1
|
Khorasani E, Vahidi B. 3D-Printed Scaffolds for Cranial Bone Regeneration: A Systematic Review of Design, Materials, and Computational Optimization. Biotechnol Bioeng 2025. [PMID: 40289530 DOI: 10.1002/bit.28994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Cranial bone defects from trauma, congenital conditions, or surgery are challenging to treat due to the skull's limited regeneration. Traditional methods like autografts and allografts have drawbacks, including donor site issues and poor integration. 3D-printed scaffolds provide a patient-specific alternative, improving bone regeneration and integration. This review evaluates advancements in 3D-printed scaffolds for cranial bone regeneration, focusing on fabrication techniques, material innovations, and structural optimization while assessing their preclinical and clinical potential. A systematic literature search (2014-2024) was conducted using PubMed and other databases. Studies addressing scaffold properties such as porosity, pore interconnectivity, and mechanical stability were included, while non-cranial scaffold studies were excluded. Advances in 3D printing have enabled patient-specific scaffolds with optimized architecture to enhance bone regeneration, mechanical support, and nutrient transport. Bioceramics, polymers, and composites mimic native bone properties, while bioactive coatings further improve osteogenesis. However, limited clinical translation and insufficient customization remain challenges. Further preclinical and clinical trials are crucial to overcoming barriers in mechanical optimization and patient-specific scaffold fabrication, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Elnaz Khorasani
- Department of Medical Technology and Tissue Engineering, Faculty of Life Science Engineering, School of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Department of Medical Technology and Tissue Engineering, Faculty of Life Science Engineering, School of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Yan Z, Deng Y, Huang L, Zeng J, Wang D, Tong Z, Fan Q, Tan W, Yan J, Zang X, Chen S. Biopolymer-based bone scaffold for controlled Pt (IV) prodrug release and synergistic photothermal-chemotherapy and immunotherapy in osteosarcoma. J Nanobiotechnology 2025; 23:286. [PMID: 40205459 PMCID: PMC11983740 DOI: 10.1186/s12951-025-03253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025] Open
Abstract
Achieving bone defect repair while preventing tumor recurrence after osteosarcoma surgery has consistently posed a clinical challenge. Local treatment with 3D-printed scaffolds loaded with chemotherapeutic drugs can exert certain effects in tumor inhibition and bone regeneration. However, the non-specific activation of chemotherapeutic drugs leads to high local toxic side effects and the formation of an immunosuppressive tumor microenvironment, thereby limiting their clinical application and therapeutic efficacy. To address this, we designed a Pt (IV) prodrug with low toxicity and minimal side effects, which releases Pt (II) in response to glutathione. This prodrug was grafted onto polydopamine (PDA) through an amidation reaction, resulting in a composite nanomaterial (PDA@Pt) that possesses both photothermal synergistic chemotherapy and immuno-oncological properties. Subsequently, we innovatively employed selective laser sintering technology to incorporate PDA@Pt into a poly (L-lactic acid)/bioactive glass matrix, successfully constructing a composite scaffold with dual anti-tumor and bone repair capabilities. The study revealed that the composite scaffold significantly inhibited the growth of osteosarcoma cells and activated the cGAS-STING pathway by inducing DNA damage, ultimately converting the 'cold tumor' into a 'hot tumor.' Additionally, the composite scaffold could induce osteogenic differentiation of bone marrow mesenchymal stem cells and exhibited excellent bone repair capabilities in vivo.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Liping Huang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhaochen Tong
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Xiaofang Zang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China.
| |
Collapse
|
3
|
de Carvalho ABG, Cardoso LM, Anselmi C, Dal-Fabbro R, Campos TMB, Borges ALS, Saavedra GDSFA, Bottino MC. Melt electrowriting of bioglass-laden poly(ε-caprolactone) scaffolds for bone regeneration. J Mater Chem B 2025; 13:3864-3875. [PMID: 39992649 PMCID: PMC11849773 DOI: 10.1039/d4tb02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Novel and promising biomaterials for bone tissue engineering have been investigated over the years. Aiming to contribute to this progress, this study developed and evaluated polycaprolactone (PCL) scaffolds with 5% (w/w) 58S-bioactive glass (58S-BG) fabricated via melt electrowriting (MEW). Morphological and chemical characterization of the scaffolds was conducted. The biological potential was assessed in vitro with alveolar bone-derived mesenchymal stem cells through cytotoxicity, adhesion, protein production, alkaline phosphatase activity, and mineral nodule formation assays. In vivo, scaffolds implanted in rats were analyzed for biocompatibility, inflammation, and degradation using H&E staining and immunohistochemical markers for angiogenesis and macrophage polarization. Statistical analysis was performed at a 5% significance level. Appropriate fiber alignment but a higher fiber diameter was found for PCL + BG5% compared to PCL scaffolds (p = 0.002). EDS spectra confirmed the presence of BG's chemical components for BG-laden scaffolds, attesting to BG particle incorporation into the filaments. Raman spectroscopy evidenced the chemical nature of the BG powder, and FTIR spectra revealed -OH stretching for PCL + BG5%, evidencing its hydrophilic potential. None of the scaffolds were cytotoxic, and BG-laden formulation increased cell viability after 7 days (p = 0.0006), also showing greater cell adhesion/spreading over time compared to pristine PCL scaffolds. BG's presence also increased the mineral matrix formation (p ≤ 0.0021) over 21 days and retained ALP activity after 14 days (p = 0.705) compared to PCL. In vivo, PCL scaffolds retained fiber alignment and preserved their volume throughout the evaluation, showing minimal structural alteration. In contrast, PCL + BG5% scaffolds showed more visible structural changes at 28 days. Despite this, the PCL + BG5% formulation remained biocompatible and significantly promoted angiogenesis compared to pristine PCL scaffolds. In sum, BG-laden scaffolds were successfully melt electrowritten, retaining the scaffolds' porous architecture, showing appropriate properties, including cell viability, adhesion, mineralized nodule deposition, biocompatibility, and angiogenesis, indicating that these materials are a promising alternative for enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Ana Beatriz Gomes de Carvalho
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Lais Medeiros Cardoso
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Dental Materials and Prosthodontics, São Paulo State University, Araraquara, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Morphology and Pediatric Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | | | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | | | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zinsou PH, Degla G, Ezzinbi K. Corrigendum to "Quantitative and stability study of the evolution of a thermoelastic body" [MethodsX 10 (2023) 101983]. MethodsX 2024; 13:103016. [PMID: 39717122 PMCID: PMC11663974 DOI: 10.1016/j.mex.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
[This corrects the article DOI: 10.1016/j.mex.2022.101983.].
Collapse
Affiliation(s)
- Pascal H. Zinsou
- Institut De Mathematiques Et De Sciences Physiques (IMSP), 01 BP 613 PORTO-NOVO, Benin
| | - Guy Degla
- Institut De Mathematiques Et De Sciences Physiques (IMSP), 01 BP 613 PORTO-NOVO, Benin
| | - Khalil Ezzinbi
- Universite Cardi Ayyad, Facultedes Sciences Semlalia, Departement De Mathematiques, B.P.2390, Marrakesh, Morocco
| |
Collapse
|
5
|
Mukasheva F, Adilova L, Dyussenbinov A, Yernaimanova B, Abilev M, Akilbekova D. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front Bioeng Biotechnol 2024; 12:1444986. [PMID: 39600888 PMCID: PMC11588461 DOI: 10.3389/fbioe.2024.1444986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Scaffold porosity is a critical factor in replicating the complex in vivo microenvironment, directly influencing cellular interactions, migration, nutrient transfer, vascularization, and the formation of functional tissues. For optimal tissue formation, scaffold design must account for various parameters, including material composition, morphology, mechanical properties, and cellular compatibility. This review highlights the importance of interconnected porosity and pore size, emphasizing their impact on cellular behavior and tissue formation across several tissue engineering domains, such as skin, bone, cardiovascular, and lung tissues. Specific pore size ranges enhance scaffold functionality for different tissues: small pores (∼1-2 µm) aid epidermal cell attachment in skin regeneration, moderate pores (∼2-12 µm) support dermal migration, and larger pores (∼40-100 µm) facilitate vascular structures. For bone tissue engineering, multi-layered scaffolds with smaller pores (50-100 µm) foster cell attachment, while larger pores (200-400 µm) enhance nutrient diffusion and angiogenesis. Cardiovascular and lung tissues benefit from moderate pore sizes (∼25-60 µm) to balance cell integration and nutrient diffusion. By addressing critical design challenges and optimizing pore size distributions, this review provides insights into scaffold innovations, ultimately advancing tissue regeneration strategies.
