1
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
3
|
Migliorini F, Schenker H, Betsch M, Maffulli N, Tingart M, Hildebrand F, Lecouturier S, Rath B, Eschweiler J. Silica coated high performance oxide ceramics promote greater ossification than titanium implants: an in vivo study. J Orthop Surg Res 2023; 18:31. [PMID: 36631843 PMCID: PMC9832611 DOI: 10.1186/s13018-022-03494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This in vitro study investigated the osseointegration and implant integration of high performance oxide ceramics (HPOC) compared to titanium implants in rabbits. METHODS Histomorphometry was conducted around the distal, proximal, medial, and lateral aspects of the HPOC to quantify the amount of mature and immature ossification within the bone interface. Histomorphometry was conducted by a trained musculoskeletal pathologist. The region of interest (ROI) represented the percentage of surrounding area of the implant. The percentage of ROI covered by osteoid implant contact (OIC) and mature bone implant contact (BIC) were assessed. The surrounding presence of bone resorption, necrosis, and/or inflammation were quantitatively investigated. RESULTS All 34 rabbits survived the 6- and 12-week experimental period. All HPOC implants remained in situ. The mean weight difference from baseline was + 647.7 mg (P < 0.0001). The overall OIC of the ceramic group was greater at 6 weeks compared to the titanium implants (P = 0.003). The other endpoints of interest were similar between the two implants at all follow-up points. No difference was found in BIC at 6- and 12-weeks follow-up. No bone necrosis, resorption, or inflammation were observed. CONCLUSION HPOC implants demonstrated a greater osteoid implant contact at 6 weeks compared to the titanium implants, with no difference found at 12 weeks. The percentage of bone implant contact of HPOC implants was similar to that promoted by titanium implants.
Collapse
Affiliation(s)
- Filippo Migliorini
- grid.412301.50000 0000 8653 1507Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany ,Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152 Simmerath, Germany
| | - Hanno Schenker
- grid.412301.50000 0000 8653 1507Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Marcel Betsch
- grid.411668.c0000 0000 9935 6525Department of Orthopedics, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Nicola Maffulli
- grid.11780.3f0000 0004 1937 0335Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, SA Italy ,grid.9757.c0000 0004 0415 6205Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB UK ,grid.4868.20000 0001 2171 1133Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London, E1 4DG UK
| | | | - Frank Hildebrand
- grid.412301.50000 0000 8653 1507Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sophie Lecouturier
- grid.412301.50000 0000 8653 1507Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Björn Rath
- grid.459707.80000 0004 0522 7001Department of Orthopaedic Surgery, Klinikum Wels-Grieskirchen, 4600 Wels, Austria
| | - Jörg Eschweiler
- grid.412301.50000 0000 8653 1507Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
4
|
Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater 2022; 18:383-398. [PMID: 35415311 PMCID: PMC8965760 DOI: 10.1016/j.bioactmat.2022.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bone defects caused by trauma, tumor, congenital abnormality and osteoarthritis, etc. have been substantially impacted the lives and health of human. Artificial bone implants, like bioceramic-based scaffolds, provide significant benefits over biological counterparts and are critical for bone repair and regeneration. However, it is highly probable that bacterial infections occur in the surgical procedures or on bioceramic-based scaffolds. Therefore, it is of great significance to obtain bioceramic-based scaffolds with integrative antibacterial and osteogenic functions for treating bone implant-associated infection and promoting bone repair. To fight against infection problems, bioceramic-based scaffolds with various antibacterial strategies are developed for bone repair and regeneration and also have made great progresses. This review summarizes recent progresses in bioceramic-based scaffolds with antibacterial function, which include drug-induced, ion-mediated, physical-activated and their combined antibacterial strategies according to specific antibacterial mechanism. Finally, the challenges and opportunities of antibacterial bioceramic-based scaffolds are discussed. Bioceramic-based scaffolds with antibacterial function (BSAF) are reviewed. BSAF have a great potential in treating bone infection and promoting bone repair. Antibacterial strategies of BSAF include drug, ion, physical and combined ways. The combined strategy may be the optimal approach in fighting bone infection. Limitations, challenges and perspectives of BSAF are discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Weiye Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Min Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
