1
|
Benghuzzi H, Tucci M, Hildebrandt D, Hait S, Lichtenhan J. Histopathological evaluation of viscoelastic POSS administered subcutaneously using a rat model. Toxicol Rep 2025; 14:102006. [PMID: 40226807 PMCID: PMC11986480 DOI: 10.1016/j.toxrep.2025.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Polyhedral oligomeric silsesquioxanes (POSS), have a structure resembling a cage in which the corners are silicon atoms bound with oxygen bridges. POSS cages may be dissolved in a polymer matrix or used as a cross-linker. When added into a polymer matrix, they remain non-toxic, improve mechanical properties, and resist biodegradation, which is important in tissue engineering. Limited studies evaluate long-term tissue responses to POSS gels. Methods Adult male Sprague Dawley rat were used as a model to determine the tissue response towards multiple dosing of POSS gel compared to air injections for up to 180 days. A total of twenty-four rats was used for the study (Six rats were injected with the fluorescently labeled UVPOSS:POSS for imaging and eighteen additional rats were injected either with POSS SO1455 or air as a control group). Each group received three injections, and tissues were harvested 7, 14, and 21 days for early tissue responses, and 90- and 180-days post injection for late tissue reactions. Results POSS vesicles formed after injection and remained pliable over 180 days. POSS complexed with Perylene dye could be imaged over 4 weeks showing lack of systemic mobility. Over the course of 180 days, POSS triggered a foreign body response with low- grade inflammation. The high viscosity nature of POSS resulted in the formation of a dense capsule preventing the material migration. Conclusion: POSS is encapsulated with connective tissue without long-term inflammatory cells or granuloma cell formation for 180 days in rats.
Collapse
Affiliation(s)
- Hamed Benghuzzi
- Jackson State University, 1400 John R. Lynch St, Jackson, MS 39217, USA
| | - Michelle Tucci
- University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Drew Hildebrandt
- University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Sukhendu Hait
- Hybrid Plastics, 55 Wl Runnels Industrial Dr, Hattiesburg, MS 39401, USA
| | - Joseph Lichtenhan
- Hybrid Plastics, 55 Wl Runnels Industrial Dr, Hattiesburg, MS 39401, USA
| |
Collapse
|
2
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
3
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Gu Z, Tian X, Guang S, Wei G, Mao Y, Xu H. POSS engineering of squaraine nanoparticle with high photothermal conversion efficiency for photothermal therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123576. [PMID: 37922849 DOI: 10.1016/j.saa.2023.123576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Photothermal therapy (PTT) has been extensively studied due to its promising therapeutic effects and potential for development in cancer treatments. Central to PTT is the development of photothermal agents (PTAs). This study presents a novel nanoparticle called POSS-SQ, which satisfies the necessary conditions to function as a PTA. Comprised of squaraine (SQ) and polyhedral oligomeric sesquisiloxane (POSS), POSS-SQ NPs exhibit strong near-infrared (NIR) absorption and high photothermal conversion efficiency (PCE) attributable to the intermolecular electron transfer in SQ. Furthermore, POSS when modified with polyethylene glycol (PEG) through "click" chemistry, effectively enhances cell permeability and biocompatibility of the nanoparticles. Photothermal experiments reveal that POSS-SQ NPs demonstrate concentration and laser power dependence, with a PCE of 67.2%. In vitro and in vivo experiments confirm the excellent biosafety and tumor growth inhibition potential of POSS-SQ NPs under laser irradiation, attributed to the synergistic effects of enhanced cell permeability and exceptional photothermal properties. This research highlights the possibility of obtaining PTAs with high PCE and excellent biocompatibility by combining SQ-N and POSS, offering a new approach for designing and developing more efficient PTAs to enhance better PTT outcomes.
