1
|
Ma S, Youssef M, Albahi A, Li J, Zhou P, Li B. Calcium alginate-cross-linked deacetylated konjac glucomannan-based double network hydrogels: Construction, characterizations and gelation kinetics. Int J Biol Macromol 2025; 309:142634. [PMID: 40187468 DOI: 10.1016/j.ijbiomac.2025.142634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Deacetylated Konjac Glucomannan (DKGM) hydrogels frequently fail to meet commercial standards because of their weak gel strength and low mechanical characteristics. In this regard, we successfully constructed DKGM and calcium alginate (CA) double network hydrogels (DKGM/CA DNs) through the two-step sequential network formation technique for the first time. The microstructure, gel properties and gel kinetics of DKGM/CA DNs were investigated in multiple dimensions. Notably after the introduction of CA gel network into DKGM hydrogels, the system's gel network pores became dense, the water freedom decreased, and the gel strength, hardness, gumminess and other properties were 10-25 times higher than pure DKGM hydrogels. Further gel kinetics analysis showed that the presence of sodium alginate (SA) increased the gelation rate of DKGM during the gelation process, shorten the sol-to-gel time, and reduced the complex modulus of the gel system. In contrast, the presence of DKGM hydrogels would hinder the penetration and diffusion of Ca2+ solution, thus slowing down the crosslinking rate of SA and Ca2+. In summary, this study provides a new solution for improving the mechanical properties of DKGM hydrogels in a green and efficient manner.
Collapse
Affiliation(s)
- Shaohua Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Amgad Albahi
- National Food Research Centre, Ministry of Agriculture, Khartoum, Sudan
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peiyuan Zhou
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Nouaa S, Aziam R, Carja G, Chiban M, Froidevaux R. Immobilization of Trametes versicolor laccase on LDH/alginate composite beads for improved textile dyes decolorization. Int J Biol Macromol 2025; 303:140577. [PMID: 39904437 DOI: 10.1016/j.ijbiomac.2025.140577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Laccase is an oxido-reductase known for its applications in biomass valorization (lignin depolymerization), in fine chemicals (building-blocks synthesis) or in environment (wastewater treatment). It works with molecular oxygen and produces water as its only by-product. However, its practical use remains limited due to the low stability and poor reusability of free laccase. To overcome these challenges, laccase from Trametes versicolor was immobilized onto layered double hydroxide and alginate composite beads by a glutaraldehyde cross-linker to create an easily separable and stable enzyme. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the as-synthesized composite beads (laccase@MgFe(LDH)/alginate). The activity of the immobilized laccase was measured with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) model substrate. Here, the optimal conditions of laccase immobilization were explored and the effects of various conditions of immobilization, pH, storage stability and thermal resistance of the (laccase@MgFe(LDH)/alginate) were also studied. The results revealed that the optimal conditions for laccase immobilization were a concentration of glutaraldehyde of 2.5 %, an amount of laccase (0.5 U/mg) of 2 mg/mL, and an immobilization time of 6 h. The stability of (laccase@MgFe(LDH)/alginate) was >70 % of its initial activity, even after 10 cycles. The study of dye decolorization showed up to 74 % of methylene blue (MB) and 69 % of Crystal violet (CV) degradation, suggesting the use of immobilized laccase on MgFe(LDH)/alginate composite beads as a promising and environmentally friendly tool for the degradation of environmental pollutants, in particular for the removal of textile dyes from wastewater.
Collapse
Affiliation(s)
- Safa Nouaa
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, ICV - Institut Charles Viollette, F-59000 Lille, France.
| | - Rachid Aziam
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Gabriela Carja
- Laboratory of Materials Nanoarchitectonics, Faculty of Chemical Engineering and Environment Protection, Technical University of 'Gheorghe Asachi' of Iasi, Iasi, Romania
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Renato Froidevaux
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394, ICV - Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
3
|
Qu L, Lu Q, Zhang L, Kong F, Zhang Y, Lin Z, Ni X, Zhang X, Zhao Y, Zou B. Research Progress on the Enhancement of Immobilized Enzyme Catalytic Performance and Its Application in the Synthesis of Vitamin E Succinate. Molecules 2025; 30:1241. [PMID: 40142017 PMCID: PMC11944737 DOI: 10.3390/molecules30061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Vitamin E succinate is a more mature vitamin E derivative, and its chemical stability and many effects have been improved compared with vitamin E, which can not only make up for the shortcomings of vitamin E application but also broaden the application field of vitamin E. At present, in developed countries such as Europe, America, and Japan, vitamin E succinate is widely used in health foods, and due to its good water solubility and stability, the vitamin E added to most nutritional supplements (tablets and hard capsules) is vitamin E succinate. At the same time, vitamin E succinate used in the food and pharmaceutical industries is mainly catalyzed by enzymatic catalysis. In this paper, Candida rugosa lipase (CRL) was studied. Chemical modification and immobilization were used to improve the enzymatic properties of CRL, and immobilized lipase with high stability and high activity was obtained. It was applied to the enzymatic synthesis of vitamin E succinate, and the reaction conditions were optimized to improve the yield and reduce the production cost. The review covered the research progress of the methods for enhancing the catalytic performance of immobilized enzymes and discussed its application in the synthesis of vitamin E succinate, providing new ideas and technical support for the catalytic performance enhancement of immobilized enzymes and its application in the synthesis of vitamin E succinate and promoting the production and application of vitamin E succinate.