Collapse
Affiliation(s)
- Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Laura Adilova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Aibek Dyussenbinov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Bota Yernaimanova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Madi Abilev
- Department of Analytical, Colloid Chemistry and Technology of Rare Elements, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
6
|
Liu Z, Shi J, Chen L, He X, Weng Y, Zhang X, Yang DP, Yu H. 3D printing of fish-scale derived hydroxyapatite/chitosan/PCL scaffold for bone tissue engineering. Int J Biol Macromol 2024; 274:133172. [PMID: 38880458 DOI: 10.1016/j.ijbiomac.2024.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Jinnan Shi
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Lingying Chen
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Xiaoyu He
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Yiyong Weng
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China
| | - Xiaoyan Zhang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Da-Peng Yang
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China..
| | - Haiming Yu
- Department of Spinal Surgery, The Second Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| |
Collapse
|
7
|
Biglari L, Naghdi M, Poursamar SA, Nilforoushan MR, Bigham A, Rafienia M. A route toward fabrication of 3D printed bone scaffolds based on poly(vinyl alcohol)-chitosan/bioactive glass by sol-gel chemistry. Int J Biol Macromol 2024; 258:128716. [PMID: 38081483 DOI: 10.1016/j.ijbiomac.2023.128716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Among different methods for the fabrication of bone scaffolds, 3D printing has created great advances in tissue engineering and regenerative medicine owing to its ability to make objects mimicking native tissues. Thanks to its abundant availability, structural features, and favorable biological properties, chitosan (CS) hydrogel was selected to be used for preparation of the bone scaffolds. However, the 3D printing of CS-based hydrogels is still under early exploration. Knowing the fact that natural polymers are not so competent at holding large amounts of water, poly(vinyl alcohol) as the second polymer was employed. The novelty of the present research lies in the concept of employing sol-gel chemistry in order to attain proper viscosity and rheological behavior to give self-standing filaments of the polymer blends. Employing sol-gel reaction in the preparation of the hybrid hydrogels had the advantage of endowing shape fidelity to the polymer blend without any solidifying in the needle. The obtained organic-inorganic hybrids were directly printed and subsequently cross-linked. The best performance in terms of mechanical strength, cell viability, and bio-mineralization was observed for the 50:50 ratio. The in vitro cell culture and the bioactivity results showed that the printed scaffolds with this method have great potential in bone tissue engineering. Further, this method could be expandable to print other hydrogels with diverse applications such as implantable devices, soft robotics, etc.
Collapse
Affiliation(s)
- Leila Biglari
- Department of Material Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
| | - Mina Naghdi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples 80125, Italy
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Guimarães CCL, de Souza JR, Campos TMB, Marques TO, Kito LT, Kukulka EC, de Vasconcellos LMR, Borges ALS, Thim GP. Chlorinated-based bioceramics incorporated in polycaprolactone membranes. J Biomed Mater Res B Appl Biomater 2024; 112:e35315. [PMID: 37589245 DOI: 10.1002/jbm.b.35315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol-gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol-gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non-chlorinated bioceramics contained NBOs (non-bridge bonds) and crystallized the α-wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.
Collapse
Affiliation(s)
| | - Joyce Rodrigues de Souza
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | - Tiago Moreira Bastos Campos
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São Paulo, Brazil
| | - Thays Oliveira Marques
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | - Letícia Terumi Kito
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São Paulo, Brazil
| | - Elisa Camargo Kukulka
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | - Gilmar Patrocínio Thim
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São Paulo, Brazil
| |
Collapse
|
9
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
10
|
Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E. Accelerated reconstruction of rat calvaria bone defect using 3D-printed scaffolds coated with hydroxyapatite/bioglass. Sci Rep 2023; 13:12145. [PMID: 37500679 PMCID: PMC10374909 DOI: 10.1038/s41598-023-38146-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Self-healing and autologous bone graft of calvaraial defects can be challenging. Therefore, the fabrication of scaffolds for its rapid and effective repair is a promising field of research. This paper provided a comparative study on the ability of Three-dimensional (3D) printed polycaprolactone (PCL) scaffolds and PCL-modified with the hydroxyapatite (HA) and bioglasses (BG) bioceramics scaffolds in newly bone formed in calvaria defect area. The studied 3D-printed PCL scaffolds were fabricated by fused deposition layer-by-layer modeling. After the evaluation of cell adhesion on the surface of the scaffolds, they were implanted into a rat calvarial defect model. The rats were divided into four groups with scaffold graft including PCL, PCL/HA, PCL/BG, and PCL/HA/BG and a non-explant control group. The capacity of the 3D-printed scaffolds in calvarial bone regeneration was investigated using micro computed tomography scan, histological and immunohistochemistry analyses. Lastly, the expression levels of several bone related genes as well as the expression of miR-20a and miR-17-5p as positive regulators and miR-125a as a negative regulator in osteogenesis pathways were also investigated. The results of this comparative study have showed that PCL scaffolds with HA and BG bioceramics have a great range of potential applications in the field of calvaria defect treatment.
Collapse
Affiliation(s)
- Nasrin Fazeli
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 141556455, Tehran, Iran.
| |
Collapse
|
11
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
12
|
Baghersad S, Sathish Kumar A, Kipper MJ, Popat K, Wang Z. Recent Advances in Tissue-Engineered Cardiac Scaffolds-The Progress and Gap in Mimicking Native Myocardium Mechanical Behaviors. J Funct Biomater 2023; 14:jfb14050269. [PMID: 37233379 DOI: 10.3390/jfb14050269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Heart failure is the leading cause of death in the US and worldwide. Despite modern therapy, challenges remain to rescue the damaged organ that contains cells with a very low proliferation rate after birth. Developments in tissue engineering and regeneration offer new tools to investigate the pathology of cardiac diseases and develop therapeutic strategies for heart failure patients. Tissue -engineered cardiac scaffolds should be designed to provide structural, biochemical, mechanical, and/or electrical properties similar to native myocardium tissues. This review primarily focuses on the mechanical behaviors of cardiac scaffolds and their significance in cardiac research. Specifically, we summarize the recent development of synthetic (including hydrogel) scaffolds that have achieved various types of mechanical behavior-nonlinear elasticity, anisotropy, and viscoelasticity-all of which are characteristic of the myocardium and heart valves. For each type of mechanical behavior, we review the current fabrication methods to enable the biomimetic mechanical behavior, the advantages and limitations of the existing scaffolds, and how the mechanical environment affects biological responses and/or treatment outcomes for cardiac diseases. Lastly, we discuss the remaining challenges in this field and suggestions for future directions to improve our understanding of mechanical control over cardiac function and inspire better regenerative therapies for myocardial restoration.
