1
|
Souza GEDQ, Medeiros Burin GR, de Freitas RA, de Muniz GIB, Alves HJ. Recovery of keratin from feather meal: a new route to valorize an agro-industrial co-product. ENVIRONMENTAL TECHNOLOGY 2025; 46:2342-2352. [PMID: 39581572 DOI: 10.1080/09593330.2024.2429044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The valorization of agro-industrial by-products/co-products represents a sustainable pathway to produce high-value biomaterials. Feather meal is an agro-industrial co-product derived from clean and undecomposed poultry feathers processed under high heat and pressure that offers an economically viable and scalable alternative for keratin extraction compared to native feathers. This study explores the recovery of keratin from feather meal through an optimized alkaline hydrolysis process, achieving a yield of 20 wt.% at 15°C and 90 min of extraction by using 2 mol L-1 sodium hydroxide solution. A negative temperature dependence was observed in keratin extraction yield, suggesting the occurrence of thermal degradation at elevated temperatures. Protein analyses by different techniques confirmed the characteristic diffraction peaks, functional groups, and elemental composition (carbon, nitrogen, oxygen, and sulphur) of feather keratin. The extracted keratin presented a low molar mass of 9 kg mol-1. Considering the circular economy principles, this work proposes a novel valorization route for feather meal and highlights its potential in creating value-added materials for several applications in medicine, pharmaceuticals, and engineering areas.
Collapse
Affiliation(s)
- Guilherme Emanuel de Queiros Souza
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná, Palotina, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná, Curitiba, Brazil
| | | | | | | | - Helton José Alves
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná, Palotina, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
2
|
Oyom W, Awuku RB, Faraji H, Bi Y, Tahergorabi R. Protein hydrogel formation from chicken processing By-Products: Exploring applications in food. Food Res Int 2025; 201:115632. [PMID: 39849726 DOI: 10.1016/j.foodres.2024.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Chicken processing by-products, such as meat left over on bones, skin, frames and connective tissues, are great sources of functional proteins that offer significant potential for value-added applications, contributing to both waste reduction and environmental sustainability. By transforming the recovered proteins from by-products into hydrogels, new materials can be developed for use in various industries, including food. However, understanding the chemical composition of these by-products and optimizing hydrogel production techniques are critical to producing hydrogels with desirable properties. This review examines the latest techniques for isolating proteins from chicken by-products and transforming them into functional hydrogels. It highlights methods of hydrogel preparation, crosslinking, and characterization, with a focus on their conformational properties and applications in food systems. The review also addresses the current scope of health benefits and future potential of these hydrogels in enhancing food product quality. Advances in protein extraction and hydrogel formation show that these hydrogels can retain water, improve gelation, and maintain stability, making them ideal for food products. Specifically, they can be used as edible coatings in fried foods to reduce fat uptake and limit the formation of harmful compounds. Chicken protein-based hydrogels hold great potential for future food processing applications, promoting sustainability and consumer well-being.
Collapse
Affiliation(s)
- William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Ruth Boahemaah Awuku
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Habibollah Faraji
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| |
Collapse
|
3
|
Ma YS, Kuo FM, Liu TH, Lin YT, Yu J, Wei Y. Exploring keratin composition variability for sustainable thermal insulator design. Int J Biol Macromol 2024; 275:133690. [PMID: 38971280 DOI: 10.1016/j.ijbiomac.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in β-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.
Collapse
Affiliation(s)
- Yu-Shuan Ma
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Fang-Mei Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ting Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
4
|
Banasaz S, Ferraro V. Keratin from Animal By-Products: Structure, Characterization, Extraction and Application-A Review. Polymers (Basel) 2024; 16:1999. [PMID: 39065316 PMCID: PMC11280741 DOI: 10.3390/polym16141999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Keratin is a structural fibrous protein and the core constituent of animal by-products from livestock such as wool, feathers, hooves, horns, and pig bristles. This natural polymer is also the main component of human hair and is present at an important percentage in human and animal skin. Significant amounts of keratin-rich animal tissues are discarded worldwide each year, ca. 12 M tons, and the share used for keratin extraction and added-value applications is still very low. An important stream of new potential raw materials, represented by animal by-products and human hair, is thus being lost, while a large-scale valorization could contribute to a circular bioeconomy and to the reduction in the environmental fingerprint of those tissues. Fortunately, scientific research has made much important progress in the last 10-15 years in the better understanding of the complex keratin architecture and its variability among different animal tissues, in the development of tailored extraction processes, and in the screening of new potential applications. Hence, this review aims at a discussion of the recent findings in the characterization of keratin and keratin-rich animal by-product structures, as well as in keratin recovery by conventional and emerging techniques and advances in valorization in several fields.