Collapse
Affiliation(s)
- Liang Qu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Qiongya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Liming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Fanzhuo Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Zhiyuan Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xing Ni
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xue Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yani Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| |
Collapse
|
4
|
Daraei P, Rostami E, Nasirmanesh F. Sodium alginate modified metal oxide nanoparticles as a desirable nanofiller for polyethersulfone membranes: Application in diclofenac removal from water. Int J Biol Macromol 2024; 283:137974. [PMID: 39581393 DOI: 10.1016/j.ijbiomac.2024.137974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Biopolymers offer significant advantages in water treatment applications. This study investigates polyethersulfone (PES) membranes enhanced with TiO₂ and Fe₃O₄ nanoparticles modified by sodium alginate (NaAlg), abbreviated as NaAlg@TiO₂ and NaAlg@Fe₃O₄, for the removal of diclofenac sodium salt (DCF) from water. The NaAlg biopolymer modification was achieved by wrapping the metal oxide nanoparticles. The mixed matrix membranes containing modified nanofillers were prepared via phase inversion method. Results showed that adding 0.1 wt% NaAlg-modified nanoparticles increased membrane water uptake from 44 % to 90 % and 80 %, respectively. The pure water flux was improved due to enhanced hydrophilicity and porosity, and the modified membranes exhibited better fouling resistance against oily water. The DCF removal efficiency improved from 45 % to 96 % and 94 % for the NaAlg@TiO₂ and NaAlg@Fe₃O₄ nanocomposite membranes, respectively. The negative charge of NaAlg contributed to higher DCF rejection at pH 6-7. These findings demonstrate that modifying metal oxide nanoparticles with NaAlg enhances the performance of PES membranes, improving their effectiveness in water treatment.
Collapse
Affiliation(s)
- Parisa Daraei
- Department of Chemical Engineering, Kermanshah University of Technology, 67156 Kermanshah, Iran.
| | - Elham Rostami
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farzad Nasirmanesh
- Department of Chemical Engineering, Kermanshah University of Technology, 67156 Kermanshah, Iran
| |
Collapse
|
5
|
Cojocaru E, Oprea M, Vlăsceanu GM, Nicolae MC, Popescu RC, Mereuţă PE, Toader AG, Ioniţă M. Dual nanofiber and graphene reinforcement of 3D printed biomimetic supports for bone tissue repair. RSC Adv 2024; 14:32517-32532. [PMID: 39411258 PMCID: PMC11474446 DOI: 10.1039/d4ra06167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Replicating the intricate architecture of the extracellular matrix (ECM) is an actual challenge in the field of bone tissue engineering. In the present research study, calcium alginate/cellulose nanofibrils-based 3D printed scaffolds, double-reinforced with chitosan/polyethylene oxide electrospun nanofibers (NFs) and graphene oxide (GO) were prepared using the 3D printing technique. The porous matrix was provided by the calcium alginate, while the anisotropy degree and mechanical properties were ensured by the addition of fillers with different sizes and shapes (CNFs, NFs, GO), similar to the components naturally found in bone ECM. Surface morphology and 3D internal microstructure were analyzed using scanning electron microscopy (SEM) and micro-computed tomography (μ-CT), which evidenced a synergistic effect of the reinforcing and functional fibers addition, as well as of the GO sheets that seem to govern materials structuration. Also, the nanoindentation measurements showed significant differences in the elasticity and viscosity modulus, depending on the measurement point, this supported the anisotropic character of the scaffolds. In vitro assays performed on MG-63 osteoblast cells confirmed the biocompatibility of the calcium alginate-based scaffolds and highlighted the osteostimulatory and mineralization enhancement effect of GO. In virtue of their biocompatibility, structural complexity similar with the one of native bone ECM, and biomimetic mechanical characteristics (e.g. high mechanical strength, durotaxis), these novel materials were considered appropriate for specific functional needs, like guided support for bone tissue formation.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina Oprea
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mădălina-Cristina Nicolae
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Roxana-Cristina Popescu
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Life and Environmental Physics 30 Reactor. Street Magurele Romania
| | - Paul-Emil Mereuţă
- National Institute for Research and Development in Physics and Nuclear Engineering "Horia Hulubei", Department of Applied Nuclear Physics 30 Reactor. Street Magurele Romania
| | - Alin-Georgian Toader
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Mariana Ioniţă
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Center of Excellence in Bioengineering, National University of Science and Technology POLITEHNICA Bucharest 6 Iuliu Maniu Boulevard, Campus Building Bucharest 061344 Romania
| |
Collapse
|
6
|
Hu M, Li Z, Liu Y, Feng Y, Wang Z, Huang R, Li L, Huang X, Shao Q, Lin W, Cheng X, Yang Y. Multifunctional Hydrogel of Recombinant Humanized Collagen Loaded with MSCs and MnO 2 Accelerates Chronic Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:3188-3202. [PMID: 38592024 DOI: 10.1021/acsbiomaterials.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO2/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO2 nanoparticles, RHC, and MSCs. The hydrogel has high mechanical properties and good biocompatibility. In vitro, SA@MnO2/RHC/MSCs hydrogel effectively enhanced the formation of intricate tubular structures and angiogenesis and showed synergistic effects on cell proliferation and migration. In vivo, the SA@MnO2/RHC/MSCs hydrogel enhanced diabetes wound healing, rapid re-epithelization, favorable collagen deposition, and abundant wound angiogenesis. These findings demonstrated that the combined effects of SA, MnO2, RHC, and MSCs synergistically accelerate healing, resulting in a reduced healing time. These observed healing effects demonstrated the potential of this multifunctional hydrogel to transform chronic wound care and improve patient outcomes.
Collapse
Affiliation(s)
- Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaopeng Huang
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California 90024, United States
| | - Qi Shao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xianxing Cheng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
7
|
Lin X, Shi J, Meng G, Pan Y, Liu Z. Effect of graphene oxide on sodium alginate hydrogel as a carrier triggering release of ibuprofen. Int J Biol Macromol 2024; 260:129515. [PMID: 38237826 DOI: 10.1016/j.ijbiomac.2024.129515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
The design and preparation of safe wound dressings with antibacterial and controlled drug release abilities is valuable in medicine. This research focuses on the fabrication of a hydrogel carrier with graphene oxide (GO)-triggered ibuprofen (IBU) release to control inflammation. The hydrogel was prepared by cross-linking the base polymer sodium alginate (SA) and functionalized GO. The morphology of the gel was observed by a scanning electron microscope (SEM), and its structure was analyzed through X-ray diffraction (XRD) and Fourier transform infrared reflection (FTIR) spectroscopy. The effects of GO on swelling capacity, IBU release behavior and antibacterial activity were investigated by using the prepared GO/SA hydrogel as a drug carrier and IBU as a drug model. In vitro studies confirmed that the GO/SA hydrogel had good antimicrobial activity and excellent cytotoxicity. The analysis of cumulative IBU release rates revealed that the addition of GO could promote the release of IBU, and the change in GO content did not have a prominent effect on IBU release. At the same time, the rate of IBU release from the GO/SA hydrogel was affected by near-infrared light. Under a light source, the release rate of IBU increased, and the release amount of IBU showed a clear stepwise increase under light on-off conditions. These results suggest that the GO/SA hydrogel could be a potential antibacterial and anti-inflammatory wound dressing.