Collapse
Affiliation(s)
- Somayeh Baghersad
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Abinaya Sathish Kumar
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Lacambra-Andreu X, Maazouz A, Lamnawar K, Chenal JM. A Review on Manufacturing Processes of Biocomposites Based on Poly(α-Esters) and Bioactive Glass Fillers for Bone Regeneration. Biomimetics (Basel) 2023; 8:81. [PMID: 36810412 PMCID: PMC9945144 DOI: 10.3390/biomimetics8010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. During these last 20 years, those biocomposites have been explored for making complex geometry devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides an overview of the current development of manufacturing process with synthetic biodegradable poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the different works based on these biocomposites will be classified according to their manufacturing process. New processing techniques, particularly additive manufacturing processes, open up a new range of possibilities. These techniques have shown the possibility to customize bone implants for each patient and even create scaffolds with a complex structure similar to bone. At the end of this manuscript, a contextualization exercise will be performed to identify the main issues of process/resorbable biocomposites combination identified in the literature and especially for resorbable load-bearing applications.
Collapse
Affiliation(s)
- Xavier Lacambra-Andreu
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Abderrahim Maazouz
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- Hassan II Academy of Science and Technology, Rabat 10100, Morocco
| | - Khalid Lamnawar
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-Marc Chenal
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
14
|
Zinsou PH, Degla G, Ezzinbi K. Quantitative and stability study of the evolution of a thermoelastic body. MethodsX 2022; 10:101983. [PMID: 36632601 PMCID: PMC9826895 DOI: 10.1016/j.mex.2022.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
We prove the existence and uniqueness of a solution to a system of equations describing the evolution of a linear thermoelastic body by using a semi-group method. Moreover, the uniform exponential stability of the solution is shown in a particular case.•With respect to the existence and uniqueness of the solution, we have defined a linear operator which generates a contraction semi-group and show that it is monotone maximal.•With respect to the stability of the system, we have computed explicitly the expression of the solution of the system and show that the semi-group is uniformly exponentially stable in a particular case.
Collapse
Affiliation(s)
- Pascal H. Zinsou
- Institut De Mathematiques Et De Sciences Physiques (IMSP), 01 BP 613 PORTO-NOVO, Benin
| | - Guy Degla
- Institut De Mathematiques Et De Sciences Physiques (IMSP), 01 BP 613 PORTO-NOVO, Benin
| | - Khalil Ezzinbi
- Universite cardi ayyad, facultedes sciences Semlalia, Departement de mathematiques, B.P.2390, Marrakesh, Morocco
| |
Collapse
|
15
|
Li F, Chen X, Liu P. A Review on Three-Dimensional Printed Silicate-Based Bioactive Glass/Biodegradable Medical Synthetic Polymer Composite Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2022. [PMID: 36301943 DOI: 10.1089/ten.teb.2022.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, tissue engineering scaffolds have turned into the preferred option for the clinical treatment of pathological and traumatic bone defects. In this field, silicate-based bioactive glasses (SBGs) and biodegradable medical synthetic polymers (BMSPs) have attracted a great deal of attention owing to their shared exceptional advantages, like excellent biocompatibility, good biodegradability, and outstanding osteogenesis. Three-dimensional (3D) printed SBG/BMSP scaffolds can not only replicate the mechanical properties and microstructure of natural bone but also degrade in situ after service and end up being replaced by regenerated bone tissue in vivo. This review first consolidates the research efforts in 3D printed SBG/BMSP scaffolds, and then focuses on their composite mechanism. This review may help to provide a fresh perspective for SBG/BMSP composite system in bone regeneration.
Collapse
Affiliation(s)
- Fulong Li
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaohong Chen
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.,Biomedical Materials, Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- Electromechanical Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.,Biomedical Materials, Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| |
Collapse
|
16
|
Huang P, Yang P, Liu K, Tao W, Tao J, Ai F. Evaluation of 'surgery-friendly' bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects. Biomed Mater 2022; 18. [PMID: 36317271 DOI: 10.1088/1748-605x/ac9e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
The repair of irregular and complex critical bone defects remains a challenge in clinical practice. The application of 3D-printed bioceramics particle/polymer composite scaffolds in bone tissue engineering has been widely studied. At present, the inorganic particle content of the composite scaffolds is generally low, resulting in poor osteogenic activity. However, scaffold with high inorganic content are highly brittle, difficult to operate during surgery, and cannot be in close contact with surrounding bones. Therefore, it is of great significance to design a 'surgery-friendly' scaffold with high bioceramic content and good ductility. In this study, we used the solvent method to add high concentration (wt% 70%) bioglass (BG) into polycaprolactone (PCL), and polyethylene glycol was used as plasticizer to prepare 70% BG/PCL composite scaffolds with high ductility using 3D printing technology.In vitroexperiments showed that the scaffold had good mechanical properties: easy extension, easy folding and strong compressive resistance. It also showed good performance in biocompatibility and osteogenic activity. It was further observed that compared with pure BG or PCL implantation, the scaffold with higher BG content could have more new bone tissue appeared after 12 weeks. All these results indicate that 3D-printed 70% BG/PCL scaffolds have great potential for personalized repair of bone defects.
Collapse
Affiliation(s)
- Pengren Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Peng Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Keming Liu
- Department of Orthopaedics, Guixi Dongxin Hospital, Yingtan 335400, People's Republic of China
| | - Wei Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
17
|
Liu H, Wang C, Sun X, Zhan C, Li Z, Qiu L, Luo R, Liu H, Sun X, Li R, Zhang J. Silk Fibroin/Collagen/Hydroxyapatite Scaffolds Obtained by 3D Printing Technology and Loaded with Recombinant Human Erythropoietin in the Reconstruction of Alveolar Bone Defects. ACS Biomater Sci Eng 2022; 8:5245-5256. [PMID: 36336837 DOI: 10.1021/acsbiomaterials.2c00690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fast osteogenesis of the large alveolar fossa and the maintenance of the height of the alveolar ridge after tooth extraction have always been a clinical challenge. Therefore, this work describes the creation of innovative silk fibroin/collagen/hydroxyapatite (SCH) biological scaffolds by 3D printing technology, which are loaded with recombinant human erythropoietin (rh-EPO) for the reconstruction of bone defects. Low-temperature 3D printing can maintain the biological activity of silk fibroin and collagen. The SCH scaffolds showed the ideal water absorption and porosity, being a sustained-release carrier of rh-EPO. The optimized scaffolds had ideal mechanical properties in vitro, and MC3T3-E1 cells could easily adhere and proliferate on it. In vivo experiments in rabbits demonstrated that the composite scaffolds gradually degraded and promoted the accumulation and proliferation of osteoblasts and the formation of collagen fibers, significantly promoting the reconstruction of mandibular defects. In this study, a novel composite biological scaffold was prepared using 3D printing technology, and the scaffold was innovatively combined with the multifunctional growth factor rh-EPO. This provides a new optimized composite material for the reconstruction of irregular mandible defects, and this biomaterial is promising for clinical reconstruction of alveolar bone defects.
Collapse
Affiliation(s)
- Han Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Xiaoqian Sun
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Chaojun Zhan
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Zixiao Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Rui Luo
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Liu
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Xiaodi Sun
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jun Zhang
- Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| |
Collapse
|
18
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Barbosa TV, Dernowsek JA, Tobar RR, Casali BC, Fortulan CA, Ferreira EBF, Selistre de Araújo HS, Branciforti MC. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ε-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications. Biomed Mater 2022; 17. [PMID: 35948004 DOI: 10.1088/1748-605x/ac88ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Several techniques, such as additive manufacturing, have been used for the manufacture of polymer-ceramic composite scaffolds for bone tissue engineering. A new extruder head recently developed for improving the manufacturing process is an experimental 3D printer Fab@CTI that enables the use of ceramic powders in the processing of composite materials or polymer blends. Still, the manufacturing process needs improvement to promotes the dispersion of ceramic particles in the polymer matrix. This article addresses the manufacture of scaffolds by 3D printing from mixtures of poly(ε-caprolactone) (PCL) and a glass powder of same composition of 45S5Bioglass®, labeled as synthesized bioglass (SBG), according to two different methods that investigated the efficiency of the new extruder head. The first one is a single extrusion process in a Fab@CTI 3D printer, and the other consists in the pre-processing of the PCL-SBG mixture in a mono-screw extruder with a Maddock®element, followed by direct extrusion in the experimental Fab@CTI 3D printer. The morphological characterization of the extruded samples by SEM showed an architecture of 0o/90o interconnected struts and suitable porosity for bone tissue engineering applications. Scaffolds fabricated by two methods shows compressive modulus ranging from 54.4 ± 14.2 MPa to 155.9 ± 20.4 MPa, results that are compatible to use in bone tissue engineering. Cytotoxicity assays showed non-toxic effects and viability for in vitro MG-63 cell proliferation. Alizarin Red staining test showed calcium deposition in all scaffolds, which suggests PCL/SBG composites promising candidates for use in bone tissue engineering. Results of cell morphology suggest more cell growth and adhesion for scaffolds fabricated using the pre-processing in a mono-screw extruder.
