1
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Ramadan DR, Osman HA, Madhy SA, Teleb M, Darwish AI, Abu-Serie MM, Haiba NS, Khattab SN, Khalil HH. A tailored 4G s-triazine-based dendrimer vehicle for quercetin endowed with MMP-2/9 inhibition and VEGF downregulation for targeting breast cancer progression and liver metastasis. RSC Adv 2025; 15:10426-10441. [PMID: 40182507 PMCID: PMC11967334 DOI: 10.1039/d5ra01588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Motivated by our recent research progress on the exploitation of s-triazine dendritic platforms as bioactive carriers for well-known anticancer agents and/or targeting ligands, we set out to synthesize new rationally designed dendrimers endowed with MMP-2/9 inhibition potential for halting both breast and liver cancer progression with reduced off-target side effects. New three and four generation s-triazine based dendrimers were developed to incorporate potential ZBGs (Zinc Binding Groups) and carboxyl terminal groups to facilitate direct conjugation of anti-cancer drugs (quercetin) and/or targeting ligands (lactobionic acid) through a biodegradable ester bond. Compared to free quercetin (QUR), MTT assay revealed that all the quercetin-coupled dendrimers displayed better anticancer potential (IC50 = 12.690-29.316, 4.137-29.090 μM) against MCF-7 and HepG-2 cancer cells, respectively within their safe doses (EC100 = 134.35-78.44 μM). Conjugation of lactobionic acid and PEG boosted the anticancer potency against both treated cells, improved apoptosis and down regulated MMP-9 and VEGF gene expression levels in both treated cancer cells. Generally, the more branched G4 dendrimer conjugates exhibited a superior overall anticancer performance compared to their respective G3 analogues, except for their MMP-9 inhibition where G3 conjugate appeared to be more potent and more selective than its G4 analogue.
Collapse
Affiliation(s)
- Doaa R Ramadan
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Heba A Osman
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - A I Darwish
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
3
|
He H, Chen L, Peng J, Guo J, Xiao X, Dou C, Chen H, Zhan S, Han X, Yao W. ROS-responsive nanoparticles with selenomethionine for ferroptosis modulation in abdominal aortic aneurysm. iScience 2025; 28:111880. [PMID: 40104069 PMCID: PMC11914196 DOI: 10.1016/j.isci.2025.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Oxidative stress, particularly ROS accumulation, plays a key role in the development of abdominal aortic aneurysm (AAA). Surgical treatments and current drugs for AAA have limitations, including lack of specificity and significant side effects. This study constructed ROS-responsive nanoparticles using phenylthio-modified dendritic polylysine (PDP) loaded with selenomethionine (PDPs-Se) for AAA treatment, and elucidated its mechanism of action. In-vitro studies revealed that PDPs-Se enhanced the clearance of ROS by increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) while reducing malondialdehyde (MDA) levels. Furthermore, PDPs-Se upregulated the expression levels of GPX4, SLC7A11, and FTH1 to suppress ferroptosis and modulate the differentiation of vascular smooth muscle cells (VSMCs) from a synthetic to a contractile phenotype. In-vivo experiments revealed that PDPs-Se attenuated the progression of AAA by inhibiting oxidative stress responses and improving the aortic wall thickness, indicating its potential as an approach for AAA therapy.
Collapse
Affiliation(s)
- Haipeng He
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxin Peng
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinyan Guo
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Xiao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chaoxun Dou
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huining Chen
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Songbiao Zhan
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesia, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weifeng Yao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Mlachkova A, Dosseva-Panova V, Maynalovska H, Pashova-Tasseva Z. Nanoparticles as Strategies for Modulating the Host's Response in Periodontitis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:476. [PMID: 40214523 PMCID: PMC11990483 DOI: 10.3390/nano15070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Periodontitis is a widespread disease, associated with challenges both in its diagnosis and in selecting from various therapeutic approaches, which do not always yield the expected success. This literature review was conducted to explore diverse therapeutic approaches, especially those focused on nanotechnologies, and their potential contribution to the successful modulation of the host's response. The effects of the existing microbial diversity and the imbalance of key microbial species in contributing to the progression and worsening of the host's response in periodontitis are well known. It is essential to understand the role of a well-structured treatment plan for periodontitis, providing opportunities for new research and innovative treatment strategies aimed at reducing the impact of periodontitis on oral and overall systemic health. This will be beneficial for dental professionals, enabling them to effectively prevent and treat periodontitis, ultimately improving the overall health and well-being of patients.
