stability of CDs. The C-CDs that were prepared from lysine derivatives with most functional groups showed excitation-dependent dual excitation and dual emission (DE2), high-stability luminescence, strong resistance to photobleaching, and high selectivity to Fe3+ and could be used as a sensitive probe for Fe3+ detection.
Collapse
Affiliation(s)
- Shouning Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanmin Zhang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuyan Xue
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sijia Lu
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huayan Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Henan Key Laboratory of Green Chemical Media and Reactions,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanfan Ding
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Institute
of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
26
|
Sui J, Yan J, Liu D, Wang K, Luo G. Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902828. [PMID: 31755221 DOI: 10.1002/smll.201902828] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Indexed: 05/28/2023]
Abstract
Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.
Collapse
Affiliation(s)
- Jinsong Sui
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyu Yan
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Di Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Xu J, Wang C, Li H, Zhao W. Synthesis of green-emitting carbon quantum dots with double carbon sources and their application as a fluorescent probe for selective detection of Cu 2+ ions. RSC Adv 2020; 10:2536-2544. [PMID: 35496106 PMCID: PMC9048819 DOI: 10.1039/c9ra08654d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/28/2022] Open
Abstract
Green-emitting carbon quantum dots (G-CQDs) were prepared using tartaric acid and bran by one-pot solvothermal treatment and had photoluminescence quantum yields (PL QY) as high as 46%. The morphology of the G-CQDs is characterized by TEM, which shows the average diameter of G-CQDs is approximately ∼4.85 nm. The FT-IR spectra display the presence of -OH, C-N, N-H and -COOH on the surface of the G-CQDs. The emission wavelength of the G-CQDs was ∼539 nm in the case of ∼450 nm excitation wavelength, which corresponds to the green fluorescence. Furthermore, the G-CQDs were used as a fluorescent probe for detection Cu2+ ions, and demonstrated a linear distribution between ln(F/F 0) and the Cu2+ ions concentration. Specifically, the Cu2+ ion concentration should fall in the G-CQD concentration range of 0-0.5 mM and the detection limit is 0.0507 μM. Thus, due to the excellent chemical stability and good luminescence performance, these G-CQDs could be excellent probes widely used in detection fields.
Collapse
Affiliation(s)
- Jun Xu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Congling Wang
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Huizhi Li
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Weilin Zhao
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| |
Collapse
|
28
|
Tammina SK, Wan Y, Li Y, Yang Y. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111734. [DOI: 10.1016/j.jphotobiol.2019.111734] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
|
29
|
Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111817] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Arvapalli DM, Sheardy AT, Alapati KC, Wei J. High Quantum Yield Fluorescent Carbon Nanodots for detection of Fe (III) Ions and Electrochemical Study of Quenching Mechanism. Talanta 2019; 209:120538. [PMID: 31892023 DOI: 10.1016/j.talanta.2019.120538] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
Abstract
Carbon nanodots (CNDs) offer potential applications in photocatalysis, optoelectronics, bio-imaging, and sensing due to their excellent photoluminescence (PL) properties, biocompatibility, aqueous solubility, and easy functionalization. Recent emphasis on CNDs in the selective detection of metal ions is due to the growing concern for human and environmental safety. In this work, two types of fluorescent carbon nanodots (CNDs) are synthesized economically from ethylene diamine (E-CNDs) or urea (U-CNDs) in a single step microwave process. The as-prepared CNDs exhibit excellent PL at an excitation wavelength of 350 nm with a quantum yield of 64% for E-CNDs and 8.4% for U-CNDs with reference to quinine sulfate. Both E-CNDs and U-CNDs demonstrate high selectivity towards Fe (III) ions among different metal ions, by fluorescence quenching in a dose dependent manner. The limit of detection of E-CNDs and U-CNDs is observed to be 18 nM and 30 nM, respectively, in the linear response range of 0-2000 μM with a short response time (seconds). The CNDs detect Fe (III) ions in tap water and serum sample with no spiking and the recovery was ~100% with the Fe (III) samples. Cellular internalization studies confirm the localization of the CNDs and the optical imaging sensing of Fe (III) ions inside living cells. A charge transfer fluorescence quenching mechanism, specifically between the CNDs and Fe (III), is proposed and examined using cyclic voltammetry. The overall characteristics of the E-CNDs provides a potential sensing platform in highly sensitive and selective detection of Fe (III) ions.