Collapse
Affiliation(s)
- Talita Villa Barbosa
- Department of Materials Engineering, University of Sao Paulo, Avenida Trabalhador Sao-carlense, 400, Sao Carlos, Sao Paulo, 13566-590, BRAZIL
| | - Janaina Andréa Dernowsek
- Three-Dimensional Technologies Division, Renato Archer Information Technology Center, Rodovia Dom Pedro I, km 143, Campinas, Sao Paulo, 13069-901, BRAZIL
| | - Raul Revelo Tobar
- Department of Materials Engineering, University of Sao Paulo, Avenida Trabalhador Sao-carlense, 400, Sao Carlos, Sao Paulo, 13566-590, BRAZIL
| | - Bruna Carla Casali
- Department of Physiological Sciences, Federal University of Sao Carlos, Rodovia Washington Luiz, km 235, Sao Carlos, Sao Paulo, 13565-905, BRAZIL
| | - Carlos Alberto Fortulan
- Department of Mechanical Engineering, University of Sao Paulo, Avenida Trabalhador Sao-carlense, 400, Sao Carlos, Sao Paulo, 13566-590, BRAZIL
| | - Eduardo Bellini Ferreira Ferreira
- Department of Materials Engineering, University of Sao Paulo, Avenida Trabalhador Sao-carlense, 400, Sao Carlos, Sao Paulo, 13566-590, BRAZIL
| | - Heloísa Sobreiro Selistre de Araújo
- Department of Physiological Sciences, Federal University of Sao Carlos, Rodovia Washington Luís, km 235, Sao Carlos, Sao Paulo, 13565-905, BRAZIL
| | - Marcia Cristina Branciforti
- Department of Materials Engineering, University of Sao Paulo, Avenida Trabalhador Sao-carlense, 400, Sao Paulo, Sao Paulo, 13566-590, BRAZIL
| |
Collapse
|
20
|
Mairpady A, Mourad AHI, Mozumder MS. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers (Basel) 2022; 14:polym14091802. [PMID: 35566970 PMCID: PMC9104973 DOI: 10.3390/polym14091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate the physical, mechanical, and biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially, a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix package in the R program. Then, the database was created by extracting the mechanical properties of the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools. Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend as the best candidate for cartilage repair.
Collapse
Affiliation(s)
- Anusha Mairpady
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
21
|
Lu YC, Chang TK, Yeh ST, Lin TC, Lin HS, Chen CH, Huang CH, Huang CH. Evaluation of graphene-derived bone scaffold exposure to the calvarial bone_ in-vitro and in-vivo studies. Nanotoxicology 2022; 16:1-15. [PMID: 35085045 DOI: 10.1080/17435390.2022.2027036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene is a novel material which has recently been gaining great interest in the biomedical fields. Our previous study observed that graphene-derived particles help induce bone formation in a murine calvarial model. Here, we further developed a blended graphene-contained polycaprolactone (PCL/G) filament for application in a 3D-printed bone scaffold. Since implants are expected to be for long-term usage, in vitro cell culture and in vivo scaffold implants were evaluated in a critical-size bone defect calvarial model for over 60 weeks. Graphene greatly improved the mechanical strength by 30.2% compared to pure PCL. The fabricated PCL/G scaffolds also showed fine cell viability. In animal model, an abnormal electroencephalogram power spectrum and early signs of aging, such as hair graying and hair loss, were found in the group with a PCL/G scaffold compared to pure PCL scaffold. Neither of the abnormal symptoms caused death of all animals in both groups. The long-term use of graphene-derived biomaterials for in-vivo implants seems to be safe. But the comprehensive biosafety still needs further evaluation.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, MacKay Medical College, Taipei, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, MacKay Medical College, Taipei, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Ting Yeh
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Shih Lin
- Department of Neurosurgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Hung Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Orthopaedic Surgery, Changhau Christian Hospital, Changhau, Taiwan
| | - Chang-Hung Huang
- Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Daskalakis E, Huang B, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Koc B, Blunn G, Bartolo P. Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers (Basel) 2022; 14:445. [PMID: 35160435 PMCID: PMC8839207 DOI: 10.3390/polym14030445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
The design of scaffolds with optimal biomechanical properties for load-bearing applications is an important topic of research. Most studies have addressed this problem by focusing on the material composition and not on the coupled effect between the material composition and the scaffold architecture. Polymer-bioglass scaffolds have been investigated due to the excellent bioactivity properties of bioglass, which release ions that activate osteogenesis. However, material preparation methods usually require the use of organic solvents that induce surface modifications on the bioglass particles, compromising the adhesion with the polymeric material thus compromising mechanical properties. In this paper, we used a simple melt blending approach to produce polycaprolactone/bioglass pellets to construct scaffolds with pore size gradient. The results show that the addition of bioglass particles improved the mechanical properties of the scaffolds and, due to the selected architecture, all scaffolds presented mechanical properties in the cortical bone region. Moreover, the addition of bioglass indicated a positive long-term effect on the biological performance of the scaffolds. The pore size gradient also induced a cell spreading gradient.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Boyang Huang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Anil Ahmet Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
23
|
Promchana P, Choojun K, Leesakul N, Saithong S, Chainok K, Sooknoi T. Experimental insights into catalytic oxidation of 1,6-hexanediol to ε-caprolactone over ( p-cymene)RuCl 2(L) complexes in non-polar media. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity-pocket site dimension (θc) dependence of (p-cymene)RuCl2(L) supports associative interchange mechanism for 1,6-hexandiol oxidation to ε-caprolactone. Methyl isobutyl carbinol, a H-accepting product, reacts with Ru, causing deactivation.
