1
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
2
|
Olawumi MA, Oladapo BI, Olugbade TO, Omigbodun FT, Olawade DB. AI-Driven Data Analysis of Quantifying Environmental Impact and Efficiency of Shape Memory Polymers. Biomimetics (Basel) 2024; 9:490. [PMID: 39194469 DOI: 10.3390/biomimetics9080490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
This research investigates the environmental sustainability and biomedical applications of shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The objectives include comparing the carbon footprint, embodied energy, and water consumption of SMPs with traditional materials such as metals and conventional polymers and evaluating their potential in medical implants, drug delivery systems, and tissue engineering. The methodology involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable insights into the environmental and functional performance of SMPs. Thermomechanical modeling, phase transformation kinetics, and heat transfer analyses are employed to understand the behavior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably lower environmental impacts than traditional materials, reducing greenhouse gas emissions by approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers also demonstrate superior functionality and adaptability in biomedical applications due to their ability to change shape in response to external stimuli. The study concludes that SMPs are promising sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize healthcare manufacturing processes and product life cycles, promoting sustainable and efficient medical practices.
Collapse
Affiliation(s)
- Mattew A Olawumi
- Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK
| | - Bankole I Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | | | - Francis T Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| |
Collapse
|
3
|
Massijaya SY, Lubis MAR, Nissa RC, Nurhamiyah Y, Kusumaningrum WB, Marlina R, Ningrum RS, Sutiawan J, Hidayat I, Kusumah SS, Karlinasari L, Hartono R. Thermal Properties' Enhancement of PLA-Starch-Based Polymer Composite Using Sucrose. Polymers (Basel) 2024; 16:1028. [PMID: 38674948 PMCID: PMC11053613 DOI: 10.3390/polym16081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Polylactic-acid-starch-based polymer composite (PLA/TPS) has good thermal stability for biocomposites. However, the physical and mechanical properties of PLA/TPS do not meet the standards. It needed additives to enhance its physical and mechanical properties. The aim was to improve the physical and mechanical properties of PLA/thermoplastic starch using sucrose. In addition, this study evaluated the enhancement of thermal properties of PLA/thermoplastic starch using sucrose. This study used sucrose as an additive to enhance the PLA/TPS composite. The addition of sucrose inhibits the degradation of biocomposites. This means that thermal stability increases. The thermal stability increased because the degree of crystallinity increased with the addition of sucrose, which was also proven in the XRD result. The addition of sucrose caused the morphology of the biocomposite to have pores. The FESEM results showed that biocomposites with the addition of sucrose had pores and gaps. These gaps result from low adhesion between polymers, causing a decrease in the mechanical and physical properties of the sample. Based on the FTIR spectra, biocomposite PLA/TPS blends with the addition of sucrose still have many hydroxyl groups that will lead to attracting other molecules or ions, such as oxygen or water. This phenomenon affects the physical and mechanical properties of materials. The physical and mechanical properties increased with sucrose addition. The best composite was prepared using 3% sucrose. This is because sucrose has a crystalline structure that affects the properties of biocomposites. However, the addition of 3% sucrose was not as effective as that of neat PLA.
Collapse
Affiliation(s)
- Sri Yustikasari Massijaya
- Forest Products Department, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (S.Y.M.); (L.K.)
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Rossy Choerun Nissa
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Yeyen Nurhamiyah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Wida Banar Kusumaningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Resti Marlina
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Riska Surya Ningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Jajang Sutiawan
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Iman Hidayat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Sukma Surya Kusumah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia; (M.A.R.L.); (R.C.N.); (Y.N.); (W.B.K.); (R.M.); (R.S.N.); (J.S.); (I.H.); (S.S.K.)
| | - Lina Karlinasari
- Forest Products Department, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia; (S.Y.M.); (L.K.)