Collapse
Affiliation(s)
- Xiuling Lin
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jiali Shi
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Ge Meng
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yusong Pan
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhenying Liu
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
8
|
Wang N, Wang B, Wan Y, Gao B, Rajput VD. Alginate-based composites as novel soil conditioners for sustainable applications in agriculture: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119133. [PMID: 37839201 PMCID: PMC11057947 DOI: 10.1016/j.jenvman.2023.119133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
The development of alginate-based composites in agriculture to combat nutrient loss and drought for sustainable development has drawn increasing attention in the scientific community. Existing studies are however scattered, and the retention and slow-release mechanisms of alginate-based composites are not well understood. This paper systematically reviews the current literature on the preparation, characterization, and agricultural applications of various alginate-based composites. The synthesis methods of alginate-based composites are firstly summarized, followed by a review of available analytical techniques to characterize alginate-based composites for the attainment of their desired performance. Secondly, the performance and controlling factors for agricultural applications of alginate-based composites are discussed, including aquasorb, slow-release fertilizer, soil amendment, microbial inoculants, and controlled release of pesticides for pest management. Finally, suggestions and future perspectives are proposed to expand the applications of alginate-based composites for sustainable agriculture.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Yongshan Wan
- Center for Environmental Measurement and Modeling, US EPA, Gulf Breeze, FL, USA
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| |
Collapse
|
9
|
Hu W, Cheng WC, Wang Y, Wen S, Xue ZF. Applying a nanocomposite hydrogel electrode to mitigate electrochemical polarization and focusing effect in electrokinetic remediation of a Cu- and Pb-contaminated loess. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122039. [PMID: 37336350 DOI: 10.1016/j.envpol.2023.122039] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Inappropriate handling of copper (Cu) and lead (Pb)-containing wastewater resulting from metallurgical and smelting industries in Northwest China encourages their migration to surrounding environments. Their accumulation causes damage to liver and kidney function. The electrokinetic (EK) technology is considered to be an alternative to traditional remediation technologies because of its great maneuverability. The EK remediation is accompanied by the electrode polarization and the focusing effect toward affecting removal efficiency. In this study, a nanocomposite hydrogel (NCH) electrode was proposed and applied to the EK remediation of Cu- and Pb-contaminated loess. The mechanical, adsorption capacity, adsorption kinetics, and electrochemical properties of the NCH electrode were investigated in detail, followed by microscopic analyses of Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Raman spectrometer. Results showed that the enhancement of the mechanical properties of the NCH electrode was attributed to the crosslinks of graphene nanoparticles, calcium alginate, and hydrogen bonds, while the Cu or Pb adsorption by the NCH electrode was in a chemisorption manner. The second layer formation might address the increase in adsorption capacity with increasing temperature. These results highlight the relative merits of the NCH electrode and verify the potential of applying the NCH electrode to the EK remediation of Cu- and Pb-contamianted loess.
Collapse
Affiliation(s)
- Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yihan Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
10
|
Jing Q, Ma Y, He J, Ren Z. Highly Stable, Mechanically Enhanced, and Easy-to-Collect Sodium Alginate/NZVI-rGO Gel Beads for Efficient Removal of Cr(VI). Polymers (Basel) 2023; 15:3764. [PMID: 37765618 PMCID: PMC10534353 DOI: 10.3390/polym15183764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoscale zero-valent iron (NZVI) is a material that is extensively applied for water pollution treatment, but its poor dispersibility, easy oxidation, and inconvenient collection limit its application. To overcome these drawbacks and limit secondary contamination of nanomaterials, we confine NZVI supported by reduced graphene oxide (rGO) in the scaffold of sodium alginate (SA) gel beads (SA/NZVI-rGO). Scanning electron microscopy showed that the NZVI was uniformly dispersed in the gel beads. Fourier transform infrared spectroscopy demonstrated that the hydrogen bonding and conjugation between SA and rGO allowed the NZVI-rGO to be successfully embedded in SA. Furthermore, the mechanical strength, swelling resistance, and Cr(VI) removal capacity of SA/NZVI-rGO were enhanced by optimizing the ratio of NZVI and rGO. Interestingly, cation exchange may drive Cr(VI) removal above 82% over a wide pH range. In the complex environment of actual Cr(VI) wastewater, Cr(VI) removal efficiency still reached 70.25%. Pseudo-first-order kinetics and Langmuir adsorption isotherm are preferred to explain the removal process. The mechanism of Cr(VI) removal by SA/NZVI-rGO is dominated by reduction and adsorption. The sustainable removal of Cr(VI) by packed columns could be well fitted by the Thomas, Adams-Bohart, and Yoon-Nelson models, and importantly, the gel beads maintained integrity during the prolonged removal. These results will contribute significant insights into the practical application of SA/NZVI-rGO beads for the Cr(VI) removal in aqueous environments.
Collapse
Affiliation(s)
- Qi Jing
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (Y.M.); (J.H.); (Z.R.)
| | | | | | | |
Collapse
|
11
|
Shoueir K, Wahba AM, El Marouazi H, Janowska I. Performant removal of creatinine using few-layer-graphene/alginate beads as a kidney filter. Int J Biol Macromol 2023:124936. [PMID: 37236566 DOI: 10.1016/j.ijbiomac.2023.124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Reduction of renal function, such as creatinine adsorption is one of the most common and dangerous diseases. Dedicated to this issue, developing high-performance, sustainable, and bio-compatible adsorbing materials is still challenging. Herein, barium alginate (BA) and BA containing few-layer graphene (FLG/BA) beads were synthesized in water from sodium alginate, also acting as bio-surfactant in in-situ exfoliation of graphite to FLG. The physicochemical characteristics of the beads demonstrated an excess of barium chloride used as a cross-linker. The efficiency and sorption capacity (Qe) of creatinine removal increase with processing duration reaching 82.1, 99.5 %, and 68.4, 82.9 mg·g-1 for BA and FLG/BA, respectively. The thermodynamic parameters detect the enthalpy change (ΔH°) of about -24.29 and -36.11 kJ·mol-1 and the entropy change (ΔS°) of around -69.24 and -79.46 kJ·mol-1 for BA and FLG/BA, respectively. During the reusability test, the removal efficiency decreases from the optimal first cycle to 69.1 and to 88.3 % in the sixth cycle for BA and FLG/BA, revealing superior stability of FLG/BA. The MD calculations confirm a higher adsorption capacity of FLG/BA composite compared to BA alone, clearly confirming a strong structure-property relation.