Collapse
Affiliation(s)
- Zhengye Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Materials Science and Engineering & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
| | - Xiaoyong Tian
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Gang Wei
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Materials Science and Engineering & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Gu Z, Geng X, Guang S, Xu H. POSS Engineering of Multifunctional Nanoplatforms for Chemo-Mild Photothermal Synergistic Therapy. Int J Mol Sci 2024; 25:1012. [PMID: 38256086 PMCID: PMC10816201 DOI: 10.3390/ijms25021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Chemo-mild photothermal synergistic therapy can effectively inhibit tumor growth under mild hyperthermia, minimizing damage to nearby healthy tissues and skin while ensuring therapeutic efficacy. In this paper, we develop a multifunctional study based on polyhedral oligomeric sesquisiloxane (POSS) that exhibits a synergistic therapeutic effect through mild photothermal and chemotherapy treatments (POSS-SQ-DOX). The nanoplatform utilizes SQ-N as a photothermal agent (PTA) for mild photothermal, while doxorubicin (DOX) serves as the chemotherapeutic drug for chemotherapy. By incorporating POSS into the nanoplatform, we successfully prevent the aggregation of SQ-N in aqueous solutions, thus maintaining its excellent photothermal properties both in vitro and in vivo. Furthermore, the introduction of polyethylene glycol (PEG) significantly enhances cell permeability, which contributes to the remarkable therapeutic effect of POSS-SQ-DOX NPs. Our studies on the photothermal properties of POSS-SQ-DOX NPs demonstrate their high photothermal conversion efficiency (62.3%) and stability, confirming their suitability for use in mild photothermal therapy. A combination index value (CI = 0.72) verified the presence of a synergistic effect between these two treatments, indicating that POSS-SQ-DOX NPs exhibited significantly higher cell mortality (74.7%) and tumor inhibition rate (72.7%) compared to single chemotherapy and mild photothermal therapy. This observation highlights the synergistic therapeutic potential of POSS-SQ-DOX NPs. Furthermore, in vitro and in vivo toxicity tests suggest that the absence of cytotoxicity and excellent biocompatibility of POSS-SQ-DOX NPs provide a guarantee for clinical applications. Therefore, utilizing near-infrared light-triggering POSS-SQ-DOX NPs can serve as chemo-mild photothermal PTA, while functionalized POSS-SQ-DOX NPs hold great promise as a novel nanoplatform that may drive significant advancements in the field of chemo-mild photothermal therapy.
Collapse
Affiliation(s)
- Zhengye Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Engineering & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China;
| | - Xiaochuan Geng
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Shanyi Guang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Engineering & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China;
| |
Collapse
|
6
|
A Brief Review on Selected Applications of Hybrid Materials Based on Functionalized Cage-like Silsesquioxanes. Polymers (Basel) 2023; 15:polym15061452. [PMID: 36987231 PMCID: PMC10056089 DOI: 10.3390/polym15061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Rapid developments in materials engineering are accompanied by the equally rapid development of new technologies, which are now increasingly used in various branches of our life. The current research trend concerns the development of methods for obtaining new materials engineering systems and searching for relationships between the structure and physicochemical properties. A recent increase in the demand for well-defined and thermally stable systems has highlighted the importance of polyhedral oligomeric silsesquioxane (POSS) and double-decker silsesquioxane (DDSQ) architectures. This short review focuses on these two groups of silsesquioxane-based materials and their selected applications. This fascinating field of hybrid species has attracted considerable attention due to their daily applications with unique capabilities and their great potential, among others, in biomaterials as components of hydrogel networks, components in biofabrication techniques, and promising building blocks of DDSQ-based biohybrids. Moreover, they constitute attractive systems applied in materials engineering, including flame retardant nanocomposites and components of the heterogeneous Ziegler-Natta-type catalytic system.
Collapse
|
7
|
Novel hybrid composites based on double-decker silsesquioxanes functionalized by methacrylate derivatives and polyvinyl alcohol as potential materials utilized in biomedical applications. BIOMATERIALS ADVANCES 2023; 146:213290. [PMID: 36682203 DOI: 10.1016/j.bioadv.2023.213290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The use of diverse biomaterials for regenerative medicine is constantly evolving. Therefore, looking for easy-to-scale-up materials in terms of preparation, less complex composition, and featuring structural and chemical stability seems justified. In this work, we report the preparation of double-decker silsesquioxane-based (DDSQ-based) composites, which, according to our best knowledge, have never been used as biomaterials. A family of methacrylate-substituted DDSQs was obtained starting from the previously reported hydroxyalkyl double-decker silsesquioxanes. In the resulting hybrids, methacrylate groups are attached to each other's lateral silicon atoms of DDSQ in trans positions, providing an excellent geometry for forming thin layers. In contrast to pure organic methacrylates, the covalent bonding of methacrylate derivatives to inorganic silsesquioxane core improves mechanics, cell adhesion, and migration properties. Furthermore, to increase the hydrophilicity of the resulting DDSQ-based hybrids, polyvinyl alcohol (PVA) was added. The entire system forms an easy-to-obtain two-component (DDSQ-PVA) composite, which was subjected without any upgrading additives to biological tests later in the research. The resulting biomaterials fulfill the requirements for potential medical applications. Human fibroblasts growing on prepared hybrid composites are characterized by proper spindle-shaped morphology, proliferation, and activation status similar to control conditions (cells cultured on PVA), as well as increased adhesion and migration abilities. The obtained results suggest that the prepared biomaterials may be used in regenerative medicine in the future.