Collapse
|
5
|
Wang Y, Yang X, Yang Z, Xia H, Si X, Hao J, Yan D, Li H, Peng K, Sun J, Shi C, Li H, Li W. Additive-free Absorbable Keratin Sponge With Procoagulant Activity for Noncompressible Hemostasis. Biomacromolecules 2024; 25:3930-3945. [PMID: 38820501 DOI: 10.1021/acs.biomac.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The development of a natural, additive-free, absorbable sponge with procoagulant activity for noncompressible hemostasis remains a challenging task. In this study, we extracted high molecular weight keratin (HK) from human hair and transformed it into a hemostatic sponge with a well-interconnected pore structure using a foaming technique, freeze-drying, and oxidation cross-linking. By controlling the cross-linking degree, the resulting sponge demonstrated excellent liquid absorption ability, shape recovery characteristics, and robust mechanical properties. The HK10 sponge exhibited rapid liquid absorption, expanding up to 600% within 5 s. Moreover, the HK sponge showed superior platelet activation and blood cell adhesion capabilities. In SD rat liver defect models, the sponges demonstrated excellent hemostatic performance by sealing the wound and expediting coagulation, reducing the hemostatic time from 825 to 297 s. Furthermore, HK sponges have excellent biosafety, positioning them as a promising absorbable sponge with the potential for the treatment of noncompressible hemostasis.
Collapse
Affiliation(s)
- Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ke Peng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jie Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
6
|
Namjoo AR, Hassani A, Amini H, Nazaryabrbekoh F, Saghati S, Saadatlou MAE, Khoshfetrat AB, Khosrowshahi ND, Rahbarghazi R. Multiprotein collagen/keratin hydrogel promoted myogenesis and angiogenesis of injured skeletal muscles in a mouse model. BMC Biotechnol 2024; 24:23. [PMID: 38671404 PMCID: PMC11055224 DOI: 10.1186/s12896-024-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Nazaryabrbekoh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Aadil KR, Nathani A, Rajendran A, Sharma CS, Lenka N, Gupta P. Investigation of human hair keratin-based nanofibrous scaffold for skin tissue engineering application. Drug Deliv Transl Res 2024; 14:236-246. [PMID: 37589816 DOI: 10.1007/s13346-023-01396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Keratin-based nanofibers were fabricated using the electrospinning technique, and their potential as scaffolds for tissue engineering was investigated. Keratin, extracted from the human hair, was blended with poly(vinyl alcohol) (PVA) in an aqueous medium. Morphological characterizations of the fabricated PVA-keratin nanofiber (PK-NF) random and aligned scaffolds performed using a scanning electron microscope (SEM) revealed the formation of uniform and randomly oriented nanofibers with an interconnected three-dimensional network structure. The mean diameter of the nanofibers ranged from 100 to 250 nm. Functional groups and structural studies were done by infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. FTIR study suggested that PVA interacted with keratin by hydrogen bonding. Moreover, the in vitro cell culture study could suggest that PK-NF scaffolds were non-cytotoxic by supporting the growth of murine embryonic stem cells (ESCs), human keratinocytes (HaCaT), and dermal fibroblast (NHDF) cell lines. Further, the immunocytochemical characterization revealed the successful infiltration, adhesion, and growth of ESCs, HaCaT, and NHDF cells seeded on PK-NF scaffolds. However, there was no noteworthy difference observed concerning cell growth and viability irrespective of the random and aligned internal fibril arrangement of the PK-NF scaffolds. The infiltration and growth pattern of HaCaT and NHDF cells adjacent to each other in a 3D co-culture study mimicked that of epidermal and dermal skin cells and indeed underscored the potential of PK-NFs as a scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Keshaw R Aadil
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, 492001, Chhattisgarh, India.
- Department of Botany, Govt. Digvijay Autonomous Post-Graduate College, Rajnandgaon, Chhattisgarh, India.
| | - Akash Nathani
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India
| | - Archana Rajendran
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Chandra S Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India.
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, 492001, Chhattisgarh, India.
| |
Collapse
|
8
|
Sang F, Yang X, Hao J, Wang Y, Si X, Li X, Pan L, Ma Z, Shi C. Wool keratin/zeolitic imidazolate framework-8 composite shape memory sponge with synergistic hemostatic performance for rapid hemorrhage control. J Mater Chem B 2023; 11:10234-10251. [PMID: 37869993 DOI: 10.1039/d3tb01660a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Uncontrollable hemorrhage and subsequent wound infection pose severe threats to life, especially in the case of deep, non-compressible, massive bleeding. Here, a wool keratin/zeolitic imidazolate framework-8 (WK/ZIF-8) composite shape memory sponge is prepared by incorporating ZIF-8 nanoparticles into wool keratin. The combination of keratin and ZIF-8 particles not only reduces the effect of ZIF-8 particles on cell viability but also bolsters the mechanical properties of the keratin sponge and endows it with antibacterial efficacy. Due to the synergistic effect of the excellent hemostatic performance of keratin and Zn2+ release from ZIF-8 nanoparticles, the porous structure suitable for blood cell adhesion and the shape recovery ability of sponges, the WK/ZIF-8 composite sponge exhibits superior hemostatic performance to commercial medical sponges in SD rat and rabbit hemorrhage models. In addition, in vitro and in vivo antibacterial experiments demonstrate the anti-infection activity of the composite sponge. Overall, the WK/ZIF-8 composite sponge provides a promising approach to rapidly control bleeding and promote wound healing.