Collapse
Affiliation(s)
- Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| | - Ahmed M Wahba
- Department of Basic Science, Higher Institute of Engineering and Technology (HIET), El-Mahalla, Egypt
| | - Hamza El Marouazi
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
12
|
Yi N, Wang M, Song L, Feng F, Li J, Xie R, Zhao Z, Chen W. Highly hygroscopicity and antioxidant nanofibrous dressing base on alginate for accelerating wound healing. Colloids Surf B Biointerfaces 2023; 225:113240. [PMID: 36889107 DOI: 10.1016/j.colsurfb.2023.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The removal of bacterium and free radicals is important for wound healing. Therefore, it is necessary to prepare biological dressings with antibacterial and antioxidant properties. In this study, high-performance calcium alginate/carbon polymer dots/forsythin composite nanofibrous membrane (CA/CPDs/FT) was explored under the influence of carbon polymer dots and forsythin. The addition of carbon polymer dots improved the nanofiber morphology and therefore enhanced the mechanical strength of the composite membrane. Moreover, CA/CPDs/FT membranes displayed satisfactory antibacterial and antioxidant properties because of the natural properties of forsythin. Meanwhile, outstanding hygroscopicity over 700% was also obtained for the composite membrane. In vitro and in vivo experiments showed that the CA/CPDs/FT nanofibrous membrane could prevent the invasion of bacteria, scavenge free radicals, and promote wound healing. Moreover, its good hygroscopicity and antioxidation characteristics were friendly for the clinical application of high-exudate wounds.
Collapse
Affiliation(s)
- Na Yi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Li Song
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fan Feng
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ruyi Xie
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
13
|
Lu D, Yang Q, Chen Z, Zhu F, Liu C, Han S. Fabrication and performance of novel alginate hydrogel system modified with GO and Ascorbic acid. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Bosio B, Camiscia P, Fuciños P, Pastrana L, Picó GA, Valetti NW. Adsorption properties and physical characterization of carrageenan/alginate macro and microspheres blended with flexible chain polymers. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Yang P, Yu F, Yang Z, Zhang X, Ma J. Graphene oxide modified κ-carrageenan/sodium alginate double-network hydrogel for effective adsorption of antibiotics in a batch and fixed-bed column system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155662. [PMID: 35525355 DOI: 10.1016/j.scitotenv.2022.155662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The treatment of antibiotic wastewater pollution is imminent, the studies of double-network hydrogels as adsorbents have gradually increased, it is quite important to develop a non-toxic hydrogel with excellent properties as adsorbent. In this study, a graphene oxide modified κ-carrageenan/sodium alginate (GO-κ-car/SA) gel was prepared by calcium hardening. The addition of GO nanosheets enhances the mechanical strength and anti-swelling property of the double-network hydrogel, making it possible for the application in the fixed-bed column system. The elastic modulus is twice as much as the hydrogel without GO. The maximum adsorption capacity in the experiments of the GO-κ-car/SA gel for CIP and OFL can reach 272.18 mg g-1 and 197.39 mg g-1, respectively. The GO-κ-car/SA gel always remains negatively charged, which means that the adsorption capacity of the gel is better in an acidic environment. In the fixed-bed column system, through Thomas fitting, the maximum adsorption capacity of the simulated OFL wastewater (200 mg L-1) is 83.99 mg g-1. The adsorption mechanism of antibiotics by GO-κ-car/SA gel depends on hydrogen bond, functional groups and electrostatic adsorption. The good hydrophilic properties, excellent adsorption capacity and high mechanical strength, which can ensure that the adsorbent is in full contact with the contaminants without major deformation or damage, makes the study more helpful for the further study on hydrogel in the fixed-bed column system.
Collapse
Affiliation(s)
- Peiyu Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China.
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhengqu Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China.
| | - Xiaochen Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China.
| | - Jie Ma
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
16
|
Wang Z, Liao X, Wang X, Bai Y, Huang H, Shen K, Sun L, Liu B, Fan Z. Converting Complex Sewage Containing Oil, Silt, and Bacteria into Clean Water by a 3D Printed Multiscale and Multifunctional Filter. ACS APPLIED BIO MATERIALS 2021; 4:8509-8521. [PMID: 35005937 DOI: 10.1021/acsabm.1c01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exacerbating water pollution and water resource shortage pose a great danger to human health and make it imperative to recycle and treat the sewage. In this study, a direct-writing three-dimensional (3D) printing technology was adopted to prepare a 3D sodium alginate (SA)/graphene oxide (GO)/Ag nanoparticle (AgNP) aerogel (SGA), aiming to turn the complex sewage containing oil, silt, and bacteria into clean water depending only on gravity separation. The physicochemical properties and surface structure of the synthesized SGA were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The swelling rate, mechanical properties, antibacterial properties, oil and water separation effect, and durable stability of the filter membrane were also investigated to verify the versatility of the SGA filter. The results showed that GO helped improve the mechanical properties of the printed filter to withstand water impact during the filtration process. The printed filter had a well-designed and multiscale gradient pore structure, which can effectively intercept particles with different sizes to separate the silt from water, and the turbidity of the filtered water can be reduced from 60 to 1 nephelometric turbidity unit (NTU). The presence of SA endowed the printed filter with hydrophilic and oleophobic behaviors, which can effectively separate various kinds of oils from water. The uniform distribution of AgNPs in the filter produced via a facile and green reduction of SA facilitated the efficient bactericidal ability of the printed filter during the filtration process; meanwhile, the lower release concentration of Ag ions ensured drinking safety. What is more, the filter can be easily produced on a large scale and used for different sewage treatment situations with a durable stability of over 30 days. Taken together, the printed SGA filter has a broad application prospect in complex sewage treatment, providing a special solution for sewage treatment in poverty areas.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiaozhu Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yan Bai
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Haofei Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
17
|
Tian Y, Zhang X, Feng X, Zhang J, Zhong T. Shapeable and underwater super-elastic cellulose nanofiber/alginate cryogels by freezing-induced oxa-Michael reaction for efficient protein purification. Carbohydr Polym 2021; 272:118498. [PMID: 34420751 DOI: 10.1016/j.carbpol.2021.118498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Construction of monolithic cryogels that can efficiently adsorb proteins is of great significance in biotechnological and pharmaceutical industries. Herein, a novel approach is presented to fabricate microfibrillated cellulose (MFC)/sodium alginate (SA) cryogels by using freezing-induced oxa-Michael reaction at -12 °C. Thanks to the controllable reactiveness of divinyl sulfone (DVS), cryo-concentrated pH increase activates the oxa-Michael reaction between DVS and hydroxyl groups of MFCs and SAs. The obtained composite cryogel exhibits outstanding underwater shape recovery and excellent fatigue resistance. Moreover, the MFC/SAs reveal a high lysozyme adsorption capacity of 294.12 mg/g, surpassing most of absorbent materials previously reported. Furthermore, the cryogel-packed column can purify lysozyme continuously from chicken egg white, highlighting its outstanding practical application performance. Reuse experiments indicated that over 90% of lysozyme extraction capacity was retained after 6 cycles. This work provides a new avenue to design and develop next-generation chromatographic media of natural polysaccharide-based cryogel for protein purification.