| | - Rudi Hartono
- Forest Products Department, Faculty of Forestry, Universitas Sumatera Utara, Medan 20353, Indonesia
| |
Collapse
|
4
|
Cadete MS, Gomes TE, Gonçalves I, Neto V. Controlling Morphing Behavior in 4D Printing: A Review About Microstructure and Macrostructure Changes in Polylactic Acid. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1455-1466. [PMID: 38116230 PMCID: PMC10726180 DOI: 10.1089/3dp.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Four-dimensional (4D) printing combines stimulus-responsive materials with additive manufacturing (AM) technologies. This new concept of printing three-dimensional (3D) objects opens the possibility for solving processing issues, through the production of complex geometries that can undergo programmed temporal changes in response to external stimuli. However, as 4D technology emerges from AM, various challenges still need to be explored, such as the controlled morphing effect. Understanding the aspects related to this behavior, both at the macroscopic level of the structure and at the microscopic level of the polymeric chain, is fundamental. Focused on thermoplastic poly(lactic acid) (PLA) printed by fused deposition modeling, this review addressed the influence of molecular weight, polymeric chain modifications, and 3D printing parameters on the shape change effect of a PLA-based material. The glass transition temperature proved to be a highly important parameter, which can be modified by molecular weight changes. Nozzle temperature, fill density, print patterns, and raster angle are 3D printing parameters that influence the material shape change. Shape recovery is highly dependent on the recovery temperature. Potential applications for shape memory structures are also addressed in this review.
Collapse
Affiliation(s)
- Mylene S. Cadete
- Department of Mechanical Engineering, Center for Mechanical Technology and Automation (TEMA), University of Aveiro, Aveiro, Portugal
| | - Tiago E.P. Gomes
- Department of Mechanical Engineering, Center for Mechanical Technology and Automation (TEMA), University of Aveiro, Aveiro, Portugal
| | - Idalina Gonçalves
- Department of Materials and Ceramic Engineering, Aveiro Institute of Materials (CICECO), University of Aveiro, Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering, Center for Mechanical Technology and Automation (TEMA), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Yang FT, Chen YM, Rwei SP. Influence of Cross-Linking and Crystalline Morphology on the Shape-Memory Properties of PET/PEN/PCL Copolyesters Using Trimesic Acid and Glycerol. Polymers (Basel) 2023; 15:polym15092082. [PMID: 37177229 PMCID: PMC10180854 DOI: 10.3390/polym15092082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
PCL-based biodegradable shape-memory polymers (SMPs) are limited in strength, which restricts their practical applications. In this study, a series of novel SMPs, composed of poly(ethylene terephthalate) (PET), poly(ethylene naphthalate) (PEN), and poly(ε-caprolactone) (PCL), were synthesized and cross-linked using planar (benzene-1,3,5-tricarboxylic acid, BTC) or non-planar (glycerol, GC) cross-linkers via the one-pot method. The influence of different kinds of cross-linkers and hard segments of copolyesters on the thermal properties, crystallization behavior, mechanical properties, shape-memory performance, and degradability was investigated by FT-IR, 1H-NMR, DSC, DMA, TGA, XRD, tensile test, intrinsic viscosity measurement, and in vitro enzymatic degradation test. The results indicate that the tensile strength of the copolyester can be significantly improved from 27.8 to 53.2 MPa by partially replacing PET with PEN while maintaining its shape-memory characteristics. Moreover, a small amount of cross-linking modification leads to higher temperature sensitivity, improved shape recovery rate at third round (Rr(3) = 99.1%), and biodegradability in the cross-linked PET/PEN/PCL shape-memory polymers. By changing the crystallization morphology and cross-linking forms of the material, we have developed a shape-memory polymer with both high strength and a high shape recovery rate, which provides a new strategy for the development of shape-memory materials.