Collapse
Affiliation(s)
- Durga M Arvapalli
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Alex T Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Kalyan C Alapati
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
| |
Collapse
|
31
|
Tammina SK, Yang D, Li X, Koppala S, Yang Y. High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe 3+ ions and temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117141. [PMID: 31247390 DOI: 10.1016/j.saa.2019.117141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
High photoluminescent quantum yield carbon nanomaterials doped with heteroatoms are of profound attention in various fields like bio-imaging, chemical sensors and electronics. Among all heteroatoms, zinc is one of the low toxic significant elements and also involves in various electron-transfer processes. These properties are added advantages to utilize zinc as a dopant in CDs synthesis. In this investigation, our group reports a one-step microwave digestion method to synthesize nitrogen and Zinc doped carbon dots (N, Zn-CDs). The optical properties of N, Zn-CDs were investigated using UV-Vis and fluorescence spectrophotometry and also the N, Zn-CDs structural features were studied with other characterization tools like XPS, TEM, EDX, FTIR and XRD. N, Zn-CDs inherent the appreciable photoluminescent quantum yields about 63.28%. And the synthesized N, Zn-CDs utilized for detection of Fe3+ and temperature. The observed results are promising and exhibited the detection limit of 0.027 μM. Also, the proposed sensing system was successfully adopted for the detection of Fe3+ in the river and circulating water samples for the practical applications and satisfactory results are observed. The current synthesis methodology and sensing potential might open up a new prospect to develop potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Xiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Sivasankar Koppala
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yaling Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
32
|
Cheng C, Xing M, Wu Q. A universal facile synthesis of nitrogen and sulfur co-doped carbon dots from cellulose-based biowaste for fluorescent detection of Fe3+ ions and intracellular bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:611-619. [DOI: 10.1016/j.msec.2019.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
|
33
|
Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions. Mikrochim Acta 2018; 186:32. [DOI: 10.1007/s00604-018-3140-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/01/2018] [Indexed: 01/20/2023]
|
34
|
Rao L, Tang Y, Lu H, Yu S, Ding X, Xu K, Li Z, Zhang JZ. Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg 2+ Detection. NANOMATERIALS 2018; 8:nano8110900. [PMID: 30400227 PMCID: PMC6265737 DOI: 10.3390/nano8110900] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 01/30/2023]
Abstract
We developed a microreactor with porous copper fibers for synthesizing nitrogen-doped carbon dots (N-CDs) with a high stability and photoluminescence (PL) quantum yield (QY). By optimizing synthesis conditions, including the reaction temperature, flow rate, ethylenediamine dosage, and porosity of copper fibers, the N-CDs with a high PL QY of 73% were achieved. The PL QY of N-CDs was two times higher with copper fibers than without. The interrelations between the copper fibers with different porosities and the N-CDs were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrate that the elemental contents and surface functional groups of N-CDs are significantly influenced by the porosity of copper fibers. The N-CDs can be used to effectively and selectively detect Hg2+ ions with a good linear response in the 0~50 μM Hg2+ ions concentration range, and the lowest limit of detection (LOD) is 2.54 nM, suggesting that the N-CDs have great potential for applications in the fields of environmental and hazard detection. Further studies reveal that the different d orbital energy levels of Hg2+ compared to those of other metal ions can affect the efficiency of electron transfer and thereby result in their different response in fluorescence quenching towards N-CDs.
Collapse
Affiliation(s)
- Longshi Rao
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Yong Tang
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hanguang Lu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shudong Yu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany.
| | - Xinrui Ding
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ke Xu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
- Department of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Zongtao Li
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
35
|
Lu X, Liu C, Wang Z, Yang J, Xu M, Dong J, Wang P, Gu J, Cao F. Nitrogen-Doped Carbon Nanoparticles Derived from Silkworm Excrement as On⁻Off⁻On Fluorescent Sensors to Detect Fe(III) and Biothiols. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E443. [PMID: 29914212 PMCID: PMC6027355 DOI: 10.3390/nano8060443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
Abstract
On⁻off⁻on fluorescent sensors based on emerging carbon nanoparticles (CNPs) or carbon dots (CDs) have attracted extensive attention for their convenience and efficiency. In this study, dumped silkworm excrement was used as a novel precursor to prepare fluorescent nitrogen-doped CNPs (N-CNPs) through hydrothermal treatment. The obtained N-CNPs showed good photoluminescent properties and excellent water dispersibility. Thus, they were applied as fluorescence “on⁻off⁻on” probes for the detection of Fe(III) and biothiols. The “on⁻off” process was achieved by adding Fe(III) into N-CNP solution, which resulted in the selective fluorescence quenching, with the detection limit of 0.20 μM in the linear range of 1⁻500 μM. Following this, the introduction of biothiols could recover the fluorescence efficiently, in order to realize the “off⁻on” process. By using glutathione (GSH) as the representative, the linear range was in the range of 1⁻1000 μM, and the limit of detection was 0.13 μM. Moreover, this useful strategy was successfully applied for the determination of amounts of GSH in fetal calf serum samples.
Collapse
Affiliation(s)
- Xingchang Lu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhimin Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junyi Yang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengjing Xu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun Dong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ping Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiangjiang Gu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Feifei Cao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Tang Y, Lu H, Rao L, Li Z, Ding X, Yan C, Yu B. Regulating the Emission Spectrum of CsPbBr₃ from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E371. [PMID: 29498710 PMCID: PMC5872950 DOI: 10.3390/ma11030371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022]
Abstract
The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr₃ QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr₃ QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr₃ QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr₃ QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc.
Collapse
Affiliation(s)
- Yong Tang
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hanguang Lu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Longshi Rao
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zongtao Li
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xinrui Ding
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
| | - Caiman Yan
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Binhai Yu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
37
|
Murugan N, Sundramoorthy AK. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj01894d] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots were derived from Borassus flabellifer flowers by thermal pyrolysis method and used for label-free highly selective and sensitive detection of Fe3+ ions.
Collapse
Affiliation(s)
- N. Murugan
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
- SRM Research Institute
| | - Ashok K. Sundramoorthy
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
- SRM Research Institute
| |
Collapse
|