Collapse
Affiliation(s)
- Yiran Tian
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jinmeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Tianyi Zhong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
18
|
Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci 2021; 9:6337-6354. [PMID: 34397056 DOI: 10.1039/d1bm00605c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging tissue engineering approach that aims to develop cell or biomolecule-laden, complex polymeric scaffolds with high precision, using hydrogel-based "bioinks". Hydrogels are water-swollen, highly crosslinked polymer networks that are soft, quasi-solid, and can support and protect biological materials. However, traditional hydrogels have weak mechanical properties and cannot retain complex structures. They must be reinforced with physical and chemical manipulations to produce a mechanically resilient bioink. Over the past few years, we have witnessed an increased use of nanoparticles and biological moiety-functionalized nanoparticles to fabricate new bioinks. Nanoparticles of varied size, shape, and surface chemistries can provide a unique solution to this problem primarily because of three reasons: (a) nanoparticles can mechanically reinforce hydrogels through physical and chemical interactions. This can favorably influence the bioink's 3D printability and structural integrity by modulating its rheological, biomechanical, and biochemical properties, allowing greater flexibility to print a wide range of structures; (b) nanoparticles can introduce new bio-functionalities to the hydrogels, which is a key metric of a bioink's performance, influencing both cell-material and cell-cell interactions within the hydrogel; (c) nanoparticles can impart "smart" features to the bioink, making the tissue constructs responsive to external stimuli. Responsiveness of the hydrogel to magnetic field, electric field, pH changes, and near-infrared light can be made possible by the incorporation of nanoparticles. Additionally, bioink polymeric networks with nanoparticles can undergo advanced chemical crosslinking, allowing greater flexibility to print structures with varied biomechanical properties. Taken together, the unique properties of various nanoparticles can help bioprint intricate constructs, bringing the process one step closer to complex tissue structure and organ printing. In this review, we explore the design principles and multifunctional properties of various nanomaterials and nanocomposite hydrogels for potential, primarily extrusion-based bioprinting applications. We illustrate the significance of biocompatibility of the designed nanocomposite hydrogel-based bioink for clinical translation and discuss the different parameters that affect cell fate after cell-nanomaterial interaction. Finally, we critically assess the current challenges of nanoengineering bioinks and provide insight into the future directions of potential hydrogel bioinks in the rapidly evolving field of bioprinting.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Avinava Roy
- Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
19
|
G.V YD, Prabhu A, Anil S, Venkatesan J. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. J Drug Deliv Sci Technol 2021; 64:102624. [DOI: 10.1016/j.jddst.2021.102624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Liu Y, Li Y, Yuan X, Ren R, Lv Y. A self-prepared graphene oxide/sodium alginate aerogel as biological carrier to improve the performance of a heterotrophic nitrifier. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. MATERIALS 2021; 14:ma14133655. [PMID: 34209007 PMCID: PMC8269710 DOI: 10.3390/ma14133655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.
Collapse
|
22
|
Eweida BY, El-Moghazy AY, Pandey PK, Amaly N. Fabrication and simulation studies of high-performance anionic sponge alginate beads for lysozyme separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Filatova LY, Balabushevich NG, Klyachko NL. A physicochemical, structural, microbiological and kinetic study of hen egg white lysozyme in complexes with alginate and chitosan. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1909001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lyubov Y. Filatova
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda G. Balabushevich
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J Colloid Interface Sci 2021; 583:321-330. [DOI: 10.1016/j.jcis.2020.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
|
25
|
Excellent electromagnetic wave absorption by complex systems through hybrid polymerized material. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03543-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Effect of biomass immobilization and reduced graphene oxide on the microbial community changes and nitrogen removal at low temperatures. Sci Rep 2021; 11:840. [PMID: 33436937 PMCID: PMC7804202 DOI: 10.1038/s41598-020-80747-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
The slow growth rate and high optimal temperatures for the anaerobic ammonium oxidation (anammox) bacteria are significant limitations of the anammox processes application in the treatment of mainstream of wastewater entering wastewater treatment plant (WWTP). In this study, we investigate the nitrogen removal and microbial community changes in sodium alginate (SA) and sodium alginate–reduced graphene oxide (SA-RGO) carriers, depending on the process temperature, with a particular emphasis on the temperature close to the mainstream of wastewater entering the WWTP. The RGO addition to the SA matrix causes suppression of the beads swelling, which intern modifies the mechanical properties of the gel beads. The effect of the temperature drop on the nitrogen removal rate was reduced for biomass entrapped in SA and SA-RGO gel beads in comparison to non-immobilized biomass, this suggests a ‘‘protective” effect caused by immobilization. However, analyses performed using next-generation sequencing (NGS) and qPCR revealed that the microbial community composition and relative gene abundance changed significantly, after the implementation of the new process conditions. The microbial community inside the gel beads was completely remodelled, in comparison with inoculum, and denitrification contributed to the nitrogen transformation inside the beads.