Collapse
Affiliation(s)
- Pratya Promchana
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Kittisak Choojun
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Kittipong Chainok
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121 Thailand
| | - Tawan Sooknoi
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
24
|
Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E. 3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS OMEGA 2021; 6:35284-35296. [PMID: 34984260 PMCID: PMC8717387 DOI: 10.1021/acsomega.1c04015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
With advances in bone tissue engineering, various materials and methods have been explored to find a better scaffold that can help in improving bone growth and regeneration. Three-dimensional (3D) printing by fused deposition modeling can produce customized scaffolds from biodegradable polyesters such as polycaprolactone (PCL). Although the fabricated PCL scaffolds exhibited a lack of bioactivity and poor cell attachment on their surfaces, herein, using a simple postfabrication modification method with hydroxyapatite (HA) and bioglasses (BGs), we obtained better cell proliferation and attachment. Biological behavior and osteosupportive capacity of the 3D-printed scaffolds including PCL, PCL/HA, PCL/BG, and PCL/HA/BG were evaluated in this study, while human adipose tissue-derived mesenchymal stem cells (hADSCs) were cultured on the scaffolds. The cell morphology, attachment, and proliferation were investigated using scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 4',6-diamidino-2-phenylindole (DAPI) staining. In the next step, the ability of stem cells to differentiate into osteoblasts was evaluated by measuring alkaline phosphatase (ALP) activity, calcium deposition, and bone-related gene and protein expression. In the end, the expression levels of miR-20a, miR-125a, and their target genes were also investigated as positive and negative regulators in osteogenesis pathways. The results showed that the coated scaffolds with bioceramics present a more appropriate surface for cell adhesion and proliferation, as well as efficient potential in inducing osteoconduction and osteointegration compared to PCL alone and control. The PCL/HA/BG scaffold exhibited higher in vitro cell viability and bone formation compared to the other groups, which can be due to the synergistic effect of HA and BG. On the whole, this tricomponent 3D-printing scaffold has a promising prospect for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nasrin Fazeli
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 14778 93855, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology,
College of Science, University of Tehran, Tehran 14179 35840, Iran
| | - Shiva Irani
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 14778 93855, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital
Stem Cell Research Center, Shahid Beheshti
University of Medical Sciences, Tehran 19839 63113, Iran
| | - Ehsan Seyedjafari
- Department
of Biotechnology, College of Science, University
of Tehran, Tehran 14179 35840, Iran
| |
Collapse
|
25
|
Liu H, Qiu L, Liu H, Li F, Fan Y, Meng L, Sun X, Zhan C, Luo R, Wang C, Zhang J, Li R. Effects of Fiber Cross-Angle Structures on the Mechanical Property of 3D Printed Scaffolds and Performance of Seeded MC3T3-E1 Cells. ACS OMEGA 2021; 6:33665-33675. [PMID: 34926914 PMCID: PMC8675015 DOI: 10.1021/acsomega.1c04672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/15/2021] [Indexed: 05/15/2023]
Abstract
The three-dimensional (3D) printing technology combined with bone tissue engineering has become one of the major methods for mandibular reconstruction. However, the key factor retarding mandible reconstruction is the barrier of understanding and achieving the complex 3D gridwork formed by the trabeculae. This study innovatively constructed a low-temperature 3D printing silk fibroin/collagen/hydroxyapatite (SF/COL/HA) composite scaffold with a stable structure and remarkable biocompatibility. We designed three kinds of six-layer scaffolds with mixed fiber cross-angle structures (FCAS) of [0°/90°/0°/90°/0°/90°], [0°/45°/90°/135°/180°/225°] and [0°/30°/60°/90°/120°/150°]. Material properties of these scaffolds such as porosity, water absorption rate, X-ray diffraction, Fourier transform infrared spectroscopy, and compression performance were detected. Then, the MC3T3-E1 cells were seeded on these scaffolds and the adhesion, proliferation, and differentiation were investigated. To be more convincing, the same experiments were performed on another polycaprolactone/hydroxyapatite scaffold. The results suggested that the changes of FCAS affected the mechanical properties of 3D printed scaffolds and performance of seeded cells. Besides, the 90° FCAS significantly enhanced the compressive modulus in two groups and were more conducive to the cell proliferation and osteogenesis, which provided evidence for exploring the influence of FCAS on the properties of scaffolds and the application of two composite scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Han Liu
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Lin Qiu
- Central
Laboratory, Peking University School and
Hospital of Stomatology, Beijing 100081, China
| | - Hao Liu
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Fengji Li
- Shenzhen
Luohu Hospital of Traditional Chinese Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518001, China
| | - Yaru Fan
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Tianjin
Medical University, Tianjin 300203, China
| | - Lulu Meng
- Tianjin
University of Technology, Tianjin 300384, China
| | - Xiaoqian Sun
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Chaojun Zhan
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Rui Luo
- School
of Medicine, Nankai University, Tianjin 300041, China
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Chao Wang
- Tianjin
Stomatological Hospital, Tianjin 300041, China
| | - Jun Zhang
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ruixin Li
- Tianjin
Stomatological Hospital, Tianjin 300041, China
- Tianjin
Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| |
Collapse
|
26
|
Siami M, Jahani K, Rezaee M. Identifying the parameters of viscoelastic model for a gel-type material as representative of cardiac muscle in dynamic tests. Proc Inst Mech Eng H 2021; 235:1205-1216. [PMID: 34137313 DOI: 10.1177/09544119211025868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, mechanical parameters of a calf heart muscle are identified and a gel-type material as the representative of the cardiac muscle in dynamic tests is introduced. The motivation of this study is to introduce a replacement material of the heart muscle to use in experimental studies of the leadless pacemaker. A particular test setup is developed to capture the experimental data based on the stress relaxation test method where its outputs are time histories of the force and displacement. The standard linear solid model is used for mathematical modeling of the heart muscle sample and a gel-type material specimen namely α-gel. Five tests with different strain history (13.6%,17.1%,20.6%22.4%and,23.8%) are performed by regarding and disregarding the influence of the initial ramp of the loading. The mechanical parameters of the standard linear solid model were identified with precise curve fitting. Consideration of the initial ramp significantly influences the consequences and they are so close to their experimental counterparts. The identified parameters of the standard linear solid model by regarding the influence of the initial ramp for the gel-type material are within an acceptable range for the viscoelastic properties of the calf heart tissue. These results show that the gel-type material has the potential to represent the cardiac muscle in the leadless pacemaker experimental studies. Dynamic mechanical analysis is used to characterize the dynamic viscoelastic properties for the gel by utilizing the identified parameters with taking into account the initial ramp in the frequency domain. Results show that Storage modulus, Loss modulus, and Loss tangent are strongly frequency-dependent especially at low-frequency around the heartbeat frequency range (0-2 Hz).
Collapse
Affiliation(s)
- Majid Siami
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Kamal Jahani
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Mousa Rezaee
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
27
|
Alemán Espinosa E, Escobar‐Barrios V, Palestino Escobedo G, Waldo Mendoza MA. Thermal and mechanical properties of
UHMWPE
/
HDPE
/
PCL
and bioglass filler: Effect of polycaprolactone. J Appl Polym Sci 2021. [DOI: 10.1002/app.50374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elzy Alemán Espinosa
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | - Vladimir Escobar‐Barrios
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | | | - Miguel A. Waldo Mendoza
- Tecnología Sustentable Greennova S. A. de C. V. Parque de Innovación y Emprendimiento del ITESM San Luis Potosí Mexico
| |
Collapse
|
28
|
Multi-walled carbon nanotube/hydroxyapatite nanocomposite with leukocyte- and platelet-rich fibrin for bone regeneration in sheep model. Oral Maxillofac Surg 2021; 26:63-72. [PMID: 33852090 DOI: 10.1007/s10006-020-00933-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/10/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effects of multi-walled carbon nanotubes/hydroxyapatite (MWCNT/HA) granules with or without leukocyte- and platelet-rich fibrin (L-PRF) on bone regeneration in cancellous bone of sheep model. METHODS Totally, 32 cylindrical holes were drilled in female sheep (n = 4) in the distal epiphysis and proximal metaphysis of right and left humerus and femur. The defects were randomly filled with (1) MWCNT/HA, (2) MWCNT/HA mixed with L-PRF, (3) L-PRF, and (4) left empty as control. After 8 weeks, defects were evaluated and compared radiographically using multi-slice computed tomographic (CT) scan and cone beam CT scans, histologically and histomorphometrically. RESULTS The results showed that there was no significant inflammation (> 10%) or foreign body reaction around the granules. The new lamellar bone was regenerated around the MWCNT/HA nanocomposite granules. Addition of L-PRF to MWCNT/HA demonstrated significantly improvement of new bone formation, about 27.40 ± 1.08%, in comparison with the L-PRF alone, about (12.16 ± 1.46%) (P < 0.01). Also, the rate of new bone formation was significantly greater with the use of MWCNT/HA granules (24.59 ± 1.54%) compared to the control (10.36 ± 1.17%) (P < 0.01). CONCLUSION Consequently, both biocompatibility and osteoconductivity of MWCNT/HA nanocomposite were demonstrated in the preclinical sheep model, and the use of L-PRF in combination with MWCNT/HA nanocomposite can improve bone regeneration.