Collapse
|
8
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
9
|
Organic-inorganic interface chemistry for sustainable materials. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.
Collapse
|
10
|
The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites. Polymers (Basel) 2022; 14:polym14235078. [PMID: 36501477 PMCID: PMC9737336 DOI: 10.3390/polym14235078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G' and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χc increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T0.5%, T1% and T3%. Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed.
Collapse
|
11
|
Huang S, Zhou P, Hu Y, Li G, Xia L. Triphenylbenzene functionalized polyhedral oligomeric silsesquioxane fluorescence sensor for the selective analysis of trace nitrofurazone in aquatic product and cosmetics. Anal Chim Acta 2022; 1225:340249. [PMID: 36038243 DOI: 10.1016/j.aca.2022.340249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Nitrofurazone (NFZ) is carcinogenic and mutagenic to human in long-term ingestion, and it is prohibited to be added in food. In this work, a novel triphenylbenzene (TPB) functionalized fluorescent hybrid porous polymers (POSS@TPB) was constructed by using polyhedral oligomeric silsesquioxane (POSS) as the rigid group and TPB as the core unit of high fluorescence. The morphology and physicochemical properties of POSS@TPB were characterized in detail. Moreover, the synergistic effect of inner filter effect and photoinduced electron transfer is verified by experimental and simulation results. After condition optimization, a NFZ analysis method based on POSS@TPB probe was established with a linear range of 0.4-16.5 mg/L and a detection limit of 0.13 mg/L. In addition, the fluorescent probe has good stability, anti-interference and considerable reusability. At the same time, the selective analysis of trace NFZ in aquatic product and cosmetics was carried out with satisfied recoveries of 87%-110.6% and relative standard deviation less than 4.1%. And the results were verified by high-performance liquid chromatography method. Overall, this fluorescence sensor has excellent performance in NFZ analysis, which provides a broad application prospect for the repeatable and selective residue NFZ analysis in aquatic product and cosmetics.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peipei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Li C, Zhou Y, Liu S, Guo R, Lu C, Yin D, Zhang Y, Xu X, Dong N, Shi J. Surface Modification of Decellularized Heart Valve by the POSS-PEG Hybrid Hydrogel to Prepare a Composite Scaffold Material with Anticalcification Potential. ACS APPLIED BIO MATERIALS 2022; 5:3923-3935. [PMID: 35867892 DOI: 10.1021/acsabm.2c00449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissue-engineered heart valves (TEHVs) are the most promising replacement for heart valve transplantation. Decellularized heart valve (DHV) is one of the most common scaffold materials for TEHVs. In actual clinical applications, the most widely used method for treating DHV is cross-linking it with glutaraldehyde, but this method could cause serious problems such as calcification. In this study, we introduced polyhedral oligomeric silsesquioxane (POSS) nanoparticles into a poly(ethylene glycol) (PEG) hydrogel to prepare a POSS-PEG hybrid hydrogel, and then coated them on the surface of DHV to prepare the composite scaffold. The chemical structures, microscopic morphologies, cell compatibilities, blood compatibilities, and anticalcification properties were further investigated. Experimental results showed that the composite scaffold had good blood compatibility and excellent cell compatibility and could promote cell adhesion and proliferation. In vivo and in vitro anticalcification experiments showed that the introduction of POSS nanoparticles could reduce the degree of calcification significantly and the composite scaffold had obvious anticalcification ability. The DHV surface-coated with the POSS-PEG hybrid hydrogel is an alternative scaffold material with anticalcification potential for an artificial heart valve, which provides an idea for the preparation of TEHVs.
Collapse
Affiliation(s)
- Chuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siju Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Renqi Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Cuifen Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, China
| | - Xu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Rzonsowska M, Mituła K, Duszczak J, Kasperkowiak M, Januszewski R, Grześkiewicz A, Kubicki M, Głowacka D, Dudziec B. Unexpected and frustrating transformations of double-decker silsesquioxanes. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01363g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper outlines an unexpected type of intramolecular transformation of DDSQ during hydrolytic condensation and surprising catalytic reactivity in silylative coupling.