Collapse
Affiliation(s)
- Feng Sang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Jiahui Hao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Zhaipu Ma
- School of Life Sciences, Hebei University, Baoding, Hebei 071000, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
9
|
Soon WL, Peydayesh M, de Wild T, Donat F, Saran R, Müller CR, Gubler L, Mezzenga R, Miserez A. Renewable Energy from Livestock Waste Valorization: Amyloid-Based Feather Keratin Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47049-47057. [PMID: 37751482 DOI: 10.1021/acsami.3c10218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Increasing carbon emissions have accelerated climate change, resulting in devastating effects that are now tangible on an everyday basis. This is mirrored by a projected increase in global energy demand of approximately 50% within a single generation, urging a shift from fossil-fuel-derived materials toward greener materials and more sustainable manufacturing processes. Biobased industrial byproducts, such as side streams from the food industry, are attractive alternatives with strong potential for valorization due to their large volume, low cost, renewability, biodegradability, and intrinsic material properties. Here, we demonstrate the reutilization of industrial chicken feather waste into proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. Keratin was isolated from chicken feathers via a fast and economical process, converted into amyloid fibrils through heat treatment, and further processed into membranes with an imparted proton conductivity of 6.3 mS cm-1 using a simple oxidative method. The functionality of the membranes is demonstrated by assembling them into a hydrogen fuel cell capable of generating 25 mW cm-2 of power density to operate various types of devices using hydrogen and air as fuel. Additionally, these membranes were used to generate hydrogen through water splitting and in protonic field-effect transistors as thin-film modulators of protonic conductivity via the electrostatic gating effect. We believe that by converting industrial waste into renewable energy materials at low cost and high scalability, our green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.
Collapse
Affiliation(s)
- Wei Long Soon
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Tym de Wild
- Electrochemistry Laboratory, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Rinku Saran
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
10
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
11
|
Yin L, Liu L, Tang Y, Chen Q, Zhang D, Lin Z, Wang Y, Liu Y. The Implications in Meat Quality and Nutrition by Comparing the Metabolites of Pectoral Muscle between Adult Indigenous Chickens and Commercial Laying Hens. Metabolites 2023; 13:840. [PMID: 37512547 PMCID: PMC10384229 DOI: 10.3390/metabo13070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Aged chickens are often a secondary dietary choice, owing to the poor organoleptic qualities of their meat. With regard to the meat quality of chickens, the metabolic profiles of pectoral muscle in Guangyuan grey chickens (group G) and Hy-Line grey hens (group H) aged 55 weeks were compared via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A total of 74 metabolites were identified with differential changes in the ion model. Lipids and lipid-like molecules comprised the largest proportion among the different metabolites. The content of myristic acid and palmitic acid were found to be higher in the pectoral muscle of group G, while group H showed significantly higher levels of glycerophospholipid molecules, such as LPC(18:2/0:0), Pi(38:5), Pc(16:0/16:0), and Pe(16:1e/14-hdohe). KEGG pathway analysis indicated that the abundant metabolites in group G were mainly involved in energy metabolism and fatty acid biosynthesis and metabolism, whereas those of group H were mainly attributed to the metabolism of unsaturated fatty acids and amino acids. Overall, the differences in lipid and amino acid metabolism in pectoral muscle appear to be responsible for the difference in meat quality between indigenous chickens and commercial laying hens.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, Jiang F, Yu J. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol 2023:125330. [PMID: 37307978 DOI: 10.1016/j.ijbiomac.2023.125330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Stomatology, East Hospital Affiliated to Tongji University, Shanghai 200120, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Periodontology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
de Q Souza GE, Burin GRM, de Muniz GIB, Alves HJ. Valorization of feather waste in Brazil: structure, methods of extraction, and applications of feather keratin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39558-39567. [PMID: 36790699 DOI: 10.1007/s11356-023-25788-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
This systematic review presents the potential of using feather waste as a β-keratin source, including the Brazilian scenario in the generation of this byproduct. The structure and properties of α- and β-keratin, the methods commonly reported to extract keratin from poultry feathers, and applications of feather keratin-based materials are also covered in this review. The literature search for poultry production data in Brazil was conducted for the last 2 years, for the period 2021-2022. A broad literature search for extraction methods and applications of feather keratin was done for the period 2001-2022. The poultry industry is one of the largest sectors of the food industry, and Brazil was the third-largest world producer of chicken meat with more than six billion chickens slaughtered in 2021. Poultry feathers constitute about 7% weight of broilers; thus, it can be estimated that about one million tons of poultry feathers were generated in Brazil in 2021, and the improper disposal of this byproduct contributes to environmental problems and disease transmission. The most common method of reusing feathers is the production of feather meal. From economic and environmental points of view, it is advantageous to develop processes to add value to this byproduct, including the extraction of keratin. Among natural biodegradable polymers, keratin-based materials have revolutionized the field of biomaterials due to their biocompatibility and biodegradability, allowing their application in biomedical, pharmaceutical, chemical, and engineering areas.
Collapse
Affiliation(s)
- Guilherme E de Q Souza
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná (UFPR), Palotina, PR, 85950-000, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná (UFPR), Curitiba, PR, 81530-000, Brazil
| | - Glaucia R M Burin
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná (UFPR), Palotina, PR, 85950-000, Brazil.