- Corresponding author. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Corresponding author. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Corresponding author. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
5
|
Migliorini F, Eschweiler J, Maffulli N, Hildebrand F, Schenker H. Functionalised High-Performance Oxide Ceramics with Bone Morphogenic Protein 2 (BMP-2) Induced Ossification: An In Vivo Study. Life (Basel) 2022; 12:life12060866. [PMID: 35743897 PMCID: PMC9227568 DOI: 10.3390/life12060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the in vivo osseointegration potential of high-performance oxide ceramics (HPOCs) with peptide bone morphogenic protein 2 (BMP-2), comparing them with titanium implants. Histomorphometry was conducted around the distal, proximal, medial, and lateral sides of the implants to quantify the amount of mature and immature ossification within the bone interface. We hypothesised that HPOCs functionalised with BMP-2 promote ossification. HPOCs functionalised with BMP-2 were manufactured at the Department of Dental Materials Science and Biomaterial Research of the RWTH University Aachen, Germany. Histomorphometry was conducted by a professional pathologist in all samples. The region of interest (ROI) represented the percentage of the surrounding area of the implant. The percentages of ROI covered by osteoid implant contact (OIC) and mature bone−implant contact (BIC) were assessed. The surrounding presence of bone resorption, necrosis, and/or inflammation was quantitatively investigated. A total of 36 rabbits were used for the experiments. No bone resorption, necrosis, or inflammation was found in any sample. At the 12-week follow-up, the overall BIC was significantly increased (p < 0.0001). No improvement was evidenced in OIC (p = 0.6). At the 6-week follow-up, the overall OIC was greater in the BMP-2 compared to the titanium group (p = 0.002). The other endpoints of interest evidenced similarity between the two implants at various follow-up time points (p > 0.05). In conclusion, alumina HPOCs functionalised with peptide BMP-2 promote in vivo ossification in a similar fashion to titanium implants.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (J.E.); (F.H.); (H.S.)
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (J.E.); (F.H.); (H.S.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Mile End Hospital, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4DG, UK
- Correspondence:
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (J.E.); (F.H.); (H.S.)
| | - Hanno Schenker
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (J.E.); (F.H.); (H.S.)
| |
Collapse
|
6
|
Migliorini F, Schenker H, Maffulli N, Hildebrand F, Eschweiler J. Histomorphometry of Ossification in Functionalised Ceramics with Tripeptide Arg-Gly-Asp (RGD): An In Vivo Study. Life (Basel) 2022; 12:life12050761. [PMID: 35629427 PMCID: PMC9146276 DOI: 10.3390/life12050761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the osseointegration promoted by functionalised ceramics with peptide Arg-Gly-Asp (RGD) in a rabbit model in vivo. Histomorphometry of the RGD functionalised ceramic implants was conducted by a trained pathologist to quantify the amount of mature and immature ossification at the bone interface, and then compared to titanium alloy implants. The region of interest was the area surrounding the implant. The percentage of ROI covered by osteoid implant contact and mature bone implant contact were assessed. The presence of bone resorption, necrosis, and/or inflammation in the areas around the implant were quantitatively investigated. All 36 rabbits survived the experimental period of 6 and 12 weeks. All implants remained in situ. No necrosis, bone resorption, or inflammation were identified. At 12 weeks follow-up, the overall mean bone implant contact (p = 0.003) and immature osteoid contact (p = 0.03) were improved compared to the mean values evidenced at 6 weeks. At 6 weeks follow-up, the overall osteoid implant contact was greater in the RGD enhanced group compared to the titanium implant (p = 0.01). The other endpoints of interest were similar between the two implants at all follow-up points (p ≥ 0.05). Functionalised ceramics with peptide RGD promoted ossification in vivo. The overall osteoid and bone implant contact improved significantly from 6 to 12 weeks. Finally, RGD enhanced ceramic promoted faster osteoid implant contact in vivo than titanium implants. Overall, the amount of ossification at 12 weeks is comparable with the titanium implants. No necrosis, bone resorption, or inflammation were observed in any sample.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (H.S.); (F.H.); (J.E.)
| | - Hanno Schenker
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (H.S.); (F.H.); (J.E.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
- Barts and The London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
- Correspondence:
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (H.S.); (F.H.); (J.E.)