Collapse
Affiliation(s)
| | | | | | - Zdravka Pashova-Tasseva
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (A.M.); (V.D.-P.); (H.M.)
| |
Collapse
|
5
|
Moni SS, Moshi JM, Matou-Nasri S, Alotaibi S, Hawsawi YM, Elmobark ME, Hakami AMS, Jeraiby MA, Sulayli AA, Moafa HN. Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems. Pharmaceutics 2025; 17:296. [PMID: 40142960 PMCID: PMC11945159 DOI: 10.3390/pharmaceutics17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Jobran M. Moshi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, Jazan 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia;
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Shmoukh Alotaibi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Mohammed A. Jeraiby
- Department of Basic Medical Science, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ahmed A. Sulayli
- Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan Health Cluster, Jazan 82734, Saudi Arabia;
| | - Hassan N. Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
7
|
Zhou P, Cao Y, Liu H, Wang L, Yu S, Hegazy M, Wu S. Advances and challenges of artificial cells in life: A review. POLYMER 2025; 317:127940. [DOI: 10.1016/j.polymer.2024.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
9
|
Strzelecka K, Kasiński A, Biela T, Bocho-Janiszewska A, Laskowska A, Szeleszczuk Ł, Gawlak M, Sobczak M, Oledzka E. Future-Oriented Nanosystems Composed of Polyamidoamine Dendrimer and Biodegradable Polymers as an Anticancer Drug Carrier for Potential Targeted Treatment. Pharmaceutics 2024; 16:1482. [PMID: 39598604 PMCID: PMC11597463 DOI: 10.3390/pharmaceutics16111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Camptothecin (CPT) is a well-known chemical compound recognized for its significant anticancer properties. However, its clinical application remains limited due to challenges related to CPT's high hydrophobicity and the instability of its active form. To address these difficulties, our research focused on the development of four novel nanoparticulate systems intended for either oral or intravenous administration. Methods: These nanosystems were based on a poly(amidoamine) (PAMAM) dendrimer/CPT complex, which had been coated with biodegradable homo- and copolymers, designed with appropriate physicochemical properties and chain microstructures. Results: The resulting nanomaterials, with diameters ranging from 110 to 406 nm and dispersity values between 0.10 and 0.67, exhibited a positive surface charge and were synthesized using biodegradable poly(L-lactide) (PLLA), poly(L-lactide-co-ε-caprolactone) (PLACL), and poly(glycolide-co-ε-caprolactone) (PGACL). Biological assessments, including cell viability and hemolysis tests, indicated that all polymers demonstrated less than 5% hemolysis, confirming their hemocompatibility for potential intravenous use. Furthermore, fibroblasts exposed to these matrices showed concentration-dependent viability. The entrapment efficiency (EE) of CPT reached up to 27%, with drug loading (DL) values as high as 17%. The in vitro drug release studies lasted over 400 h with the use of phosphate buffer solutions at two different pH levels, demonstrating that time-dependent processes allowed for a gradual and controlled release of CPT from the developed nanosystems. The release kinetics of the active compound at pH 7.4 ± 0.05 and 6.5 ± 0.05 followed near-first-order or first-order models, with diffusion and Fickian/non-Fickian transport mechanisms. Importantly, the nanoparticulate systems enabled the stabilization of the pharmacologically active form of CPT, while providing protection against hydrolysis, even in physiological environments. Conclusions: In our opinion, these results underscore the promising future of biodegradable nanosystems as effective drug delivery systems (DDSs) for targeted cancer treatment, offering stability and efficacy over short, medium, and long-term applications.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (K.S.); (A.K.); (M.S.)
| | - Adam Kasiński
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (K.S.); (A.K.); (M.S.)
| | - Tadeusz Biela
- Department of Polymer Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 Str., 90-363 Lodz, Poland;
| | - Anita Bocho-Janiszewska
- Faculty of Applied Chemistry, Casimir Pulaski Radom University, Chrobrego 27 Str., 26-600 Radom, Poland;
| | - Anna Laskowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b Str., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (K.S.); (A.K.); (M.S.)