| | - Graciela I B de Muniz
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná (UFPR), Curitiba, PR, 81530-000, Brazil
| | - Helton J Alves
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná (UFPR), Palotina, PR, 85950-000, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná (UFPR), Curitiba, PR, 81530-000, Brazil
| |
Collapse
|
14
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Qin X, Yang C, Guo Y, Liu J, Bitter JH, Scott EL, Zhang C. Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization. ULTRASONICS SONOCHEMISTRY 2023; 93:106297. [PMID: 36641870 PMCID: PMC9860336 DOI: 10.1016/j.ultsonch.2023.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Chicken feather (CF) has been deemed as one of the main poultry byproducts with a large amount produced globally. However, the robust chemical nature of chicken feathers has been limiting in its wide-scale utilization and valorization. The study proposed a strategy of keratin regeneration from chicken feather combining ultrasound and Cysteine (Cys)-reduction for keratin regeneration. First, the ultrasonic effect on feather degradation and keratin properties was systematically explored based on Cys-reduction. Results showed that the feather dissolution was significantly improved by increasing both ultrasonic time and power, and the former had a greater impact on keratin yield. However, the treatment time over 4 h led to a decrease of keratin yield, producing more soluble peptides, > 9.7 % of which were < 0.5 kDa. Meanwhile, prolonging time decreased the thermal stability with weight loss at a lower temperature and amino acids content (e.g., Ser, Pro and Gly) of keratin. Conversely, no remarkable damage in chemical structure and thermal stability of regenerated keratin was observed by only increasing ultrasonic power, while the keratin solubility was notably promoted and reached 745.72 mg·g-1 in NaOH (0.1 M) solution (400 W, 4 h). The regenerated keratin under optimal conditions (130 W, 2.7 h, and 15 % of Cys) possessed better solubility while without obvious damage in chemical structure, thermal stability, and amino acids composition. The study illustrated that ultrasound physically improved CF degradation and keratin solubility without nature damage and provided an alternative for keratin regeneration involving no toxic reagent, probably holding promise in the utilization and valorization of feather waste.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Xinjiang Taikun Group Co. Ltd, Xinjiang Uygur Autonomous Region, Changji 831100, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Johannes H. Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Elinor L. Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Mahamud AU, Samonty I. Spent hen: Insights into pharmaceutical and commercial prospects. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Ismam Samonty
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
17
|
Mattiello S, Guzzini A, Del Giudice A, Santulli C, Antonini M, Lupidi G, Gunnella R. Physico-Chemical Characterization of Keratin from Wool and Chicken Feathers Extracted Using Refined Chemical Methods. Polymers (Basel) 2022; 15:181. [PMID: 36616532 PMCID: PMC9824254 DOI: 10.3390/polym15010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, the characteristic structure of keratin extracted from two different kinds of industrial waste, namely sheep wool and chicken feathers, using the sulfitolysis method to allow film deposition, has been investigated. The structural and microscopic properties have been studied by means of scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), and infrared (IR) spectroscopy. Following this, small-angle X-ray scattering (SAXS) analysis for intermediate filaments has been performed. The results indicate that the assembly character of the fiber can be obtained by using the most suitable extraction method, to respond to hydration, thermal, and redox agents. The amorphous part of the fiber and medium range structure is variously affected by the competition between polar bonds (reversible hydrogen bonds) and disulfide bonds (DB), the covalent irreversible ones, and has been investigated by using fine structural methods such as Raman and SAXS, which have depicted in detail the intermediate filaments of keratin from the two different animal origins. The preservation of the secondary structure of the protein obtained does offer a potential for further application of the waste-obtained keratin in polymer films and, possibly, biocomposites.
Collapse
Affiliation(s)
- Sara Mattiello
- Physics Section, School of Science and Technology, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| | - Alessandro Guzzini
- School of Bioscience and Veterinary Medicine, Università di Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlo Santulli
- Geology Section, School of Science and Technology, Università di Camerino, via Gentile III da Varano 7, 62032 Camerino, Italy
| | - Marco Antonini
- ENEA—SSPT BIOAG PROBIO Via Gentile III da Varano, 62032 Camerino, Italy
| | - Giulio Lupidi
- School of Bioscience and Veterinary Medicine, Università di Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Roberto Gunnella
- Physics Section, School of Science and Technology, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
18
|
Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers (Basel) 2022; 14:polym14214723. [DOI: 10.3390/polym14214723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recycling, development, and application of keratin-containing waste (e.g., hair, wool, feather, and so on) provide an important means to address related environmental pollution and energy shortage issues. The extraction of keratin and the development of keratin-based functional materials are key to solving keratin-containing waste pollution. Keratin-based biofilms are gaining substantial interest due to their excellent characteristics, such as good biocompatibility, high biodegradability, appropriate adsorption, and rich renewable sources, among others. At present, keratin-based biofilms are a good option for various applications, and the development of keratin-based biofilms from keratin-containing waste is considered crucial for sustainable development. In this paper, in order to achieve clean production while maintaining the functional characteristics of natural keratin as much as possible, four important keratin extraction methods—thermal hydrolysis, ultrasonic technology, eco-friendly solvent system, and microbial decomposition—are described, and the characteristics of these four extraction methods are analysed. Next, methods for the preparation of keratin-based biofilms are introduced, including solvent casting, electrospinning, template self-assembly, freeze-drying, and soft lithography methods. Then, the functional properties and application prospects of keratin-based biofilms are discussed. Finally, future research directions related to keratin-based biofilms are proposed. Overall, it can be concluded that the high-value conversion of keratin-containing waste into regenerated keratin-based biofilms has great importance for sustainable development and is highly suggested due to their great potential for use in biomedical materials, optoelectronic devices, and metal ion detection applications. It is hoped that this paper can provide some basic information for the development and application of keratin-based biofilms.