Collapse
|
29
|
Han R, Buchanan F, Ford L, Julius M, Walsh P. A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111755. [DOI: 10.1016/j.msec.2020.111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
|
30
|
Tan W, Gao C, Feng P, Liu Q, Liu C, Wang Z, Deng Y, Shuai C. Dual-functional scaffolds of poly(L-lactic acid)/nanohydroxyapatite encapsulated with metformin: Simultaneous enhancement of bone repair and bone tumor inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111592. [PMID: 33545810 DOI: 10.1016/j.msec.2020.111592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Bone defects caused by tumors are difficult to repair clinically because of their poor morphology and residual tumor cell-induced recurrence. Scaffolds with the dual function of bone repair and bone tumor treatment are urgently needed to resolve this problem. In this study, a poly(L-lactic acid) (PLLA)/nanoscale hydroxyapatite (nHA)/metformin (MET) nanocomposite scaffold was constructed via selective laser sintering. The scaffolds were expected to combine the excellent mechanical strength and biodegradability of PLLA, the good bioactivity of nHA, and the water solubility and antitumor properties of MET. The PLLA/nHA/MET scaffolds showed improved cell adhesion, appropriate porosity, good biocompatibility and osteogenic-induced ability in vitro because metformin improves water solubility and promotes the osteogenic differentiation of cells within the scaffold. The PLLA/nHA/MET scaffold had an extended drug release time because the MET particles were wrapped in the biodegradable polymer PLLA and the wrapped MET particles were slowly released into body fluids as the PLLA was degraded. Moreover, the scaffold induced osteosarcoma (OS) cell apoptosis by upregulating apoptosis-related gene expression and showed excellent tumor inhibition characteristics in vitro. In addition, the scaffold induced osteogenic differentiation of bone marrow mesenchymal cells (BMSCs) by promoting osteogenic gene expression. The results suggest that the PLLA/nHA/MET composite scaffold has the dual function of tumor inhibition and bone repair and therefore it provides a promising new approach for the treatment of tumor-induced bone defects.
Collapse
Affiliation(s)
- Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013, People's Republic of China; Department of Spinal Orthopedics, Huizhou Third People's Hospital, Guangzhou Medical University, No.1, Xuebei Road, Huizhou, Guangdong 516002, People's Republic of China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, People's Republic of China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Congcong Liu
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Zhenting Wang
- Department of Urinary Surgery, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, Hunan 410013, People's Republic of China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Nabavi MH, Salehi M, Ehterami A, Bastami F, Semyari H, Tehranchi M, Nabavi MA, Semyari H. A collagen-based hydrogel containing tacrolimus for bone tissue engineering. Drug Deliv Transl Res 2020; 10:108-121. [PMID: 31428941 DOI: 10.1007/s13346-019-00666-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone tissue engineering aims to develop bone graft structure that can heal bone defects without using autografts or allografts. The current study was conducted to promote bone regeneration using a collagen type I hydrogel containing tacrolimus. For this purpose, different amounts of tacrolimus (10 μg/ml, 100 μg/ml, and 1000 μg/ml) were loaded into the hydrogel. The resulting drug-loaded hydrogels were characterized for their porosity, swelling capacity, weight loss, drug release, blood compatibility, and cell proliferation (MTT). For functional analysis, the developed hydrogel surrounded by a film made of gelatin and polycaprolactone (PCL) was administrated in the calvarias defect of Wistar rats. The results indicated that the hydrogel has a porosity of 89.2 ± 12.5% and an appropriate swelling, drug release, and blood compatibility behavior. The in vitro results indicated that the collagen hydrogel containing 1000 μg tacrolimus was adequate in terms of cell proliferation. Finally, in vivo studies provided some evidence of the potential of the developed hydrogel for bone healing.
Collapse
Affiliation(s)
- Mir Hamed Nabavi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Semyari
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Maryam Tehranchi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Mir Ahmad Nabavi
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Hossein Semyari
- Faculty of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids Surf B Biointerfaces 2020; 193:111083. [DOI: 10.1016/j.colsurfb.2020.111083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
33
|
Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poly(ε-caprolactone) (PCL) and PCL/bioactive glass composite fiber mats were produced by electrospinning technique. To improve cell adhesion and proliferation (i) 45S5, (ii) a bioactive glass containing strontium and magnesium oxides, and (iii) a bioactive glass containing zinc oxide were separately added to the starting PCL solution before electrospinning. A good incorporation of bioactive glass particles in PCL electrospun mats was confirmed by SEM and FTIR analyses. Bioactivity was evaluated by immersion of PCL mats and PCL/bioactive glass electrospun fiber mats in simulated body fluid (SBF). Bone murine stromal cells (ST-2) were employed in WST-8 assay to assess cell viability, cell morphology, and proliferation. The results showed that the presence of bioactive glass particles in the fibers enhances cell adhesion and proliferation compared to neat PCL mats. Furthermore, PCL/bioactive glass electrospun mats showed higher wound-healing rate (measured as cell migration rate) in vitro compared to neat PCL electrospun mats. Therefore, the characteristics of the PCL matrix combined with biological properties of bioactive glasses make PCL/bioactive glass composite ideal candidate for biomedical application.
Collapse
|
34
|
Bonfanti A, Kaplan JL, Charras G, Kabla A. Fractional viscoelastic models for power-law materials. SOFT MATTER 2020; 16:6002-6020. [PMID: 32638812 DOI: 10.1039/d0sm00354a] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soft materials often exhibit a distinctive power-law viscoelastic response arising from broad distribution of time-scales present in their complex internal structure. A promising tool to accurately describe the rheological behaviour of soft materials is fractional calculus. However, its use in the scientific community remains limited due to the unusual notation and non-trivial properties of fractional operators. This review aims to provide a clear and accessible description of fractional viscoelastic models for a broad audience and to demonstrate the ability of these models to deliver a unified approach for the characterisation of power-law materials. The use of a consistent framework for the analysis of rheological data would help classify the empirical behaviours of soft and biological materials, and better understand their response.
Collapse
Affiliation(s)
- A Bonfanti
- Department of Engineering, University of Cambridge, UK.
| | - J L Kaplan
- Department of Engineering, University of Cambridge, UK.
| | - G Charras
- London Centre for Nanotechnology, University College London, UK and Department of Cell and Developmental Biology, University College London, UK
| | - A Kabla
- Department of Engineering, University of Cambridge, UK.
| |
Collapse
|
35
|
da Fonseca GF, Avelino SDOM, Mello DDCR, do Prado RF, Campos TMB, de Vasconcellos LMR, de Sousa Trichês E, Borges ALS. Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:41. [PMID: 32350625 DOI: 10.1007/s10856-020-06382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Biomaterials may be useful in filling lost bone portions in order to restore balance and improve bone regeneration. The objective of this study was to produce polycaprolactone (PCL) membranes combined with two types of bioglass (Sol-Gel and melt-quenched) and determine their physical and biological properties. Membranes were produced through electrospinning. This study presented three experimental groups: pure PCL membranes, PCL-Melt-Bioglass and PCL-Sol-gel-Bioglass. Membranes were characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectrophotometry (FTIR), Energy-Dispersive Spectroscopy and Zeta Potential. The following in vitro tests were performed: MTT assay, alkaline phosphatase activity, total protein content and mineralization nodules. Twenty-four male rats were used to observe biological performance through radiographic, fracture energy, histological and histomorphometric analyses. The physical and chemical analysis results showed success in manufacturing bioactive membranes which significantly enhanced cell viability and osteoblast differentiation. The new formed bone from the in vivo experiment was similar to that observed in the control group. In conclusion, the electrospinning enabled preparing PCL membranes with bioglass incorporated into the structure and onto the surface of PCL fibers. The microstructure of the PCL membranes was influenced by the bioglass production method. Both bioglasses seem to be promising biomaterials to improve bone tissue regeneration when incorporated into PCL.