Collapse
Affiliation(s)
- Fu-Ting Yang
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan
| | - Yu-Ming Chen
- Taiwan Textile Research Institute, No. 6, Chengtian Road, Tucheng Dist., New Taipei City 23674, Taiwan
| | - Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan
- Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan
| |
Collapse
|
6
|
Functional polyesters via ring-opening copolymerization of α–hydroxy–γ–butyrolactone and ε-caprolactone: La[N(SiMe3)2]3 as an efficient coordination-insertion catalyst. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Immobilization of chalcone chemosensor into plasma-pretreated recycled polyester fibers toward multi-stimuli responsive textiles for detection of ammonia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Fabrication and examination of polyorganophosphazene/polycaprolactone-based scaffold with degradation, in vitro and in vivo behaviors suitable for tissue engineering applications. Sci Rep 2022; 12:18407. [PMID: 36319793 PMCID: PMC9626536 DOI: 10.1038/s41598-022-18632-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to synthesis a proper scaffold consisting of hydroxylated polyphosphazene and polycaprolactone (PCL), focusing on its potential use in tissue engineering applications. The first grafting of PCL to poly(propylene glycol)phosphazene (PPGP) was performed via ROP of ε-caprolactone, whereas PPGP act as a multisite macroinitiator. The prepared poly(propylene glycol phosphazene)-graft-polycaprolactone (PPGP-g-PCL) were evaluated by essential tests, including NMR, FTIR, FESEM-EDS, TGA, DSC and contact angle measurement. The quantum calculations were performed to investigate molecular geometry and its energy, and HOMO and LUMO of PPGP-g-PCL in Materials Studio2017. MD simulations were applied to describe the interaction of the polymer on phospholipid membrane (POPC128b) in Material Studio2017. The C2C12 and L929 cells were used to probe the cell-surface interactions on synthetic polymers surfaces. Cells adhesion and proliferation onto scaffolds were evaluated using FESEM and MTT assay. In vitro analysis indicated enhanced cell adhesion, high proliferation rate, and excellent viability on scaffolds for both cell types. The polymer was further tested via intraperitoneal implantation in mice that showed no evidence of adverse inflammation and necrosis at the site of the scaffold implantation; in return, osteogenesis, new-formed bone and in vivo degradation of the scaffold were observed. Herein, in vitro and in vivo assessments confirm PPGP-g-PCL, as an appropriate scaffold for tissue engineering applications.
Collapse
|
9
|
Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Xiao X, Panahi-Sarmad M, Xu R, Wang A, Cao S, Zhang K, Kamkar M, Noroozi M. Aerogels with shape memory ability: Are they practical? —A mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Leonés A, Peponi L, Fiori S, Lieblich M. Effect of the Addition of MgO Nanoparticles on the Thermally-Activated Shape Memory Behavior of Plasticized PLA Electrospun Fibers. Polymers (Basel) 2022; 14:polym14132657. [PMID: 35808702 PMCID: PMC9268919 DOI: 10.3390/polym14132657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the thermally-activated shape memory behavior of poly(lactic acid)-based electrospun fibers (PLA-based efibers) reinforced with different amounts of magnesium oxide (MgO) nanoparticles (NPs) was studied at different temperatures. In particular, MgO NPs were added at different concentrations, such as 0.1, 0.5, 1 and 3 wt%, with respect to the PLA matrix. The glass-transition temperature of PLA-based efibers was modulated by adding a 20 wt% of oligomer lactic acid as plasticizer. Once the plasticized PLA-based efibers were obtained and basically characterized in term of morphology as well as thermal and mechanical properties, thermo-mechanical cycles were carried out at 60 °C and 45 °C in order to study their thermally-activated shape memory response, demonstrating that their crystalline nature strongly affects their shape memory behavior. Importantly, we found that the plastificant effect in the mechanical response of the reinforced plasticized PLA efibers is balanced with the reinforcing effect of the MgO NPs, obtaining the same mechanical response of neat PLA fibers. Finally, both the strain recovery and strain fixity ratios of each of the plasticized PLA-based efibers were calculated, obtaining excellent thermally-activated shape memory response at 45 °C, demonstrating that 1 wt% MgO nanoparticles was the best concentration for the plasticized system.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