Collapse
|
19
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
20
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Fan H, Wu J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. BIORESOUR BIOPROCESS 2022; 9:43. [PMID: 35463462 PMCID: PMC9015908 DOI: 10.1186/s40643-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
Spent hen are egg-laying hens reaching the end of their laying cycles; billions of spent hens are produced globally each year. Differences in people's attitudes towards spent hen as foods lead to their different fates among countries. While spent hens are consumed as raw or processed meat products in Asian countries such as China, India, Korea, and Thailand, they are treated as a byproduct or waste, not a food product, in the western society; they are instead disposed by burial, incineration, composting (as fertilizers), or rendering into animal feed and pet food, which either create little market value or cause animal welfare and environmental concerns. Despite being a waste, spent hen is a rich source of animal proteins and lipids, which are suitable starting materials for developing valorized products. This review discussed the conventional uses of spent hens, including food, animal feed, pet food, and compost, and the emerging uses, including biomaterials and functional food ingredients. These recent advances enable more sustainable utilization of spent hen, contributing to alternative solutions to its disposal while yielding residual value to the egg industry. Future research will continue to focus on the conversion of spent hen biomass into value-added products. Graphical abstract
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
22
|
Shui T, Pan M, Lu Y, Zhang J, Liu Q, Nikrityuk PA, Tang T, Liu Q, Zeng H. High-efficiency and durable removal of water-in-heavy oil emulsions enabled by delignified and carboxylated basswood with zwitterionic nanohydrogel coatings. J Colloid Interface Sci 2022; 612:445-458. [PMID: 34999549 DOI: 10.1016/j.jcis.2021.12.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS It is hypothesized that grafting zwitterionic nanohydrogel (ZNG) helps to achieve anti-asphaltene properties on cellulosic substrates, thus overcoming the fouling issue of natural cellulosic materials for treating oily emulsions. It is also hypothesized that ZNG coatings enhance the water-binding affinity of the substrates, resulting in an outstanding water-removal performance on asphaltene-stabilized emulsions with long-term stability. EXPERIMENTS A cellulosic substrate was derived from nature basswood via a sequence of delignification and carboxylation processes. The ZNG-DBS composite was then developed by esterification to covalently graft ZNGs on the inner channels of the substrate. The water-binding affinity, wettability, water-removal performance for treating water in asphaltene-stabilized emulsions were evaluated via characterizing the filtration/absorption, and anti-fouling mechanism of the ZNG-DBS. FINDINGS ZNG coatings enhance the hydration capability of the basswood substrate, allowing it to absorb water emulsion droplets protected by asphaltenes in the oil medium without being contaminated. Moreover, superior and stable removal capabilities were achieved by using this unique material to treat asphaltenes-stabilized water-in-oil emulsions with the water residue content of <1.0 and ∼0.065 wt% via cyclic filtration and absorption tests, respectively. Our results demonstrate the successful conversion of widely accessible wood resources to functional materials with great potential in the practical treatment of oily wastewater.
Collapse
Affiliation(s)
- Tao Shui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Petr A Nikrityuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
23
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
24
|
Cao H, Ma X, Wei Z, Tan Y, Chen S, Ye T, Yuan M, Yu J, Wu X, Yin F, Xu F. Behavior and mechanism of the adsorption of lead by an eco-friendly porous double-network hydrogel derived from keratin. CHEMOSPHERE 2022; 289:133086. [PMID: 34848225 DOI: 10.1016/j.chemosphere.2021.133086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel eco-friendly porous double-network keratin/polyacrylic acid (keratin-PAA) hydrogel was prepared using the one-pot method to improve the adsorption performance of the hydrogel toward Pb(II). The obtained porous keratin-PAA hydrogel was then characterized using nitrogen adsorption-desorption isotherms, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The interaction mechanism of Pb(II) and the keratin-PAA hydrogel was further investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that keratin-PAA hydrogel was successfully synthesized, with a specific surface area of 49.35 m2/g and a uniform pore distribution of 6.20 nm. The synthesized keratin-PAA hydrogel only took 6 min to adsorb nearly 70% of Pb(II) from the solution because of the interconnected porous network. The keratin-PAA hydrogel also showed a maximal adsorption amount of 234.6 mg/g, and satisfactory selectivity toward Pb(II). The adsorption kinetics of the keratin-PAA hydrogel binding to Pb(II) could be better described by the pseudo-second-order model, whereas the adsorption isotherms could be fitted using the Langmuir equation; this suggested that chemisorption was the main rate-limiting step. The XPS and FT-IR analysis results indicated that the sulfur-, nitrogen- and oxygen-containing groups in the keratin-PAA hydrogel were the main binding sites for Pb(II). In real aqueous samples, the keratin-PAA hydrogel could remove 93-104% of Pb(II). It is clear that the keratin-PAA hydrogel is an outstanding adsorbent material for the removal of Pb(II) from aqueous samples.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xiuna Ma
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Ziqi Wei
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Yang Tan
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Siwei Chen
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai, 200093, PR China.