Collapse
Affiliation(s)
- Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Mituła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Julia Duszczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Rafał Januszewski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Chemistry and Technology of Silicon Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Anita Grześkiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Daria Głowacka
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
14
|
Ozimek J, Pielichowski K. Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications. Molecules 2021; 27:molecules27010040. [PMID: 35011280 PMCID: PMC8746980 DOI: 10.3390/molecules27010040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.
Collapse
|
15
|
Wang C, Zhou L, Du Q, Shan T, Zheng K, He J, He H, Chen S, Wang X. Synthesis, properties and applications of well‐designed hybrid polymers based on polyhedral oligomeric silsesquioxane. POLYM INT 2021. [DOI: 10.1002/pi.6317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Cheng Wang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Likang Zhou
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Qinqing Du
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Tianyu Shan
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Kai Zheng
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Jing He
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Huiwen He
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Si Chen
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| | - Xu Wang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
16
|
Michalczyk M, Piec K, Zierkiewicz W, Ejfler J, John Ł. Possible coordination modes of copper(II) atom in model silsesquioxanes complexes at various pH conditions: DFT study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abstract
The continuously decreasing size of device features in microelectronics draws growing attention to the structuring of silicon at the molecular level with powerful tools provided by synthetic chemistry. Silicon clusters are of particular importance in this regard not only as potential precursors for silicon deposition but also as well-defined model systems for bulk and surfaces of silicon at the nanoscale as well as possible starting points for future construction of molecularly precise device structures. This review aims to give a comprehensive overview about the state of the art in the synthesis of molecular silicon clusters, which are grouped into (1) electron-precise saturated clusters, (2) soluble polyhedral Zintl anions, and (3) unsaturated silicon clusters, the so-called siliconoids. Particular attention is paid to functionalization as it is generally considered a necessary prerequisite for the design and construction of more extended systems. The interrelations between the three different classes of molecular silicon clusters, e.g., arising from the introduction of negatively charged functional groups, are highlighted on grounds of NMR properties and computed electronic structures.
Collapse
Affiliation(s)
- Yannic Heider
- Chair of General and Inorganic Chemistry, Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Chair of General and Inorganic Chemistry, Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Rzonsowska M, Kozakiewicz K, Mituła K, Duszczak J, Kubicki M, Dudziec B. Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability. Molecules 2021; 26:439. [PMID: 33467746 PMCID: PMC7830482 DOI: 10.3390/molecules26020439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
A synthesis of a series of mono-T8 and difunctionalized double-decker silsesquioxanes bearing substituted triazole ring(s) has been reported within this work. The catalytic protocol for their formation is based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process. Diverse alkynes were in the scope of our interest-i.e., aryl, hetaryl, alkyl, silyl, or germyl-and the latter was shown to be the first example of terminal germane alkyne which is reactive in the applied process' conditions. From the pallet of 15 compounds, three of them with pyridine-triazole and thiophenyl-triazole moiety attached to T8 or DDSQ core were verified in terms of their coordinating properties towards selected transition metals, i.e., Pd(II), Pt(II), and Rh(I). The studies resulted in the formation of four SQs based coordination compounds that were obtained in high yields up to 93% and their thorough spectroscopic characterization is presented. To our knowledge, this is the first example of the DDSQ-based molecular complex possessing bidentate pyridine-triazole ligand binding two Pd(II) ions.