12
|
Wei J, Qu R, Wang Y, Liu L, Yang J, Xu H, Hu X, Song X. A medicated shape memory composite of grafting tannin/poly(l-lactide). Int J Biol Macromol 2022; 209:1586-1592. [PMID: 35427641 DOI: 10.1016/j.ijbiomac.2022.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/05/2022]
Abstract
Establishing drug release from shape memory polymers (SMPs) for biomedical applications will broaden the horizon of SMP applications from commercial medical device to scientific drug delivery system. Therefore, a strategy combining degradable SMP with drug release is put forward. However, there are few reports about the relevance between them so far. In the work, incorporations of three grafting tannins (TA) as switching phase into poly (l-lactide)(PLLA) construct different thermoresponsive SM composites. TA-PCL-COOH/PLLA exhibites good shape fixation (Rf) and recovery rate (Rr) at 55 °C, and its recovery time is 75 s. After loading lipophilic drug, SM capability of medicated TA-PCL-COOH/PLLA enhances, the Rf and Rr are 97.8% and 97.2%, in particular, its recovery time decreases to 32 s. The effect of SM on drug release is explored. After the first round of SM, the drug release accelerates obviously at body temperature; for example, the release amount of drug increases from 46.5% to 66.1% at initial 12 h due to change of microstructure and improvement of wettability. The drug release rate climbs only slightly as the SM round increases.
Collapse
Affiliation(s)
- Junge Wei
- School of Chemical Engineering, Changchun University of Technology, China
| | - Rui Qu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yanhe Wang
- Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China
| | - Lei Liu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Jie Yang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Huidi Xu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaohong Hu
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China.
| |
Collapse
|
13
|
Al-Qahtani S, Alshareef M, Aljohani M, Alhasani M, Felaly R, Habeebullah TM, El-Metwaly NM. Simple Preparation of Photoluminescent and Color-Tunable Polyester Resin Blended with Alkaline-Earth-Activated Aluminate Nanoparticles. ACS OMEGA 2022; 7:10599-10607. [PMID: 35382282 PMCID: PMC8973151 DOI: 10.1021/acsomega.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
A simple inorganic/organic nanocomposite was used to generate long-lasting phosphorescent pebbles for easy commercial manufacturing of smart products. An organic/inorganic nanocomposite was made from low-molecular-weight unsaturated polyester and rare-earth-activated strontium aluminum oxide nanoparticles doped with europium and dysprosium. The polyester resin was mixed with phosphorescent strontium aluminate oxide nanoparticles and methylethyl ketone peroxide as a cross-linking agent to create a viscous mixture that can be hardened in a few minutes at room temperature. Before adding the hardener catalyst, the phosphorescent strontium aluminate nanoparticles were dispersed throughout the polyester resin in a homogeneous manner to ensure that the pigment did not accumulate. Long-lasting, reversible luminescence was shown by the photoluminescent substrates. The emission was reported at 515 nm upon exciting the pebble at 365 nm. In normal visible light, both blank and luminescent pebbles had a translucent appearance. As a result of UV irradiation, the photoluminescent pebbles produced an intense green color. The three-dimensional CIE Lab (International Commission on Illumination) color coordinates and luminescence spectra were used to investigate the color changing characteristics. Photophysical characteristics, including excitation, emission, and lifetime, were also investigated. Scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectroscopy, and energy-dispersive X-ray analysis were employed to report the surface morphologies and elemental content. Without impairing the pebbles' original physico-mechanical characteristics, the pebbles showed improved superhydrophobic activity. The current simple colorless long-lasting phosphorescent nanocomposite can be applied to a variety of surfaces, like ceramics, glassware, tiles, and metals.