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland; (K.S.); (A.K.); (M.S.)
| |
Collapse
|
10
|
Keihankhadiv S, Neugebauer D. Simple strategy of the use of pharmaceutically functionalized ionic liquids in a new generation of polymer nanocarriers for the combined delivery of ionic p-aminosalicylate and ampicillin. Int J Pharm 2024; 662:124483. [PMID: 39029636 DOI: 10.1016/j.ijpharm.2024.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Single and dual bioactive linear poly(ionic liquid)s (PIL) were synthesized for use as nanocarriers in drug delivery systems (DDS). These PILs were obtained through the (co)polymerization of the choline-based monomeric ionic liquids (MIL) with pharmaceutical anions possessing antibacterial properties, specifically [2-(methacryloyloxy)ethyl]trimethyl-ammonium with ampicillin and p-aminosalicylate (TMAMA/AMP and TMAMA/PAS). The copolymers exhibited varying chain lengths defined by a degree of polymerization (DPn = 122-370), and differing contents of ionic fraction and drugs (TMAMA 61-92 %, AMP 61-93 % and PAS 16-21 %). These parameters were adjustable by the monomer conversion (33-92 %) and the initial ratio of comonomers. In aqueous solution, the polymer particles reached nanosizes, i.e. 190-328 nm for AMP systems and 200-235 nm for AMP/PAS systems. In the release process, the pharmaceutical anions were released through exchange by phosphate anions in PBS at pH 7.4 at 37 °C. Depending on the copolymer composition the release of AMP was attained in 72-100 % (11.1-19.5 µg/mL) within 26 h by the single drug systems, while the dual drug systems released 61-100 % of AMP (14.8-24.7 µg/mL) and 82-100 % of PAS (3.1-4.8 µg/mL) within 72 h. The effectiveness in the drug delivery of the designed TMAMA polymers seems to be promising for future applications in antibiotic therapy and the combined therapy.
Collapse
Affiliation(s)
- Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
11
|
Chand A, Kumar S, Kapoor S, Singh D, Gaur B. Lysine and citric acid based pegylated polymeric dendritic nano drug delivery carrier and their bioactivity evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1892-1921. [PMID: 38910561 DOI: 10.1080/09205063.2024.2362023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/31/2024] [Indexed: 06/25/2024]
Abstract
The main objective of this work is to synthesize multifunctional nanodendritic structural molecules that can effectively encapsulate hydrophilic as well as hydrophobic therapeutic agents. Four different types of fourth-generation lysine-citric acid based dendrimer have been synthesized in this work: PE-MC-Lys-CA-PEG, TMP-MC-Lys-CA-PEG, PE-MS-Lys-CA-PEG, and TMP-MS-Lys-CA-PEG. The antibacterial drug cefotaxime (CFTX) was further conjugated to these dendrimers. The dendrimer and drug-dendrimer conjugate structures were characterized with the help of FTIR,1H-NMR, and 13C-NMR spectroscopy. Zeta sizer, AFM, and HR-TEM techniques were used to investigate the particle size, surface topography, and structural characteristics of drug-dendrimer conjugates. In vitro drug release was then investigated using dialysis method. Various kinetic drug release models were examined to evaluate the type of kinetic drug release mechanism of the formulations. Cytotoxicity study revealed that the dendrimers encapsulated with CFTX exhibited 2-3% toxicity against healthy epithelial cells, indicating their safe use. Plain dendrimers show 10-15% hemolytic toxicity against red blood cells (RBC), and the toxicity was reduced to 2-3% when CFTX was conjugated to the same dendrimers. The 3rd and 4th generation synthesized drug-dendrimer conjugates exhibit a significantly effective zone of inhibition (ZOI) against both Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the lower concentration of 0.1 mg/mL showed more than 98% inhibition of drug-dendrimer conjugate samples against B. subtilis and more than 50% inhibition against S. aureus using 0.2 mg/mL, respectively. Moreover, samples with concentrations of 0.5 and 1.0 mg/mL exhibited more than 50% inhibition against S. typhimurium and E. coli, respectively.