| |
Collapse
|
25
|
Raydan NDV, Leroyer L, Charrier B, Robles E. Recent Advances on the Development of Protein-Based Adhesives for Wood Composite Materials-A Review. Molecules 2021; 26:molecules26247617. [PMID: 34946693 PMCID: PMC8708089 DOI: 10.3390/molecules26247617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The industrial market depends intensely on wood-based composites for buildings, furniture, and construction, involving significant developments in wood glues since 80% of wood-based products use adhesives. Although biobased glues have been used for many years, notably proteins, they were replaced by synthetic ones at the beginning of the 20th century, mainly due to their better moisture resistance. Currently, most wood adhesives are based on petroleum-derived products, especially formaldehyde resins commonly used in the particleboard industry due to their high adhesive performance. However, formaldehyde has been subjected to strong regulation, and projections aim for further restrictions within wood-based panels from the European market, due to its harmful emissions. From this perspective, concerns about environmental footprint and the toxicity of these formulations have prompted researchers to re-investigate the utilization of biobased materials to formulate safer alternatives. In this regard, proteins have sparked a new and growing interest in the potential development of industrial adhesives for wood due to their advantages, such as lower toxicity, renewable sourcing, and reduced environmental footprint. This work presents the recent developments in the use of proteins to formulate new wood adhesives. Herein, it includes the historical development of wood adhesives, adhesion mechanism, and the current hotspots and recent progress of potential proteinaceous feedstock resources for adhesive preparation.
Collapse
|
26
|
Wang X, Shi Z, Tian Z, Tang H, Li Q, Shen X. Molecular Mechanism of Rabbit Hair Keratin Hydrogel Fabricated via Cryoablation. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoqing Wang
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
- School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China
| | - Zhiming Shi
- School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China
| | - Zhan Tian
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Henglong Tang
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Qingchun Li
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Xianyi Shen
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| |
Collapse
|
27
|
Yang W, Shan Z. Application of wool keratin: an anti-ultraviolet wall material in spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4235-4244. [PMID: 34538906 DOI: 10.1007/s13197-020-04897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Low-molecular-weight keratin (LMWK) obtained from wool was employed as a wall material for the spray drying encapsulation of fish oil. Microcapsules with different LMWK contents were prepared, and their anti-ultraviolet performance and other features were studied. The results showed that LMWK was able to improve the encapsulation efficiency of fish oil because of its good emulsifying properties. When the LMWK content was increased from 0 to 10, 30 and 50%, the shelf life of the microcapsules under ultraviolet irradiation increased from 48 to 96 h, 144 h and 168 h, respectively. The strongest absorption efficiency of LMWK is shown in the UVc band. The chemical structure of LMWK did not change during an ultraviolet accelerating ageing test.
Collapse
Affiliation(s)
- Wenhua Yang
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| | - Zhihua Shan
- College of Biomass Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
28
|
Goh PS, Othman MHD, Matsuura T. Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation. MEMBRANES 2021; 11:782. [PMID: 34677548 PMCID: PMC8541373 DOI: 10.3390/membranes11100782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
In parallel to the rapid growth in economic and social activities, there has been an undesirable increase in environmental degradation due to the massively produced and disposed waste. The need to manage waste in a more innovative manner has become an urgent matter. In response to the call for circular economy, some solid wastes can offer plenty of opportunities to be reutilized as raw materials for the fabrication of functional, high-value products. In the context of solid waste-derived polymeric membrane development, this strategy can pave a way to reduce the consumption of conventional feedstock for the production of synthetic polymers and simultaneously to dampen the negative environmental impacts resulting from the improper management of these solid wastes. The review aims to offer a platform for overviewing the potentials of reutilizing solid waste in liquid separation membrane fabrication by covering the important aspects, including waste pretreatment and raw material extraction, membrane fabrication and characterizations, as well as the separation performance evaluation of the resultant membranes. Three major types of waste-derived polymeric raw materials, namely keratin, cellulose, and plastics, are discussed based on the waste origins, limitations in the waste processing, and their conversion into polymeric membranes. With the promising material properties and viability of processing facilities, recycling and reutilization of waste resources for membrane fabrication are deemed to be a promising strategy that can bring about huge benefits in multiple ways, especially to make a step closer to sustainable and green membrane production.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
29
|
Cal F, Sezgin Arslan T, Derkus B, Kiran F, Cengiz U, Arslan YE. Synthesis of Silica-Based Boron-Incorporated Collagen/Human Hair Keratin Hybrid Cryogels with the Potential Bone Formation Capability. ACS APPLIED BIO MATERIALS 2021; 4:7266-7279. [PMID: 35006956 DOI: 10.1021/acsabm.1c00805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering and regenerative medicine have evolved into a different concept, the so-called clinical tissue engineering. Within this context, the synthesis of next-generation inorganic-organic hybrid constructs without the use of chemical crosslinkers emerges with a great potential for treating bone defects. Here, we propose a sophisticated approach for synthesizing cost-effective boron (B)- and silicon (Si)-incorporated collagen/hair keratin (B-Si-Col-HK) cryogels with the help of sol-gel reactions. In this approach, collagen and hair keratin were engaged with a B-Si network using tetraethyl orthosilicate as a silica precursor, and the obtained cryogels were characterized in depth with attenuated total reflectance-Fourier transform infrared spectroscopy, solid-state NMR, X-ray diffraction, thermogravimetric analysis, porosity and swelling tests, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyses, frequency sweep and temperature-dependent rheology, contact angle analysis, micromechanical tests, and scanning electron microscopy with energy dispersive X-ray analysis. In addition, the cell survival and osteogenic features of the cryogels were evaluated by the MTS test, live/dead assay, immuno/histochemistry, and quantitative real-time polymerase chain reaction analyses. We conclude that the B-Si-networked Col-HK cryogels having good mechanical durability and osteoinductive features would have the potential bone formation capability.