Collapse
|
27
|
Zhou X, Wang B, Jia Z, Zhang X, Liu X, Wang K, Xu B, Wu G. Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J Colloid Interface Sci 2021; 582:515-525. [DOI: 10.1016/j.jcis.2020.08.087] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
28
|
Urtasun N, Mignon A, Martínez-Alvarez LM, Baieli MF, Hirsch DB, Cascone O, Dubruel P, Wolman FJ. Synthesis and characterization of chitosan mini-spheres with immobilized dye as affinity ligand for the purification of lactoperoxidase and lactoferrin from dairy whey. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Mohammadabadi SI, Javanbakht V. Lignin extraction from barley straw using ultrasound-assisted treatment method for a lignin-based biocomposite preparation with remarkable adsorption capacity for heavy metal. Int J Biol Macromol 2020; 164:1133-1148. [PMID: 32679319 DOI: 10.1016/j.ijbiomac.2020.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
|
30
|
Shende P, Pathan N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr Polym 2020; 255:117385. [PMID: 33436214 DOI: 10.1016/j.carbpol.2020.117385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 01/16/2023]
Abstract
Graphene displays various properties like optical, electrical, mechanical, etc. resulting in a large range of applications in biosensing, bio-imaging, medical and electronic devices. The graphene-based nanomaterials show disadvantages like hydrophobic surface, degradation of biomolecules (proteins and amino acids) and toxicity to the human and microbes by permeating into the cells and thus, limiting the use in the biomedical field. Conjugation of carbohydrates like chitin, cyclodextrins and cellulose with graphene results in thermal stability, oxygen repulsive ability, fire-retardant and gelling properties with better biodegradability, biocompatibility and safety leading to the formation of environment-friendly biopolymers. This article delivers an overview of the molecular interaction of different carbohydrates-derived from natural sources like marine, plants and microbes with graphene nanosheets to extend the applications in tissue engineering, surgical materials, biosensing and novel drug delivery for prolonged action in the treatment of breast and hepatic cancers.
Collapse
Affiliation(s)
- Pravin Shende
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Nazneen Pathan
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
31
|
Mohammadabadi SI, Javanbakht V. Development of hybrid gel beads of lignocellulosic compounds derived from agricultural waste: Efficient lead adsorbents for a comparative biosorption. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Zhou X, Jia Z, Feng A, Qu S, Wang X, Liu X, Wang B, Wu G. Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 2020; 575:130-139. [DOI: 10.1016/j.jcis.2020.04.099] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
|
34
|
|
35
|
Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J Colloid Interface Sci 2020; 572:227-235. [DOI: 10.1016/j.jcis.2020.03.089] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
|
36
|
Pan L, Liu YT, Zhong M, Xie XM. Coordination-Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902779. [PMID: 31496034 DOI: 10.1002/smll.201902779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Indexed: 06/10/2023]
Abstract
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad-ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination-driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure-property relationship. Furthermore, insights into the present challenges and future research directions are also presented.
Collapse
Affiliation(s)
- Long Pan
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi-Tao Liu
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Zhong
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xu-Ming Xie
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Feng A, Hou T, Jia Z, Wu G. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber. RSC Adv 2020; 10:10510-10518. [PMID: 35492930 PMCID: PMC9050366 DOI: 10.1039/c9ra10327a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, a novel hierarchical carbon fiber@cobalt ferrite@manganese dioxide (CF@CoFe2O4@MnO2) composite was facilely prepared via a sol-gel method and hydrothermal reaction. The morphology, structure, chemical and element composition, crystal form, elemental binding energy, magnetic behavior and microwave absorbing performance of the composite were carefully investigated. According to its hysteresis loops, the composite exhibits a typical soft magnetic behavior, with a M s value of 30.2 emu g-1. Besides, the as-synthesized CF@CoFe2O4@MnO2 composite exhibits superior microwave absorption performance mainly due to reasonable electromagnetic matching, and its minimum reflection loss value can reach -34 dB with a sample thickness of just 1.5 mm. The composite can be regarded as an ideal microwave absorber.
Collapse
Affiliation(s)
- Ailing Feng
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences Baoji 721016 P. R. China
| | - Tianqi Hou
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University Qingdao 266071 P. R. China +86 532 85951496 +86 532 85951496
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University Qingdao 266071 P. R. China +86 532 85951496 +86 532 85951496
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University Qingdao 266071 P. R. China +86 532 85951496 +86 532 85951496
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology Harbin 150080 PR China
| |
Collapse
|
38
|
Talebian S, Mehrali M, Raad R, Safaei F, Xi J, Liu Z, Foroughi J. Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications. Front Chem 2020; 8:88. [PMID: 32175306 PMCID: PMC7056842 DOI: 10.3389/fchem.2020.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Conductive biomaterials have recently gained much attention, specifically owing to their application for electrical stimulation of electrically excitable cells. Herein, flexible, electrically conducting, robust fibers composed of both an alginate biopolymer and graphene components have been produced using a wet-spinning process. These nanocomposite fibers showed better mechanical, electrical, and electrochemical properties than did single fibers that were made solely from alginate. Furthermore, with the aim of evaluating the response of biological entities to these novel nanocomposite biofibers, in vitro studies were carried out using C2C12 myoblast cell lines. The obtained results from in vitro studies indicated that the developed electrically conducting biofibers are biocompatible to living cells. The developed hybrid conductive biofibers are likely to find applications as 3D scaffolding materials for tissue engineering applications.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Mehdi Mehrali
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Raad Raad
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Farzad Safaei
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Jiangtao Xi
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Zhoufeng Liu
- School of Textile Engineering, Zhongyuan University of Technology, Zhengzhou, China
| | - Javad Foroughi
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
39
|
Zhang W, Song J, He Q, Wang H, Lyu W, Feng H, Xiong W, Guo W, Wu J, Chen L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121445. [PMID: 31668843 DOI: 10.1016/j.jhazmat.2019.121445] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Novel biochar/pectin/alginate hydrogel beads (BPA) derived from grapefruit peel were synthesized and used for Cu(II) removal from aqueous solution. FTIR, SEM-EDS, XRD, TGA and XPS, etc. were applied for characterization analysis. The synergistic reinforcing effect of polymer matrix and biochar fillers improved the adsorptive, mechanical and thermostabilized performance of BPA. Factors like component contents of biochar and pectin, pH, contact time, Cu(II) concentration and coexisting inorganic salts or organic ligands were systematically investigated in batch mode. The adsorption isotherms were fitted well by the Freundlich model and the experimental maximum adsorption capacity of optimized BPA-9 beads (mass ratio of pectin to alginate = 10:1) with 0.25% biochar, was ∼80.6 mg/g at pH 6. Kinetic process was well described by the pseudo-second-order model and film diffusion primarily governed the overall adsorption rate, followed by intraparticle diffusion. Thermodynamics analysis suggested spontaneous feasibility and endothermic nature of adsorption behavior. Moreover, BPA also showed better environmental adaptability in the presence of NaCl, MgCl2, CaCl2, EDTA-2Na and CA as well as good adsorption potential for other heavy metal [e.g. Pb(III)]. Crucially, the BPA beads showed good regeneration ability after five cycles. All these results indicated the potential of BPA for removing heavy metal from water.