Collapse
Affiliation(s)
- Avtar Chand
- Chemistry Department, National Institute of Technology, Hamirpur,Himachal Pradesh, India
| | - Subhash Kumar
- Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Palampur, Himachal Pradesh, India
| | - Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Palampur, Himachal Pradesh, India
| | - Bharti Gaur
- Chemistry Department, National Institute of Technology, Hamirpur,Himachal Pradesh, India
| |
Collapse
|
12
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
13
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
14
|
Parcero-Bouzas S, Correa J, Jimenez-Lopez C, Delgado Gonzalez B, Fernandez-Megia E. Modular Synthesis of PEG-Dendritic Block Copolymers by Thermal Azide-Alkyne Cycloaddition with Internal Alkynes and Evaluation of their Self-Assembly for Drug Delivery Applications. Biomacromolecules 2024; 25:2780-2791. [PMID: 38613487 PMCID: PMC11094729 DOI: 10.1021/acs.biomac.3c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.
Collapse
Affiliation(s)
- Samuel Parcero-Bouzas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Juan Correa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Celia Jimenez-Lopez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Bruno Delgado Gonzalez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| |
Collapse
|
15
|
Poursadegh H, Amini-Fazl MS, Javanbakht S, Kazeminava F. Magnetic nanocomposite through coating mannose-functionalized metal-organic framework with biopolymeric pectin hydrogel beads: A potential targeted anticancer oral delivery system. Int J Biol Macromol 2024; 254:127702. [PMID: 37956806 DOI: 10.1016/j.ijbiomac.2023.127702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
This study designed magnetic nanocomposite hydrogel beads for a potential targeted anticancer oral delivery system. To end this, nanohybrids of Fe3O4/MIL-88(Fe) (FM) were synthesized through in-situ method by the treatment of terephthalic acid (TPA) and (Fe(NO3)3·9H2O) in the presence of Fe3O4 nanoparticles. They were then modified with mannose sugar as an anticancer receptor to achieve a targeted drug delivery system. After loading methotrexate (MTX), they were coated with pH-sensitive pectin hydrogel beads in the presence of a calcium chloride crosslinker for possible transferring the nanohybrids to the intestine through the acidic environment of the digestive system. The results of different analysis techniques showed that the materials were properly synthesized, coated, and loaded. The designed magnetic nanocomposite hydrogel beads showed pH-sensitive swelling and drug release rate, protecting MTX from the acidic environment of the stomach. MTT test revealed a good cytotoxicity toward colon cancer HT29 cell lines. Remarkably, the functionalization of MTX-loaded FM nanohybrids with mannose (MTX-MFM) enhanced their anticancer properties up to about 20 %. The results recommended that the prepared novel magnetic nanocomposite hydrogel beads have a good potential to be used as a targeted anticancer oral delivery system.