Collapse
Affiliation(s)
- Salhah
D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia
| | - Meshari Aljohani
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mona Alhasani
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia
| | - Rasha Felaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia
| | - Turki M. Habeebullah
- Department
of Environment and Health Research, Custodian of Two Holy Mosques
Institute for Hajj and Umrah Research, Umm
Al Qura University, Makkah 21955, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Dakahlia 35516, Egypt
- ,
| |
Collapse
|
14
|
Sun WJ, Guan Y, Wang YY, Wang T, Xu YT, Kong WW, Jia LC, Yan DX, Li ZM. Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43449-43457. [PMID: 34472846 DOI: 10.1021/acsami.1c14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composites based on a shape-memory polymer doped with conductive particles are considered as soft actuators for artificial muscles and robots. Low-voltage actuating is expected to reduce equipment requirement and safety hazards, which requires a highly conductive particle content but weakens the reversible deformation. The spatial distribution of the conductive particle is key to decreasing the actuating voltage and maintaining the reversible deformation. Herein, an approach of fabricating a low-voltage actuator that can perform various biomimetic locomotions by spraying and hot pressing is reported. Carbon nanotubes (CNTs) are enriched inside the surface layer of poly(ethylene-co-vinyl acetate) (EVA) to form a high-density conductive network without degradation of the reversible deformation. The bilayer CNT/EVA actuator exhibits a reversible transformation of more than 10% even with 100 cycles, which requires an applied voltage of just 15 V. Taking advantage of the reprogrammability of the CNT/EVA actuator and reversible shift between the different shapes, different biomimetic locomotions (sample actuator, gripper, and walking robot) are demonstrated without any additional mechanical components. A scheme combining the electrical properties and the shape-memory effect provides a versatile strategy to fabricate low-voltage-actuated polymeric actuators, providing inspiration in the development of electrical soft actuators and biomimetic devices.
Collapse
Affiliation(s)
- Wen-Jin Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Guan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yue-Yi Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ying-Te Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Wei Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Taung Mai LL, Aung MM, Muhamad Saidi SA, H’ng PS, Rayung M, Jaafar AM. Non Edible Oil-Based Epoxy Resins from Jatropha Oil and Their Shape Memory Behaviors. Polymers (Basel) 2021; 13:polym13132177. [PMID: 34209121 PMCID: PMC8271732 DOI: 10.3390/polym13132177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
The use of bio-based polymers in place of conventional polymers gives positives effects in the sense of reduction of environmental impacts and the offsetting of petroleum consumption. As such, in this study, jatropha oil was used to prepare epoxidized jatropha oil (EJO) by the epoxidation method. The EJO was used to prepare a shape memory polymer (SMP) by mixing it with the curing agent 4-methylhexahydrophthalic anhydride (MHPA) and a tetraethylammonium bromide (TEAB) catalyst. The resulting bio-based polymer is slightly transparent and brown in color. It has soft and flexible properties resulting from the aliphatic chain in jatropha oil. The functionality of SMP was analyzed by Fourier transform infrared (FTIR) spectroscopy analysis. The thermal behavior of the SMP was measured by thermogravimetric analysis (TGA), and it showed that the samples were thermally stable up to 150 °C. Moreover, the glass transition temperature characteristic was obtained using differential scanning calorimetry (DSC) analysis. The shape memory recovery behavior was investigated. Overall, EJO/MHPA was prepared by a relatively simple method and showed good shape recovery properties.
Collapse
Affiliation(s)
- Lu Lu Taung Mai
- Higher Education Centre of Excellence (HiCoE), Institute of Tropical Forestry and Forest Products, University Putra Malaysia, Serdang 43400, Malaysia; (L.L.T.M.); (M.R.)
- Department of Chemistry, Universiry of Myitkyina, Kachine State 01011, Myanmar
| | - Min Min Aung
- Higher Education Centre of Excellence (HiCoE), Institute of Tropical Forestry and Forest Products, University Putra Malaysia, Serdang 43400, Malaysia; (L.L.T.M.); (M.R.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.M.S.); (A.M.J.)
- Chemistry Division, Centre of Foundation Studies for Agricultural Science, University Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (M.M.A.); (P.S.H.)
| | - Sarah Anis Muhamad Saidi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.M.S.); (A.M.J.)
| | - Paik San H’ng
- Higher Education Centre of Excellence (HiCoE), Institute of Tropical Forestry and Forest Products, University Putra Malaysia, Serdang 43400, Malaysia; (L.L.T.M.); (M.R.)