Collapse
Affiliation(s)
- Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Huijuan Feng
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jing Wu
- School of Urban Design, Wuhan University, Wuhan, 430072, China
| | - Ling Chen
- Department of Internal Medicine & Geriatrics, Zhongnan Hospital of Wuhan University, China.
| |
Collapse
|
40
|
Zhang Y, Kou K, Ji T, Huang Z, Zhang S, Zhang S, Wu G. Preparation of Ionic Liquid-Coated Graphene Nanosheets/PTFE Nanocomposite for Stretchable, Flexible Conductor via a Pre-Stretch Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E40. [PMID: 31877983 PMCID: PMC7022427 DOI: 10.3390/nano10010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/27/2022]
Abstract
The various volume concentrations of ionic liquid-modified graphene nanosheets filled polytetrafluoroethylene nanocomposites (IL-GNs/PTFE) for flexible conductors were fabricated via a pre-stretch processing method after cold-press sintering. The results indicated that pre-stretching has no significant weakening in the electrical conductivity of the nanocomposites, while the Young's modulus greatly reduced by 62.5%, which is more suitable for flexible conductors. This may be because the reduced conductivity by the destructive conductive pathway cancels out the enhanced conductivity by the increased interlamellar spacing of IL-GNs via a pre-stretch processing, and the nanocomposite exhibits a phase transition from two to three-phase (with the introduction of an air phase) during pre-stretching. It was also found that the tensile strength of the nanocomposites was enhanced by 42.9% and the elongation at break and thermal conductivity decreased slightly with the same filler content after pre-stretching. The electrical conductivity of the pre-stretched nanocomposites tended to stabilize at 5.5 × 10-2 s·m-1, when the volume content of the packings achieved a percolation threshold (1.49 vol%). Meanwhile, the electrical resistivity of the pre-stretched 3.0 vol% IL-GNs/PTFE nanocomposite was slightly reduced by 0.30%, 0.38%, and 0.87% respectively after 180° twisting, 180° bending, and 10% stretching strain for 1000 cycles.
Collapse
Affiliation(s)
- Yu Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Kaichang Kou
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Tiezheng Ji
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400040, China
| | - Shuangcun Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Shijie Zhang
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; (Y.Z.); (K.K.); (T.J.); (S.Z.)
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
41
|
Yun Y, Wu H, Gao J, Dai W, Deng L, Lv O, Kong Y. Facile synthesis of Ca 2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110380. [PMID: 31924053 DOI: 10.1016/j.msec.2019.110380] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
The design of stimuli-responsive drug carrier for controlled drug release is of significant importance in pharmaceutics, medicine and biology. Here, sodium alginate (SA) was integrated with graphene oxide (GO) by using Ca2+ as the crosslinker. The resultant SA-Ca2+-GO composites were freeze-dried to produce SA-Ca2+-GO hybrids, which were then examined by Fourier transform infrared (FT-IR) spectrometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The SA-Ca2+-GO hybrids were used as the drug carrier of methotrexate (MTX), and electro- and pH-responsive release of MTX was successfully achieved due to the excellent conductive ability of GO and the pH-sensitive property of SA. Finally, Higuchi model was employed to investigate the release kinetics of MTX from the SA-Ca2+-GO hybrids, and the results indicate that the release of MTX is controlled by Fickian diffusion.
Collapse
Affiliation(s)
- Yajing Yun
- Department of Gynecology and Obstetrics, Changzhou No. 7 People's Hospital, Changzhou, 213011, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou, 213003, China
| | - Wei Dai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Linhong Deng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Ouyang Lv
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Yong Kong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
42
|
Chen X, Jia Z, Feng A, Wang B, Tong X, Zhang C, Wu G. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J Colloid Interface Sci 2019; 553:465-474. [DOI: 10.1016/j.jcis.2019.06.058] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
43
|
Functionalized Multiwalled Carbon Nanotube-Reinforced Polyimide Composite Films with Enhanced Mechanical and Thermal Properties. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9302803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyimide- (PI-) based nanocomposites containing the 4,4′-diaminodiphenyl ether- (ODA-) modified multiwalled carbon nanotube (MWCNT) filler were successfully prepared. The PI/MWCNTs-ODA composite films exhibit high thermal conductivity and excellent mechanical property. The optimal value of thermal conductivity of the PI/MWCNTs-ODA composite film is 0.4397 W/mK with 3 wt.% filler loading, increased by 221.89% in comparison with that of the pure PI film. In addition, the tensile strength of the PI/MWCNTs-ODA composite film is 141.48 MPa with 3 wt.% filler loading, increased by 20.74% in comparison with that of the pure PI film. This work develops a new strategy to achieve a good balance between the high thermal conductivity and excellent mechanical properties of polyimide composite films by using functionalized carbon nanotubes as an effective thermal conductive filler.