Collapse
Affiliation(s)
- Hossein Poursadegh
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Siamak Javanbakht
- Advanced Polymer Material Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
17
|
Srivastava N, Mishra Y, Mishra V. Dendrimers: A novel and efficient carrier for anti-HIV drugs. AIP CONFERENCE PROCEEDINGS 2024; 3007:030154. [DOI: 10.1063/5.0195747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
20
|
Bujok S, Czub P, Mazela W, Sienkiewicz A. Combining thiol-ene coupling and transesterification as the route for bio-based hyperbranched dendritic compounds: Model reactions study. JOURNAL OF CLEANER PRODUCTION 2023; 418:138121. [DOI: 10.1016/j.jclepro.2023.138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Ogundipe OD, Olajubutu O, Adesina SK. Targeted drug conjugate systems for ovarian cancer chemotherapy. Biomed Pharmacother 2023; 165:115151. [PMID: 37473683 DOI: 10.1016/j.biopha.2023.115151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
22
|
Reza Soltani E, Ahmad Panahi H, Moniri E, Yousefipour Z, Raeisi I, Torabi Fard N, Dehghan Banadaki M. Development and in vitro evaluation of donepezil hydrochloride-loaded thermo-responsive polymer grafted molybdenum disulfide nanosheets: Modeling using response surface methodology. Colloids Surf B Biointerfaces 2023; 228:113402. [PMID: 37331193 DOI: 10.1016/j.colsurfb.2023.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Nanocarriers are utilized to deliver bioactive substances in the treatment of neurodegenerative diseases such as Alzheimer's. In this work, we prepared donepezil hydrochloride-loaded molybdenum disulfide modified thermo-responsive polymer as the thermo-responsive nanocarrier. Then, glycine was grafted to the surface of the polymer to improve the targeting and sustained release. The morphology, crystallinity, chemical bonding, and thermal behavior of nanoadsorbent were fully characterized by field emission scanning electron microscopes, energy dispersive X-ray, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermo-gravimetric measurement. Response surface methodology with the central composite design was applied to optimize the sorption key factors such as pH solution (A: 5-9), contact time (B: 10-30 min), and temperature (C: 30-50 °C). Non-linear isotherm modeling confirmed that the sorption of the drug follows the Ferundlich model based on higher correlation coefficient values (R2 =0.9923) and lower errors values (root means square errors: 0.16 and Chi-square: 0.10), suggesting a heterogeneous multilayer surface sorption. The non-linear sorption kinetic modeling revealed that the pseudo-second-order kinetic model well-fitted the sorption data of the drug on the nanoadsorbent surface based on higher R2 values (R2 =0.9876) and lower errors values (root means square errors: 0.05 and Chi-square: 0.02). The in vitro drug release experiment of donepezil hydrochloride shown that about 99.74 % of drug release was found to be occurred at pH= 7.4 (T = 45 °C) within 6 h, whereas about 66.32 % of drug release occurred at pH= 7.4 (T = 37 °C). The release of donepezil hydrochloride from as prepared drug delivery system has shown a sustained release profile, which was fitted to Korsmeyer-Peppas kinetics.
Collapse
Affiliation(s)
- Elham Reza Soltani
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Elham Moniri
- Department of Chemistry, Varamin Branch, Islamic Azad University, Varamin, Iran
| | - Zivar Yousefipour
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, Texas Southern University, Houston, TX 77004, USA
| | - Ilnaz Raeisi
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, Texas Southern University, Houston, TX 77004, USA
| | - Niloufar Torabi Fard
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
23
|
Esfandiarpour R, Badalkhani-Khamseh F, Hadipour NL. Theoretical studies of phosphorene as a drug delivery nanocarrier for fluorouracil. RSC Adv 2023; 13:18058-18069. [PMID: 37323453 PMCID: PMC10267674 DOI: 10.1039/d3ra00007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The interactions between phosphorene nanosheets (PNSs) and 5-fluorouracil (FLU) were explored using the density functional theory (DFT) method and molecular dynamics (MD) simulations. DFT calculations were performed utilizing M06-2X functional and the 6-31G(d,p) basis set in both gas and solvent phases. Results showed that the FLU molecule is adsorbed horizontally on the PNS surface with an adsorption energy (Eads) of -18.64 kcal mol-1. The energy gap (Eg) between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) of PNS remains constant after the adsorption process. The adsorption behavior of PNS is not affected by carbon and nitrogen doping. The dynamical behavior of PNS-FLU was studied at T = 298, 310, and 326 K reminiscent of room temperature, body temperature, and temperature of the tumor after exposure to 808 nm laser radiation, respectively. The D value decreases significantly after the equilibration of all systems so that the equilibrated value of D is about 1.1 × 10-6, 4.0 × 10-8, and 5.0 × 10-9 cm2 s-1 at T = 298, 310, and 326 K, respectively. About 60 FLU molecules can be adsorbed on both sides of each PNS, indicating its high loading capacity. PMF calculations demonstrated that the release of FLU from PNS is not spontaneous, which is favorable from a sustained drug delivery point of view.