Collapse
Affiliation(s)
- Monika Rzonsowska
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Katarzyna Kozakiewicz
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
| | - Katarzyna Mituła
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Julia Duszczak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Beata Dudziec
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.K.); (K.M.); (J.D.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
20
|
Piec K, Wątły J, Jerzykiewicz M, Kłak J, Plichta A, John Ł. Mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride as a multi-donor N,O-type ligand in copper(ii) coordination chemistry: synthesis and structural properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj05425a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, we report on the synthesis of novel copper(ii) complexes containing a multi-donor N,O-type ligand based on mono-substituted cage-like silsesquioxanes bound by trifunctional acyl chloride.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Joanna Wątły
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Julia Kłak
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Andrzej Plichta
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
21
|
Liu S, Guo R, Li C, Lu C, Yang G, Wang F, Nie J, Ma C, Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
23
|
Gomes MAG, Pessanha QS, Toledo R, Lube LM, Fernandes C, Horn A. Synthesis and characterization of new polyoctahedral silsesquioxanes containing zinc coordination compounds on the surface. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
25
|
Liang JN, Yan LP, Dong YF, Liu X, Wu G, Zhao NR. Robust and nanostructured chitosan-silica hybrids for bone repair application. J Mater Chem B 2020; 8:5042-5051. [PMID: 32396152 DOI: 10.1039/d0tb00009d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, chitosan-silica hybrids (CSHs) with superior mechanical strength and homogeneous dispersion of nano-sized silica particles were synthesized via a facile sol-gel method aiming for bone regeneration. The effects of varied acidic conditions of sol-gel reaction and inorganic/organic ratios on the performance of the hybrid were investigated. CSHs synthesized under weak acidic conditions (acetic acid, pH 4.0) showed a homogeneous nanostructure and robust strength (maximum compressive strength: 42.6 ± 3.3 MPa and 271 ± 31 MPa in wet and dry forms, respectively). However, those developed under the strong acidic condition (HCl, pH 4.0) and the strong acid condition plus lower pH (HCl, pH 2.8) tended to aggregate and exhibited inferior mechanical properties (compressive strength: 6.3 ± 0.3 MPa in wet form at pH 2.8). Under the latter conditions, the interactions between silica and chitosan were weak. Moreover, the mechanical properties of the CSHs could be tuned in a wide range by conveniently varying the inorganic/organic composition ratio between 50% and 70%. In vitro cytocompatibility study indicated that CSHs were non-cytotoxic. These results suggested that the weak acidic sol-gel process were essential for fabricating chitosan-silica hybrids with high mechanical strength, which had potential to be applied as a bone substitute.
Collapse
Affiliation(s)
- Jin-Ning Liang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Żak P, Bołt M, Grzelak M, Rachuta K, Dudziec B, Januszewski R, Marciniec B, Marciniak B. Synthesis and properties of chromophore-functionalized monovinylsilsesquioxane derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj01250e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein, an effective and selective synthesis of chromophore-functionalized monovinylsilsesquioxane derivatives by a cross-metathesis reaction along with discussion of their photophysical and thermal resistance properties is disclosed.
Collapse
Affiliation(s)
- Patrycja Żak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
| | - Małgorzata Bołt
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
| | - Magdalena Grzelak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
- Center for Advanced Technologies
| | - Karolina Rachuta
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
| | - Beata Dudziec
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
- Center for Advanced Technologies
| | - Rafał Januszewski
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
- Center for Advanced Technologies
| | - Bogdan Marciniec
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
- Center for Advanced Technologies
| | - Bronislaw Marciniak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8
- 61-614 Poznan
- Poland
- Center for Advanced Technologies
| |
Collapse
|
27
|
Piec K, Kostera S, Jędrzkiewicz D, Ejfler J, John Ł. Mono-substituted amine-oligosilsesquioxanes as functional tools in Pd( ii) coordination chemistry: synthesis and properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01568g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unexpected reaction between mono-functionalized amino-POSS and palladium acetate (different from the well-known pathway between a classical amine and a palladium salt) leads to novel coordination entities.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Sylwia Kostera
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Jolanta Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
28
|
Kuciński K, Stachowiak H, Hreczycho G. Silylation of silanols with hydrosilanes via main-group catalysis: the synthesis of unsymmetrical siloxanes and hydrosiloxanes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00904k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apart from some specific synthetic solutions, a dehydrogenative coupling of silanols with hydrosilanes seems to be the most atom-economical and practical method for the formation of unsymmetrical siloxanes.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Hanna Stachowiak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Center for Advanced Technologies
| |
Collapse
|
29
|
Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol 2020; 142:643-657. [DOI: 10.1016/j.ijbiomac.2019.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
30
|
Ai L, Chen Y, He L, Luo Y, Li S, Xu C. Synthesis of structured polysiloxazanes via a Piers-Rubinsztajn reaction. Chem Commun (Camb) 2019; 55:14019-14022. [PMID: 31690921 DOI: 10.1039/c9cc07312d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of siloxazanes were successfully prepared by a Piers-Rubinsztajn reaction between methoxydisilazanes and the corresponding hydrosilanes. Polysiloxazanes with narrow dispersion were also synthesized from methoxydisilazanes and Si-H terminated oligosiloxanes. The possible interaction mechanism between tris(pentafluorophenyl)borane and the methoxydisilazane was investigated.