Collapse
Affiliation(s)
- Gabriela Fernandes da Fonseca
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil
| | - Sarah de Oliveira Marco Avelino
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil
| | - Daphne de Camargo Reis Mello
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil
| | - Renata Falchete do Prado
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil.
| | - Tiago Moreira Bastos Campos
- Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50 Vila das Acácias, São José dos Campos, SP, 12228-900, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory (BIOCERAM), Institute of Science and Technology, Federal University of São Paulo-UNIFESP, Av. Cesare Monsueto Giulio Lattes1201-Eugênio de Melo, São José dos Campos, SP, 12247-014, Brazil
| | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of Sao Jose dos Campos, São Paulo State University (UNESP), Av. Engenheiro José Longo, 777, Jd São Dimas, São José dos Campos, SP, 12245000, Brazil
| |
Collapse
|
36
|
Shuai C, Zan J, Yang Y, Peng S, Yang W, Qi F, Shen L, Tian Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110486. [DOI: 10.1016/j.msec.2019.110486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
|
37
|
Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials 2020; 232:119706. [DOI: 10.1016/j.biomaterials.2019.119706] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
|
38
|
Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater 2019; 97:74-92. [PMID: 31400521 DOI: 10.1016/j.actbio.2019.08.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
Viscoelasticity of living tissues plays a critical role in tissue homeostasis and regeneration, and its implication in disease development and progression is being recognized recently. In this review, we first explored the state of knowledge regarding the potential application of tissue viscoelasticity in disease diagnosis. In order to better characterize viscoelasticity with local resolution and non-invasiveness, emerging characterization methods have been developed with the potential to be supplemented to existing facilities. To understand cellular responses to matrix viscoelastic behaviors in vitro, hydrogels made of natural polymers have been developed and the relationships between their molecular structure and viscoelastic behaviors, are elucidated. Moreover, how cells perceive the viscoelastic microenvironment and cellular responses including cell attachment, spreading, proliferation, differentiation and matrix production, have been discussed. Finally, some future perspective on an integrated mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses and biomaterial design are highlighted. STATEMENT OF SIGNIFICANCE: Tissue- or organ-scale viscoelastic behavior is critical for homeostasis, and the molecular basis and cellular responses of viscoelastic materials at micro- or nano-scale are being recognized recently. We summarized the potential applications of viscoelasticity in disease diagnosis enabled by emerging non-invasive characterization technologies, and discussed the underlying mechanism of viscoelasticity of hydrogels and current understandings of cell regulatory functions of them. With a growing understanding of the molecular basis of hydrogel viscoelasticity and recognition of its regulatory functions on cell behaviors, it is important to bring the clinical insights on how these characterization technologies and engineered materials may contribute to disease diagnosis and treatment. This review explains the basics in characterizing viscoelasticity with our hope to bridge the gap between basic research and clinical applications.
Collapse
|
39
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
40
|
Ravanbakhsh M, Labbaf S, Karimzadeh F, Pinna A, Houreh AB, Nasr-Esfahani MH. Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109994. [PMID: 31500021 DOI: 10.1016/j.msec.2019.109994] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
In this study, mesoporous bioactive glass (MBG) sub-micro particles were prepared through sol-gel synthesis and possessed a uniform and spherical structure with particle size of 302 ± 43 nm, a pore size of 4 nm and a high surface area of 354 m2 g-1. Alendronate (AL) is often used for the treatment of bone associated diseases, in particular osteosarcoma. However, due to the low bioavailability and high toxicity at increased doses, local and sustained release would be an ideal approach to AL delivery. Here, MBGs and aminated MBGs (AMBG) were applied as carriers for AL loading. High encapsulation efficiency of 75% and 85% and loading efficiency of 60% and 63%, for MBG and AMBG, respectively, was achieved. The release profile of AL from AMBG showed a better sustained and controlled release mechanism compared to MBG. In vitro results demonstrated the non-cytotoxic nature of both MBG and AMBG following exposure to MG63 osteoblast like cell line. AL release from MBG and AMBG, even at lower concentration, provoked decreased MG63 proliferation. The osteogenic potential of MBG and AMBG following exposure to dental pulp stem cells was evaluated using alizarin red assay.
Collapse
Affiliation(s)
- M Ravanbakhsh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - A Pinna
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A Baharlou Houreh
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
41
|
Fabrication of Poly(L-Lactic Acid)/Chitosan Scaffolds by Solid-Liquid Phase Separation Method for Nerve Tissue Engineering: An In Vitro Study on Human Neuroblasts. J Craniofac Surg 2019; 30:784-789. [PMID: 30896514 DOI: 10.1097/scs.0000000000005398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Polymeric scaffolds that support neural cell behaviors are attracting more attention. In the present study, solid-liquid phase separation technique is used to fabricate scaffolds made of poly(L-lactic acid) (PLLA) and chitosan (CS) blends to mimic both cellular microenvironment and anatomical structure of nerve tissue. The fabricated scaffolds favor characteristics of both natural and synthetic polymers. Different tests and assays including physical and mechanical ones (in vitro degradation rate, free radical release, hydrophilicity, and porosity measurements, microstructure observation, and mechanical tests) and cellular assays (cell attachment measurement and viability assessment) suggest that blend scaffolds prepared with this method support nerve cells for tissue engineering applications adequately and even better than scaffolds prepared with the same method but from pure PLLA or CS.
Collapse
|
42
|
Huang KH, Chen YW, Wang CY, Lin YH, Wu YHA, Shie MY, Lin CP. Enhanced Capability of Bone Morphogenetic Protein 2-loaded Mesoporous Calcium Silicate Scaffolds to Induce Odontogenic Differentiation of Human Dental Pulp Cells. J Endod 2019; 44:1677-1685. [PMID: 30409449 DOI: 10.1016/j.joen.2018.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Calcium silicate bioceramics have been broadly used as reparative or grafting materials with good bioactivity and biocompatibility in dental application. It has been shown that applying a mesoporous process to calcium silicate gives it great potential as a controlled drug delivery system. METHODS The aim of this study was to investigate a novel osteoinductive scaffold by loading bone morphogenetic protein 2 (BMP-2) to mesoporous calcium silicate (MesoCS) and fabricating it as 3-dimensional scaffolds using fused deposition modeling combined with polycaprolactone. RESULTS The MesoCS/BMP-2 scaffold showed similar patterns to that of a calcium silicate scaffold in releasing calcium and silicon ions in a simulated body fluid (SBF) immersion test for 7 days, but BMP-2 continued releasing from the MesoCS/BMP-2 scaffold significantly more than the CS scaffold from 48 hours to 7 days. Adhesion and proliferation of human dental pulp cells cultured on a MesoCS/BMP-2 scaffold were also more significant than scaffolds without BMP-2 or mesoporous as well as the results of the test on alkaline phosphatase activity. CONCLUSIONS The results support that the novel 3-dimensional-printed MesoCS scaffold performed well as BMP-2 delivery system and would be an ideal odontoinductive biomaterial in regenerative endodontics.