Collapse
Affiliation(s)
- Razieh Esfandiarpour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University Tehran Iran
| | | | - Nasser L Hadipour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
24
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
26
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
28
|
Baby A, Julietraja K, Xavier DA. On Molecular Structural Characterization of Cyclen Cored Dendrimers. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2179641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Annmaria Baby
- Department of Mathematics, Loyola College, University of Madras, Chennai, India
| | - K. Julietraja
- Department of Mathematics, St. Joseph’s College of Engineering, Chennai, India
| | - D. Antony Xavier
- Department of Mathematics, Loyola College, University of Madras, Chennai, India
| |
Collapse
|
29
|
Maysinger D, Zhang I, Wu PY, Kagelmacher M, Luo HD, Kizhakkedathu JN, Dernedde J, Ballauff M, Haag R, Shobo A, Multhaup G, McKinney RA. Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chem Neurosci 2023; 14:677-688. [PMID: 36717083 DOI: 10.1021/acschemneuro.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Marten Kagelmacher
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Haiming Daniel Luo
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin13353, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| |
Collapse
|
30
|
Căta A, Ienașcu IMC, Ştefănuț MN, Roșu D, Pop OR. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023; 15:589. [PMID: 36839911 PMCID: PMC9958631 DOI: 10.3390/pharmaceutics15020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, essential to design new elaborated materials. The present review will focus on the pharmaceutical and biomedical application of amphiphilic Janus dendrimers. Important information for the development of novel optimized pharmaceutical formulations, such as structural classification, synthetic pathways, properties and applications, will offer the complete characterization of this type of Janus dendrimers. This work will constitute an up-to-date background for dendrimer specialists involved in designing amphiphilic Janus dendrimer-based nanomaterials for future innovations in this promising field.
Collapse
Affiliation(s)
- Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu, 310045 Arad, Romania
| | - Mariana Nela Ştefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Dan Roșu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Oana-Raluca Pop
- Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| |
Collapse
|
31
|
Yahyavi M, Badalkhani-Khamseh F, Hadipour NL. Folic acid functionalized carbon nanotubes as pH controlled carriers of fluorouracil: Molecular dynamics simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Le M, Huang W, Ma Z, Shi Z, Li Q, Lin C, Wang L, Jia YG. Facially Amphiphilic Skeleton-Derived Antibacterial Cationic Dendrimers. Biomacromolecules 2023; 24:269-282. [PMID: 36495302 DOI: 10.1021/acs.biomac.2c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to develop biocompatible and high-efficiency antimicrobial agents since microbial infections have always posed serious challenges to human health. Herein, through the marriage of facially amphiphilic skeletons and cationic dendrimers, high-density positively charged dendrimers D-CA6-N+ (G2) and D-CA2-N+ (G1) were designed and synthesized using the "branch" of facially amphiphilic bile acids, followed by their modification with quaternary ammonium charges. Both dendrimers could self-assemble into nanostructured micelles in aqueous solution. D-CA6-N+ displays potent antibacterial activity against Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) as low as 7.50 and 7.79 μM, respectively, and has an evidently stronger antibacterial activity than D-CA2-N+. Moreover, D-CA6-N+ can kill S. aureus faster than E. coli. The facial amphiphilicity of the bile acid skeleton facilitates the selective destruction of bacterial membranes and endows dendrimers with negligible hemolysis and cytotoxicity even under a high concentration of 16× MIC. In vivo studies show that D-CA6-N+ is much more effective and safer than penicillin G in treating S. aureus infection and promoting wound healing, which suggests facially amphiphilic skeleton-derived cationic dendrimers can be a promising approach to effectively enhance antibacterial activity and biocompatibility of antibacterial agent, simultaneously.