Collapse
Affiliation(s)
- Fatma Cal
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tugba Sezgin Arslan
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Chemistry Department, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM), Department of Chemistry, Ankara University, Ankara 06560, Turkey
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Turkey
| | - Ugur Cengiz
- Surface Science Research Laboratory, Department of Chemical Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| |
Collapse
|
30
|
Arican F, Uzuner-Demir A, Sancakli A, Ismar E. Synthesis and characterization of superabsorbent hydrogels from waste bovine hair via keratin hydrolysate graft with acrylic acid (AA) and acrylamide (AAm). CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01828-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Chen M, Ren X, Dong L, Li X, Cheng H. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Int J Biol Macromol 2021; 182:1259-1267. [PMID: 33991559 DOI: 10.1016/j.ijbiomac.2021.05.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Dynamic covalently crosslinking (DCC) hydrogels can mimic extracellular matrix and have the functions such as self-healing, self-adapting, and shape memory. The DCC keratin hydrogels based on thiol group-disulfide bonds exchange strategy have no reports so far as we know. Herein, inspired by the rich content of the intramolecular disulfide bonds and free thiol groups in the keratins extracted by reducing agents, we report a simple thiol-disulfide bonds exchange strategy for preparing the DCC keratin hydrogels. While the pH value of the keratin solution extracted by reducing agents was adjusted to 9.5-10.0, the keratin hydrogels showed the characteristic with injectability, self-healing, self-adapting, biocompatibility, and redox-responsive capacity. The extracted type II neutral/alkali keratin plays a critical role in imparting the keratin hydrogels with the reversibility behaviors due to that the keratins could build dynamic covalent bonds through thiol oxidation and disulfide exchange reactions in alkali conditions. This strategy provides an inspiration for forming DCC keratin hydrogel by avoiding the extra introduction of chemical crosslinking agents.
Collapse
Affiliation(s)
- Mianhong Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaohe Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
33
|
Tang J, Liu X, Ge Y, Wang F. Silver Nanoparticle-Anchored Human Hair Kerateine/PEO/PVA Nanofibers for Antibacterial Application and Cell Proliferation. Molecules 2021; 26:2783. [PMID: 34066875 PMCID: PMC8125921 DOI: 10.3390/molecules26092783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
The main core of wound treatment is cell growth and anti-infection. To accelerate the proliferation of fibroblasts in the wound and prevent wound infections, various strategies have been tried. It remains a challenge to obtain good cell proliferation and antibacterial effects. Here, human hair kerateine (HHK)/poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) nanofibers were prepared using cysteine-rich HHK, and then, silver nanoparticles (AgNPs) were in situ anchored in the sulfur-containing amino acid residues of HHK. After the ultrasonic degradation test, HHK/PEO/PVA nanofibrous mats treated with 0.005-M silver nitrate were selected due to their relatively complete structures. It was observed by TEM-EDS that the sulfur-containing amino acids in HHK were the main anchor points of AgNPs. The results of FTIR, XRD and the thermal analysis suggested that the hydrogen bonds between PEO and PVA were broken by HHK and, further, by AgNPs. AgNPs could act as a catalyst to promote the thermal degradation reaction of PVA, PEO and HHK, which was beneficial for silver recycling and medical waste treatment. The antibacterial properties of AgNP-HHK/PEO/PVA nanofibers were examined by the disk diffusion method, and it was observed that they had potential antibacterial capability against Gram-positive bacteria, Gram-negative bacteria and fungi. In addition, HHK in the nanofibrous mats significantly improved the cell proliferation of NIH3T3 cells. These results illustrated that the AgNP-HHK/PEO/PVA nanofibrous mats exhibited excellent antibacterial activity and the ability to promote the proliferation of fibroblasts, reaching our target applications.
Collapse
Affiliation(s)
- Jiapeng Tang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China; (J.T.); (X.L.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiwen Liu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China; (J.T.); (X.L.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yan Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Fangfang Wang
- College of Fine Arts and Design, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
34
|
Purification and identification of novel ACE inhibitory and ACE2 upregulating peptides from spent hen muscle proteins. Food Chem 2020; 345:128867. [PMID: 33352405 DOI: 10.1016/j.foodchem.2020.128867] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The study explored the use of spent hen, a major egg industry byproduct, as the starting material for preparing antihypertensive peptides. While previous studies were focused mainly on ACE inhibitory (ACEi) peptides, this work also studied peptides with ACE2 upregulating (ACE2u) activity, an emerging target for treating hypertension. Spent hen muscle protein hydrolysate prepared by thermoase (SPH-T) exhibited both ACEi and ACE2u activities. After ultrafiltration and chromatographic fractionation, five potent ACEi peptides, VRP, LKY, VRY, KYKA, and LKYKA, with IC50 values of 0.034-5.77 μg/mL, respectively, and four ACE2u peptides, VKW, VHPKESF, VVHPKESF and VAQWRTKYETDAIQRTEELEEAKKK, which increased ACE2 expression by 0.52-0.84 folds, respectively, were identified; VKW also showed ACEi activity. All peptides, except for VRP, are susceptible to degradation during the simulated gastrointestinal digestion. Our study supports the potential use of spent hens as antihypertensive functional food ingredients and nutraceuticals.