- Department of Forestry and Environment, Faculty of Forestry, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (M.M.A.); (P.S.H.)
| | - Marwah Rayung
- Higher Education Centre of Excellence (HiCoE), Institute of Tropical Forestry and Forest Products, University Putra Malaysia, Serdang 43400, Malaysia; (L.L.T.M.); (M.R.)
| | - Adila Mohamad Jaafar
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.M.S.); (A.M.J.)
- Chemistry Division, Centre of Foundation Studies for Agricultural Science, University Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
16
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Achievements and Trends in Biocatalytic Synthesis of Specialty Polymers from Biomass-Derived Monomers Using Lipases. Processes (Basel) 2021. [DOI: 10.3390/pr9040646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New technologies for the conversion of biomass into high-value chemicals, including polymers and plastics, is a must and a challenge. The development of green processes in the last decade involved a continuous increase of the interest towards the synthesis of polymers using in vitro biocatalysis. Among the remarkable diversity of new bio-based polymeric products meeting the criteria of sustainability, biocompatibility, and eco-friendliness, a wide range of polyesters with shorter chain length were obtained and characterized, targeting biomedical and cosmetic applications. In this review, selected examples of such specialty polymers are presented, highlighting the recent developments concerning the use of lipases, mostly in immobilized form, for the green synthesis of ε-caprolactone co-polymers, polyesters with itaconate or furan units, estolides, and polyesteramides. The significant process parameters influencing the average molecular weights and other characteristics are discussed, revealing the advantages and limitations of biocatalytic processes for the synthesis of these bio-based polymers.
Collapse
|
18
|
Ren Q, Wang XJ, Zhao YQ, Xu LQ, Yu HW, Ma AJ, Zheng WG. Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Shape memory polymers (SMPs) are developed by blending and cross-linking polymers which include crystalline domains and cross-linked networks. In this paper, we describe the morphology, thermal and shape memory behavior of methyl vinyl silicone rubber (MVMQ)/olefin block copolymer (OBC) blends prepared by a melt-blending and chemical cross-linking method. MVMQ without crystalline domains could not hold its temporary shape. After introducing the OBC, the obtained blends exhibited excellent dual shape memory properties. The cross-linking networks of MVMQ acted as reversible domains, while crystalline regions of OBC worked as fixed domains. When the blending ratio of MVMQ/OBC was 50/ 50, the blend had both a high shape fixity ratio and shape recovery ratio.
Collapse
Affiliation(s)
- Q. Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
- University of Chinese Academy of Sciences , Beijing , PRC
| | - X. J. Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
- School of Materials Science and Chemical Engineering, Xi’an Technological University , Xi’an , PRC
| | - Y. Q. Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| | - L. Q. Xu
- School of Material Science and Chemical Engineering, Ningbo University , Ningbo , PRC
| | - H. W. Yu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| | - A. J. Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University , Xi’an , PRC
| | - W. G. Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| |
Collapse
|
19
|
Fu CY, Chuang WT, Hsu SH. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9702-9713. [PMID: 33600161 DOI: 10.1021/acsami.0c21940] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryogels are matrices that are formed in moderately frozen solutions of monomeric or polymeric precursors. They have the advantages of interconnected macropores, structural stability, and compressibility. Meanwhile, thermally induced shape memory is an attractive feature of certain functional materials. Although there have been several studies concerning shape-memory cryogels, little work has been conducted on shape-memory cryogels with biodegradability. In this study, a water-based biodegradable difunctional polyurethane with a shape-memory property was synthesized and used as the nanoparticulate crosslinker to react with chitosan to form a shape-memory cryogel. The thermally induced shape-memory mechanism was clarified using in situ wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) during the shape-memory process. The in situ WAXS showed the changes of crystallinity in the crosslinker and the cryogel during the shape fixation and recovery processes. The in situ SAXS revealed the orientation of crystallinity of the crosslinker and the cryogel as the mechanism for shape memory. The strip-shape cryogel was deformed at 50 °C to U-shape and fixed at - 20 °C, which was squeezable at 25 °C and returned to the strip-shape at 50 °C in air. The shape recovery was further tested in water at two different temperatures. The injected cryogel recovered the U-shape in 4 °C water, representing elastic recovery, and transformed to a long strip in 37 °C water, representing the switchable shape memory. Moreover, the shape-memory cryogel sheet with a large dimension (10 mm × 10 mm × 1.1 mm cryogel sheet) or with complex structures (N, T, and U shapes) could be fixed as a rod, injected through a 16 G needle, and return to its original shape in 37 °C water, all of which could not be achieved by the conventional cryogel. Human mesenchymal stem cells grown in the shape-memory cryogel scaffolds displayed long-term proliferation and chondrogenic potential. Their unique injectability and cytocompatibility suggested potential applications of shape-memory cryogels as injectable and expandable templates for tissue engineering and minimally invasive surgery.