Collapse
Affiliation(s)
- Mengqi Le
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
33
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Tomás H, Rodrigues J. Dendrimers and dendrimer-based nano-objects for oncology applications. NEW TRENDS IN SMART NANOSTRUCTURED BIOMATERIALS IN HEALTH SCIENCES 2023:41-78. [DOI: 10.1016/b978-0-323-85671-3.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Ghahramani Y, Mokhberi M, Mousavi SM, Hashemi SA, Fallahi Nezhad F, Chiang WH, Gholami A, Lai CW. Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials. Molecules 2022; 27:8543. [PMID: 36500636 PMCID: PMC9740908 DOI: 10.3390/molecules27238543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.
Collapse
Affiliation(s)
- Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Marzieh Mokhberi
- Dentist, Dental School, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
36
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
37
|
Sah MK, Mukherjee S, Flora B, Malek N, Rath SN. Advancement in "Garbage In Biomaterials Out (GIBO)" concept to develop biomaterials from agricultural waste for tissue engineering and biomedical applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1015-1033. [PMID: 36406592 PMCID: PMC9672289 DOI: 10.1007/s40201-022-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Presently on a global scale, one of the major concerns is to find effective strategies to manage the agricultural waste to protect the environment. One strategy that has been drawing attention among the researchers is the development of biocompatible materials from agricultural waste. This strategy implies successful conversion of agricultural waste products (e.g.: cellulose, eggshell etc.) into building blocks for biomaterial development. Some of these wastes contain even bioactive compounds having biomedical applications. The replacement and augmentation of human tissue with biomaterials as alternative to traditional method not only bypasses immune-rejection, donor scarcity, and maintenance; but also provides long term solution to damaged or malfunctioning organs. Biomaterials development as one of the key challenges in tissue engineering approach, resourced from natural origin imparts better biocompatibility due to closely mimicking composition with cellular microenvironment. The "Garbage In, Biomaterials Out (GIBO)" concept, not only recycles the agricultural wastes, but also adds to biomaterial raw products for further product development in tissue regeneration. This paper reviews the conversion of garbage agricultural by-products to the biocompatible materials for various biomedical applications. Graphical abstract The agro-waste biomass processed, purified, modified, and further utilized for the fabrication of biomaterials-based support system for tissue engineering applications to grow living body parts in vitro or in vivo.
Collapse
Affiliation(s)
- Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Sunny Mukherjee
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Bableen Flora
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab India
| | - Naved Malek
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Medak, Telangana India
| |
Collapse
|
38
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
40
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
41
|
Guo H, Liu Y, Wu N, Sun L, Yang W. Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202202538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Yinsheng Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Lei Sun
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials Lanzhou 730070 P R China
| |
Collapse
|
42
|
Esfandiarpour R, Badalkhani-Khamseh F, Hadipour NL. Exploration of phosphorene as doxorubicin nanocarrier: An atomistic view from DFT calculations and MD simulations. Colloids Surf B Biointerfaces 2022; 215:112513. [PMID: 35483255 DOI: 10.1016/j.colsurfb.2022.112513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Potential capability of phosphorene nanosheet (PNS) as doxorubicin (DOX) nanocarrier was investigated using density functional theory (DFT) method and molecular dynamics (MD) simulations. Both DFT calculations and MD simulations revealed that the DOX molecule is adsorbed horizontally onto the PNS surface with the nearest interaction distance of 2.5 Å. The binding energy of DOX is predicted to be about - 49.5 kcal.mol-1, based on the DFT calculations. After DOX adsorption, the Eg value of PNS remains almost constant in both gas and solvent phases. The dynamical behavior of PNS-DOX was studied at T = 298, 310, and 326 K that reminiscent of room temperature, body temperature, and temperature of tumor after exposure to 808 nm laser radiation, respectively. The diffusion coefficient values of DOX molecule are proportional to temperature. We found that PNS can hold a high amount of DOX on both sides of its surface (66% in weight). MD simulations showed that the dynamical behavior of simulated systems are not affected by pH variances.