Collapse
|
35
|
Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods 2020; 9:foods9101384. [PMID: 33019511 PMCID: PMC7601532 DOI: 10.3390/foods9101384] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle proteins were hydrolyzed by nine enzymes, either individually or in combination; 18 SPHs were assessed initially for their in vitro angiotensin-converting enzyme (ACE) inhibitory activity, and three SPHs, prepared by Protex 26L (SPH-26L), pepsin (SPH-P), and thermoase (SPH-T), showed promising activity and peptide yield. These three hydrolysates were further assessed for their angiotensin-converting enzyme 2 (ACE2) upregulating, antioxidant, and anti-inflammatory activities; only SPH-T upregulated ACE2 expression, while all three SPHs showed antioxidant and anti-inflammatory activities. During simulated gastrointestinal digestion, ACE2 upregulating, ACE inhibitory and antioxidant activities of SPH-T were not affected, but those of SPH-26L and SPH-P were reduced. ACE inhibitory activity of gastrointestinal-digested SPH-T was not affected after the permeability study in Caco-2 cells, while ACE2 upregulating, antioxidant and anti-inflammatory activities were improved; nine novel peptides with five–eight amino acid residues were identified from the Caco-2 permeate. Among these three hydrolysates, only SPH-T reduced blood pressure significantly when given orally at a daily dose of 1000 mg/kg body weight to spontaneously hypertensive rats. SPH-T can be developed into a promising functional food ingredient against hypertension, contributing to a more sustainable utilization for spent hens while generating extra revenue for the egg industry.
Collapse
|
36
|
Chen S, Hori N, Kajiyama M, Takemura A. Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. Int J Biol Macromol 2020; 153:364-372. [PMID: 32109472 DOI: 10.1016/j.ijbiomac.2020.02.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Poultry chicken feather keratin was extracted and then modified for the fabrication of keratin-graft-PNIPAM copolymers. The keratin was well extracted from feather fiber and powdered. Subsequently, it underwent the surficial functionalization process with initiator groups. After the study conducted full disproportionation of Cu(I)Br/Me6Tren into Cu(0) and Cu(II)Br2 in the solvent, surface initiated aqueous Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) of N-isopropylacrylamide (NIPAM) was performed in a methanol/water mixture solvent. The reaction was performed rapidly and efficiently, during which over 100% graft rate was achieved at 60 min. After 6 h reaction, 200% graft rate could be achieved. High graft rate (up to 287%) was achieved, and graft rate could be regulated by controlling the reaction time and the addition of monomer. The fabricated keratin-g-PNIPAM exhibited a rough surface. As revealed from the results of thermal analysis, the thermal stability of keratin-g-PNIPAM was enhanced noticeably compared with the original keratin. Besides, grafted PNIPAM chains exhibited a higher glass transition temperature. The grafted keratin particles displayed enhanced hydrophilicity. Keratin-g-PNIPAMs exhibit a lower LCST comparing to homopolymer and the flocculation in hot water behavior could be controlled by regulating graft rate.
Collapse
Affiliation(s)
- Sikai Chen
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naruhito Hori
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikio Kajiyama
- Graduate School of life and environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akio Takemura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
37
|
Zhang H, Pei M, Liu P. pH-Activated surface charge-reversal double-crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor-targeting DOX delivery. Int J Biol Macromol 2020; 150:1104-1112. [DOI: 10.1016/j.ijbiomac.2019.10.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023]
|
38
|
|
39
|
Bajestani MI, Kader S, Monavarian M, Mousavi SM, Jabbari E, Jafari A. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels. Int J Biol Macromol 2020; 142:790-802. [DOI: 10.1016/j.ijbiomac.2019.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
40
|
Donato RK, Mija A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel) 2019; 12:E32. [PMID: 31878054 PMCID: PMC7023547 DOI: 10.3390/polym12010032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.
Collapse
Affiliation(s)
- Ricardo K. Donato
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Alice Mija
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
41
|
Zhang H, Pei M, Liu P. Keratin-based drug-protein conjugate with acid-labile and reduction-cleavable linkages in series for tumor intracellular DOX delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Zhang H, Liu P. One-Pot Synthesis of Chicken-Feather-Keratin-Based Prodrug Nanoparticles with High Drug Content for Tumor Intracellular DOX Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8007-8014. [PMID: 31117737 DOI: 10.1021/acs.langmuir.9b01190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
pH/reduction dual-triggered chicken-feather-keratin-based prodrug nanoparticles (C-PK/- SS-Hy-D NPs) were designed via a facile one-pot oxidation coupling reaction between the thiol-functional acid-labile prodrug M-Hy-D and the PEGylated keratin (PK) graft copolymer, for tumor intracellular doxorubicin (DOX) delivery. Due to the encapsulation of the pH and the reduction of the dual-responsive small prodrug D-Hy- SS-Hy-D, a high drug content of 45.8% was obtained in the proposed prodrug nanoparticles. They exhibited excellent pH and reduction of dual-triggered drug release, with cumulative drug release of 88.6% within 51 h in the simulated tumor intracellular microenvironment, while the premature drug leakage was only 13.7% in the simulated normal physiological medium. The in vitro experiments revealed the enhanced antitumor efficacy of the C-PK/- SS-Hy-D NPs than the free DOX at a higher dosage of >10 μg/mL.
Collapse
Affiliation(s)
- Huifang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|