Collapse
Affiliation(s)
- Liqing Ai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
31
|
Rozga-Wijas K, Sierant M. Daunorubicin-silsesquioxane conjugates (POSS-DAU) for theranostic drug delivery system: Characterization, biocompatibility and drug release study. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Tahir Gunkara O. Modification of polyhedral oligomeric silsesquioxane derivatives with heck reaction as possible new bio-hybrid materials. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1576678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Omer Tahir Gunkara
- Faculty of Science and Arts Chemistry Department, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
33
|
Guo S, Wang X, Wang G, Nie M. A Facile Route to Prepare PMMA/SiO
2
Core‐Shell Particles and PMMA Microcapsules via Sonochemical Graft Polymerization. ChemistrySelect 2019. [DOI: 10.1002/slct.201900426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sheng‐Wei Guo
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
| | - Xin Wang
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
| | - Gu‐Xia Wang
- School of Chemistry & Chemical EngineeringNorth Minzu University Yinchuan 750021 P. R. China
| | - Min Nie
- State Key Laboratory of Polymer Materials EngineeringSichuan University) Chengdu 610065 P. R. China
| |
Collapse
|
34
|
Synthetic Routes to Silsesquioxane-Based Systems as Photoactive Materials and Their Precursors. Polymers (Basel) 2019; 11:polym11030504. [PMID: 30960488 PMCID: PMC6473884 DOI: 10.3390/polym11030504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022] Open
Abstract
Over the past two decades, organic optoelectronic materials have been considered very promising. The attractiveness of this group of compounds, regardless of their undisputable application potential, lies in the possibility of their use in the construction of organic–inorganic hybrid materials. This class of frameworks also considers nanostructural polyhedral oligomeric silsesquioxanes (POSSs) with “organic coronae” and precisely defined organic architectures between dispersed rigid silica cores. A significant number of papers on the design and development of POSS-based organic optoelectronic as well as photoluminescent (PL) materials have been published recently. In view of the scientific literature abounding with numerous examples of their application (i.e., as OLEDs), the aim of this review is to present efficient synthetic pathways leading to the formation of nanocomposite materials based on silsesquioxane systems that contain organic chromophores of complex nature. A summary of stoichiometric and predominantly catalytic methods for these silsesquioxane-based systems to be applied in the construction of photoactive materials or their precursors is given.
Collapse
|
35
|
Tamburaci S, Kimna C, Tihminlioglu F. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:196-208. [PMID: 30948053 DOI: 10.1016/j.msec.2019.02.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Recently, natural polymers are reinforced with silica particles for hard tissue engineering applications to induce bone regeneration. In this study, as two novel bioactive agents, effects of diatomite and polyhedral oligomeric silsesquioxanes (POSS) on chitosan (CS)/Na-carboxymethylcellulose (Na-CMC) polymer blend scaffolds are examined. In addition, the effect of silica reinforcements was compared with Si-substituted nano-hydroxyapatite (Si-Hap) particles. The morphology, physical and chemical structures of the scaffolds were characterized with SEM, liquid displacement, FT-IR, mechanical analysis, swelling and degradation studies. The particle size and the crystal structure of diatomite, POSS and Si-Hap particles were determined with DLS and XRD analyses. In vitro studies were performed to figure out the cytotoxicity, proliferation, ALP activity, osteocalcin production and biomineralization to demonstrate the promising use of natural silica particles in bone regeneration. Freeze-dried scaffolds showed 190-307 μm pore size range and 61-70% porosity. Both inorganic reinforcements increased the mechanical strength, enhanced the water uptake capacity and fastened the degradation rate. The nanocomposite scaffolds did not show any cytotoxic effect and enhanced the surface mineralization in osteogenic medium. Thus, diatomite and POSS cage structures can be potential reinforcements for nanocomposite design in hard tissue engineering applications.
Collapse
Affiliation(s)
- Sedef Tamburaci
- İzmir Institute of Technology, Graduate Program of Biotechnology and Bioengineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey; İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey
| | - Ceren Kimna
- İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla 35430, İzmir, Turkey.
| |
Collapse
|
36
|
Modification of Polyhedral Oligomeric Silsesquioxanes (POSS) Molecules by Ruthenium Catalyzed Cross Metathesis. Molecules 2018; 23:molecules23071722. [PMID: 30011916 PMCID: PMC6099925 DOI: 10.3390/molecules23071722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022] Open
Abstract
The scope of ruthenium (Ru)-catalyzed cross metathesis (CM) of allyl-decorated polyhedral oligomeric silsesquioxanes (POSS) was explored. A variety of different commercial and non-commercial ruthenium complexes were tested to determine that the nitro-activated Ru catalyst is optimal for this transformation. The reported transformation was used to prepare selected hybrid steroid-POSS compounds.
Collapse
|