Collapse
Affiliation(s)
- Razieh Esfandiarpour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nasser L Hadipour
- Department of Physical Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
43
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
44
|
Neugebauer M, Grundmann CE, Lehnert M, von Stetten F, Früh SM, Süss R. Analyzing siRNA Concentration, Complexation and Stability in Cationic Dendriplexes by Stem-Loop Reverse Transcription-qPCR. Pharmaceutics 2022; 14:pharmaceutics14071348. [PMID: 35890243 PMCID: PMC9320460 DOI: 10.3390/pharmaceutics14071348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence:
| | - Clara E. Grundmann
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| |
Collapse
|
45
|
Wang Y, Ge W, Ma Z, Ji G, Wang M, Zhou G, Wang X. Use of mesoporous polydopamine nanoparticles as a stable drug-release system alleviates inflammation in knee osteoarthritis. APL Bioeng 2022; 6:026101. [PMID: 35496642 PMCID: PMC9033307 DOI: 10.1063/5.0088447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis drugs are often short-acting; therefore, to enhance their efficacy, long-term, stable-release, drug-delivery systems are urgently needed. Mesoporous polydopamine (MPDA), a natural nanoparticle with excellent biocompatibility and a high loading capacity, synthesized via a self-aggregation-based method, is frequently used in tumor photothermal therapy. Here, we evaluated its efficiency as a sustained and controlled-release drug carrier and investigated its effectiveness in retarding drug clearance. To this end, we used MPDA as a controlled-release vector to design a drug-loaded microsphere system (RCGD423@MPDA) for osteoarthritis treatment, and thereafter, tested the efficacy of the system in a rat model of osteoarthritis. The results indicated that at an intermediate drug-loading dose, MPDA showed high drug retention. Furthermore, the microsphere system maintained controlled drug release for over 28 days. Our in vitro experiments also showed that drug delivery using this microsphere system inhibited apoptosis-related cartilage degeneration, whereas MPDA-only administration did not show obvious cartilage degradation improvement effect. Results from an in vivo osteoarthritis model also confirmed that drug delivery via this microsphere system inhibited cartilage damage and proteoglycan loss more effectively than the non-vectored drug treatment. These findings suggest that MPDA may be effective as a controlled-release carrier for inhibiting the overall progression of osteoarthritis. Moreover, they provide insights into the selection of drug-clearance retarding vectors, highlighting the applicability of MPDA in this regard.
Collapse
Affiliation(s)
- Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Weiwen Ge
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xiansong Wang
- Authors to whom correspondence should be addressed: ; ; and
| |
Collapse
|
46
|
Tsai HY, Algar WR. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS NANO 2022; 16:8150-8160. [PMID: 35499916 DOI: 10.1021/acsnano.2c01473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is widely used for the development of biological probes and sensors. In this context, the norm for multiplexed detection is deployment of multiple probes, each a discrete donor-acceptor pair. Concentric FRET (cFRET) probes enable multiplexed sensing with a single vector but, to date, have only been developed around semiconductor quantum dots, which may limit the scope of biological applications for such probes. Here, we demonstrate that dendrimers labeled with a luminescent terbium complex (Tb) are a viable and advantageous alternative platform for cFRET probes. Polyamidoamine dendrimers were functionalized with Tb, biotin, NeutrAvidin, and three types of dye-labeled oligonucleotide probes to establish a network of competitive and sequential Tb-to-dye and dye-to-dye FRET pathways. These probes were characterized physically and photophysically, and a time-gated multiplexed assay for DNA targets was demonstrated. The time-gating offered by the Tb allowed the rejection of background autofluorescence from serum. More broadly, this dendrimer-based architecture shows that cFRET is a general concept and is an important step toward a new generation of probes for biological sensing.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
47
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
48
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
49
|
Engineering immunity via skin-directed drug delivery devices. J Control Release 2022; 345:385-404. [DOI: 10.1016/j.jconrel.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
50
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|