Collapse
Affiliation(s)
- Kuo-Hao Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; 3D Printing Medical Research Institute, Asia University, Taichung, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hong Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan; PhD Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Yuan-Haw Andrew Wu
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan; School of Dentistry, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
43
|
Xia L, Ma W, Zhou Y, Gui Z, Yao A, Wang D, Takemura A, Uemura M, Lin K, Xu Y. Stimulatory Effects of Boron Containing Bioactive Glass on Osteogenesis and Angiogenesis of Polycaprolactone: In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8961409. [PMID: 31011582 PMCID: PMC6442456 DOI: 10.1155/2019/8961409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/25/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
Polycaprolactone (PCL) has attracted great attention for bone regeneration attributed to its cost-efficiency, high toughness, and good processability. However, the relatively low elastic modulus, hydrophobic nature, and insufficient bioactivity of pure PCL limited its wider application for bone regeneration. In the present study, the effects of the addition of boron containing bioactive glass (B-BG) materials on the mechanical properties and biological performance of PCL polymer were investigated with different B-BG contents (0, 10, 20, 30, and 40 wt.%), in order to evaluate the potential applications of B-BG/PCL composites for bone regeneration. The results showed that the B-BG/PCL composites possess better tensile strength, human neutral pH value, and fast degradation as compared to pure PCL polymers. Moreover, the incorporation of B-BG could enhance proliferation, osteogenic differentiation, and angiogenic factor expression for rat bone marrow stromal cells (rBMSCs) as compared to pure PCL polymers. Importantly, the B-BG also promoted the angiogenic differentiation for human umbilical vein endothelial cells (HUVECs). These enhanced effects had a concentration dependence of B-BG content, while 30 wt.% B-BG/PCL composites achieved the greatest stimulatory effect. Therefore the 30 wt.% B-BG/PCL composites have potential applications in bone reconstruction fields.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Wudi Ma
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Yuning Zhou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Zhipeng Gui
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Aihua Yao
- Key Laboratory of the Advanced Civil Engineering Materials, Tongji University, Ministration of Education, China
| | - Deping Wang
- Key Laboratory of the Advanced Civil Engineering Materials, Tongji University, Ministration of Education, China
| | | | - Mamoru Uemura
- Department of Anatomy, Osaka Dental University, Osaka, Japan
| | - Kailin Lin
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| | - Yuanjin Xu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, China
| |
Collapse
|
44
|
Ma Y, Hu N, Liu J, Zhai X, Wu M, Hu C, Li L, Lai Y, Pan H, Lu WW, Zhang X, Luo Y, Ruan C. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9415-9424. [PMID: 30698946 DOI: 10.1021/acsami.8b20323] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic biodegradable polymeric scaffolds with uniformly interconnected pore structure, appropriate mechanical properties, excellent biocompatibility, and even enhanced osteogenesis ability are urgently required for in situ bone regeneration. In this study, for the first time, a series of biodegradable piperazine (PP)-based polyurethane-urea (P-PUU) scaffolds with a gradient of PP contents were developed by air-driven extrusion 3D printing technology. The P-PUU ink of 60 wt % concentration was demonstrated to have appropriate viscosity for scaffold fabrication. The 3D-printed P-PUU scaffolds exhibited an interconnected porous structure of about 450 μm in macropore size and about 75% in porosity. By regulating the contents of PP in P-PUU scaffolds, their mechanical properties could be moderated, and P-PUU1.4 scaffolds with the highest PP contents exhibited the highest compressive modulus (155.9 ± 5.7 MPa) and strength (14.8 ± 1.1 MPa). Moreover, both in vitro and in vivo biological results suggested that the 3D-printed P-PUU scaffolds possessed excellent biocompatibility and osteoconductivity to facilitate new bone formation. The small molecular PP itself was confirmed for the first time to regulate osteogenesis of osteoblasts in a dose-dependent manner and the optimum concentration for osteoconductivity was about ∼0.5 mM, which suggests that PP molecules, together with the mechanical behavior, nitrogen-contents, and hydrophilicity of P-PUUs, play an important role in enhancing the osteoconductive ability of P-PUU scaffolds. Therefore, the 3D-printed P-PUU scaffolds, with suitable interconnected pore structure, appropriate mechanical properties, and intrinsically osteoconductive ability, should provide a promising alternative for bone regeneration.
Collapse
Affiliation(s)
- Yufei Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Nan Hu
- Key Laboratory of Shenzhen Renal Diseases, Department of Nephrology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University , Shenzhen People's Hospital , Shenzhen , Guangdong 518020 , China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Xinyun Zhai
- Department of Orthopaedic and Traumatology , The University of Hong Kong , 21 Sassoon Road , Pokfulam , Hong Kong 999077 , China
| | | | | | | | | | | | - William Weijia Lu
- Department of Orthopaedic and Traumatology , The University of Hong Kong , 21 Sassoon Road , Pokfulam , Hong Kong 999077 , China
| | - Xinzhou Zhang
- Key Laboratory of Shenzhen Renal Diseases, Department of Nephrology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University , Shenzhen People's Hospital , Shenzhen , Guangdong 518020 , China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | | |
Collapse
|
45
|
Kołodziej A, Wesełucha-Birczyńska A, Świętek M, Skalniak Ł, Błażewicz M. Raman microspectroscopic investigations of polymer nanocomposites: evaluation of physical and biophysical properties. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | - Małgorzata Świętek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Łukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Marta Błażewicz
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
| |
Collapse
|
46
|
Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro. BIOMEDICAL GLASSES 2018. [DOI: 10.1515/bglass-2018-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The study reports the fabrication and in vitro biological evaluation of a sol-gel derived bioactive glass (BG) / polycaprolactone (PCL) composite fiber membrane, as a potential candidate for bone regeneration applications. The non woven composite mats were prepared by introducing the glass particles into the electrospinning process. Adding the glass improved the homogeneity of the fibers. The apatite forming ability of the membranes in simulated body fluid were evaluated and showed that hydroxyapatite had formed within 21 days in SBF and completely covered the surface of the membrane. In cell culture, dental pulp stem cells adhered proliferated and produced mineralized matrix on the PCL/BG fiber membrane.
Collapse
|
47
|
Li L, Song K, Chen Y, Wang Y, Shi F, Nie Y, Liu T. Design and Biophysical Characterization of Poly (l-Lactic) Acid Microcarriers with and without Modification of Chitosan and Nanohydroxyapatite. Polymers (Basel) 2018; 10:E1061. [PMID: 30960986 PMCID: PMC6404029 DOI: 10.3390/polym10101061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022] Open
Abstract
Nowadays, microcarriers are widely utilized in drug delivery, defect filling, and cell culture. Also, many researchers focus on the combination of synthetic and natural polymers and bioactive ceramics to prepare composite biomaterials for tissue engineering and regeneration. In this study, three kinds of microcarriers were prepared based on physical doping and surface modification, named Poly (l-lactic) acid (PLLA), PLLA/nanohydroxyapatite (PLLA/nHA), and PLLA/nHA/Chitosan (PLLA/nHA/Ch). The physicochemical properties of the microcarriers and their functional performances in MC3T3-E1 cell culture were compared. Statistical results showed that the average diameter of PLLA microcarriers was 291.9 ± 30.7 μm, and that of PLLA/nHA and PLLA/nHA/Ch microcarriers decreased to 275.7 ± 30.6 μm and 269.4 ± 26.3 μm, respectively. The surface roughness and protein adsorption of microcarriers were enhanced with the doping of nHA and coating of chitosan. The cell-carrier cultivation stated that the PLLA/nHA microcarriers had the greatest proliferation-promoting effect, while the PLLA/nHA/Ch microcarriers performed the strongest attachment with MC3T3-E1 cells. Besides, the cells on the PLLA/nHA/Ch microcarriers exhibited optimal osteogenic expression. Generally, chitosan was found to improve microcarriers with superior characteristics in cell adhesion and differentiation, and nanohydroxyapatite was beneficial for microcarriers regarding sphericity and cell proliferation. Overall, the modified microcarriers may be considered as a promising tool for bone tissue engineering.
Collapse
Affiliation(s)
- Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yongzhi Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, Concord, University of Sydney, Sydney, NSW 2139, Australia.
| | - Fangxin Shi
- Zhengzhou Institute of Emerging Technology Industries, Zhengzhou 450000, China.
| | - Yi Nie
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|