Collapse
Affiliation(s)
- Chih-Yu Fu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei Taiwan 10617, Republic of China
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei Taiwan 10617, Republic of China
| |
Collapse
|
20
|
|
21
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Multiscale analysis of viscoelastic properties, topography and internal structure of a biodegradable thermo-responsive shape memory polyurethane. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Luo Q, Chen J, Gnanasekar P, Ma X, Qin D, Na H, Zhu J, Yan N. A facile preparation strategy of polycaprolactone (PCL)-based biodegradable polyurethane elastomer with a highly efficient shape memory effect. NEW J CHEM 2020. [DOI: 10.1039/c9nj05189a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A polycaprolactone (PCL)-based biodegradable polyurethane elastomer with a highly efficient shape memory effect.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | | | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Dongdong Qin
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Haining Na
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry
- University of Toronto
- Canada
| |
Collapse
|
24
|
Wei S, Huang Y, Fang J, Cai Q, Yang X. Strengthening the Shape Memory Behaviors of l-Lactide-ased Copolymers via Its Stereocomplexation Effect with Poly(d-Lactide). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zeng F, Yang X, Li D, Dai L, Zhang X, Lv Y, Wei Z. Functionalized polyesters derived from glycerol: Selective polycondensation methods toward glycerol‐based polyesters by different catalysts. J Appl Polym Sci 2019. [DOI: 10.1002/app.48574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fenfen Zeng
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Dexing Li
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Li Dai
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Xinyan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Yin Lv
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| |
Collapse
|
26
|
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, Nottelet B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2019; 21:397-407. [DOI: 10.1021/acs.biomac.9b01006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ayman El Jundi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Sytze Buwalda
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Sylvie Hunger
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Jean Coudane
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| |
Collapse
|
27
|
Tough and tunable shape memory PLA/PAE melt-blends actuated by temperature. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00706-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Wu Y, Hu Z, Huang H, Chen Y. The design of triple shape memory polymers with stable yet tunable temporary shapes by introducing photo-responsive units into a crystalline domain. Polym Chem 2019. [DOI: 10.1039/c8py01810c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A desirable triple-shape memory effect showing stable yet easily tunable temporary shapes is achieved using a physically crosslinked network with photo-responsive coumarin-containing poly(ε-caprolactone) as soft segments and poly(l-lactide) as hard segments.
Collapse
Affiliation(s)
- Yongwei Wu
- Center for Functional Biomaterials
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
| | - Zhitao Hu
- Center for Functional Biomaterials
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
| | - Huahua Huang
- Center for Functional Biomaterials
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
| | - Yongming Chen
- Center for Functional Biomaterials
- School of Materials Science and Engineering
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
29
|
Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Hydrogels as Emerging Materials for Translational Biomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800088] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Pei Wern Yong
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
| | - David James Young
- Faculty of Science; Health, Education and Engineering; University of the Sunshine Coast; Maroochydore Queensland 4558 Australia
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|