Collapse
|
44
|
Feng A, Ma M, Jia Z, Zhang M, Wu G. Fabrication of NiFe 2O 4@carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber. RSC Adv 2019; 9:25932-25941. [PMID: 35530055 PMCID: PMC9070089 DOI: 10.1039/c9ra04219a] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
In this work, a novel CF@NiFe2O4 composite coated with phytic acid-doped polyaniline (CF@NiFe2O4@p-PANI) was facilely synthesized. First, a typical solvothermal reaction was applied to obtain the CF@NiFe2O4 composite, and then the phytic acid-doped polyaniline was grown in situ on the surface of the CF@NiFe2O4 composite. The morphological structure, chemical composition, and surface functional group distribution of this hybrid were systematically evaluated. The magnetic saturation (M s) value of the hybrid is 29.9 emu g-1, which represents an improvement in the magnetic loss. According to its reflection loss curve, the hybrid exhibits a superior EM wave absorption capacity, with a minimum reflection loss value and effective absorbing bandwidth of -46 dB when the sample thickness is 2.9 mm, and an effective absorption bandwidth of 5 GHz when the sample thickness is 1.5 mm. The excellent performance of this hybrid can mainly be attributed to its ideal matching of magnetic loss and dielectric loss, interfacial polarizations, eddy current loss and interface relaxation. This new material has the potential to be a superior electromagnetic wave absorber or applied as a functional filler to modify resin matrices.
Collapse
Affiliation(s)
- Ailing Feng
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences Baoji 721016 P. R. China
| | - Mingliang Ma
- Research Institute of Functional Materials, School of Civil Engineering, Qingdao University of Technology Qingdao 266033 P. R. China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University Qingdao 266071 P. R. China +86 532 85951496 +86 532 85951496
| | - Meng Zhang
- College of Electromechanical Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science and Technology Qingdao 266061 China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University Qingdao 266071 P. R. China +86 532 85951496 +86 532 85951496
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology Harbin 150080 PR China
| |
Collapse
|
45
|
Rahmatika AM, Goi Y, Kitamura T, Widiyastuti W, Ogi T. TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: Synthesis, characterization, and their application in protein adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110033. [PMID: 31546405 DOI: 10.1016/j.msec.2019.110033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Effective protein adsorption has attracted attention for broad application in the biomedical field. In this study, we introduce the synthesis of a TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous SiO2 (TOCN@macroporous SiO2) particle and its protein adsorption performance. The TOCN@macroporous SiO2 particles have a unique cellulose nanofiber network structure on the macroporous, highly-negative zeta potential (-62 ± 2 mV) and high surface area (30.8 m2/g) for dried-state cellulose based particles. These characteristics provide sites that are rich in electrostatic interaction to exhibit an outstanding adsorption capacity of lysozyme (1865 mg/g). Furthermore, the TOCN@macroporous SiO2 particles have remarkably high reusability (>90% adsorption capacity) and good release of adsorbate (>80%) after 10 times of use. The material proposed in this paper has the potential for application in drug delivery, protein adsorption, biosensors, and other biomedical fields.
Collapse
Affiliation(s)
- Annie M Rahmatika
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan; Department of Biotechnology and Veterinary, Vocational School, Gadjah Mada University, Sekip Unit 1 Catur Tunggal, Depok Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Yohsuke Goi
- R&D Headquarters, DKS Co. Ltd., 5 Ogawara-Cho, Kisshoin, Minami-Ku, Kyoto 601-8391, Japan
| | - Takeo Kitamura
- R&D Headquarters, DKS Co. Ltd., 5 Ogawara-Cho, Kisshoin, Minami-Ku, Kyoto 601-8391, Japan
| | - W Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Takashi Ogi
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan.
| |
Collapse
|
46
|
Bilal M, Iqbal HMN. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int J Biol Macromol 2019; 130:462-482. [PMID: 30825566 DOI: 10.1016/j.ijbiomac.2019.02.152] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Naturally-derived biopolymers such as alginate, chitosan, cellulose, agarose, guar gum/guaran, agar, carrageenan, gelatin, dextran, xanthan, and pectins, etc. have appealed significant attention over the past several years owing to their natural abundance and availability all over the years, around the globe. In addition, their versatile properties such as non-toxicity, biocompatibility, biodegradability, flexibility, renewability, and the availability of numerous reactive sites offer significant functionalities with multipurpose applications. At present, intensive research efforts have been focused on engineering enzymes using natural biopolymers as novel support/composite materials for diverse applications in biomedical, environmental, pharmaceutical, food and biofuel/energy sectors. Immobilization appears as a straightforward and promising approach to developing biocatalysts with improved catalytic properties as compared to their free counterparts. Biopolymers-assisted enzymes are more stable, robust, and recoverable than that of free forms, and can be employed for continuous biocatalytic reactions. The present review highlights the recent developments and use of biopolymers and their advanced composites as support carriers for the immobilization of a variety of different enzymes to develop biocatalysts with desired catalytic activity and stability characteristics for emerging applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
47
|
Wang N, Xiao W, Niu B, Duan W, Zhou L, Zheng Y. Highly efficient adsorption of fluoroquinolone antibiotics using chitosan derived granular hydrogel with 3D structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Recovery of lysozyme from aqueous solution by polyelectrolyte precipitation with sodium alginate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Ma M, Yang Y, Liu Y, Li W, Chen G, Ma Y, Lyu P, Li S, Wang Y, Wu G. Preparation of magnetic Fe
3
O
4
/P (GMA‐DVB)‐PEI/Pd highly efficient catalyst with core‐shell structure. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mingliang Ma
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yuying Yang
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yanyan Liu
- Centre For Engineering Test & AppraiseQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Wenting Li
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Guopeng Chen
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yong Ma
- School of Material Science and EngineeringShandong University of Science and Technology Qingdao 266590 People's Republic of China
| | - Ping Lyu
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Shunhe Li
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yubao Wang
- School of Chemistry and Materials ScienceLudong University Yantai 264025 People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio‐fibers and Eco‐textiles, College of Materials Science and EngineeringQingdao University Qingdao 266071 People's Republic of China
| |
Collapse
|