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH University Hospital, 52074 Aachen, Germany; (F.M.); (H.S.); (F.H.); (J.E.)
| |
Collapse
|
7
|
Li HC, Wang DG, Hu C, Dou JH, Yu HJ, Chen CZ. Effect of Na 2O and ZnO on the microstructure and properties of laser cladding derived CaO-SiO 2 ceramic coatings on titanium alloys. J Colloid Interface Sci 2021; 592:498-508. [PMID: 33730634 DOI: 10.1016/j.jcis.2021.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 11/16/2022]
Abstract
To improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloys were fabricated using laser cladding method. The effect of Na2O and ZnO on the microstructure and properties of the prepared coatings was discussed. The microstructure of the CaO-SiO2 coatings consists of cellular grains and cellular dendrites. The mutual diffusion of elements occurs between the coating and substrate. The base CaO-SiO2 coating is composed of different phases including CaTiO3, α-Ca2(SiO4), SiO2, TiO2 and CaO. The formation of CaTiO3 in the ceramic layer was analyzed through thermodynamics. Na2O has little influence on the microstructure, average hardness and wear resistance. When ZnO is added to the precursor, the microstructure turns to cell dendrite, and ZnO and Zn2SiO4 appear in the corresponding coating. The addition of ZnO reduces the average hardness and wear resistance of the ceramic layer. The in vitro soaking in SBF shows that the laser cladding coating has the ability to form an apatite layer.
Collapse
Affiliation(s)
- H C Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) and Shandong Engineering Research Center for Superhard Material, Department of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - D G Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) and Shandong Engineering Research Center for Superhard Material, Department of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - C Hu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) and Shandong Engineering Research Center for Superhard Material, Department of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - J H Dou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) and Shandong Engineering Research Center for Superhard Material, Department of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - H J Yu
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education) and National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - C Z Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education) and Shandong Engineering Research Center for Superhard Material, Department of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
8
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
9
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
10
|
Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials 2020; 232:119706. [DOI: 10.1016/j.biomaterials.2019.119706] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
|
12
|
Zhu Y, Liu K, Deng J, Ye J, Ai F, Ouyang H, Wu T, Jia J, Cheng X, Wang X. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Int J Nanomedicine 2019; 14:5977-5987. [PMID: 31534332 PMCID: PMC6681572 DOI: 10.2147/ijn.s202457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Nowadays, zirconia ceramic implants are widely used as a kind of hip prosthesis material because of their excellent biocompatibility and long-term wear resistance. However, the hip joint is one of the major joints with complex 3D morphological structure and greatly individual differences, which usually causes great material waste during the process of surgical selection of prosthesis. Methods: In this paper, by combining ceramic 3D printing technology with antibacterial nano-modification, zirconia ceramic implant material was obtained with precise 3D structure and effective antibacterial properties. Among which, two technical problems (fragile and sintering induced irregular shrinkage) of 3D printed ceramics were effectively minimized by optimizing the reaction conditions and selective area inversing compensation. Through in vivo and in vitro experiments, it was confirmed that the as prepared hip prosthesis could precisely matched the corresponding parts, which also exhibited good biocompatibility and impressive antibacterial activities. Results: 1) Two inherent technical problems (fragile and sintering induced irregular shrinkage) of 3D printed ceramics were effectively minimized by optimizing the reaction conditions and selective area inversing compensation. 2) It could be seen that the surface of the ZrO2 material was covered with a layer of ZnO nano-particles. A universal testing machine was used to measure the tensile, bending and compression experiments of ceramic samples. It could be found that the proposed ZnO modification had no significant effect on the mechanical properties of ZrO2 ceramics. 3) According to the plate counting results, ceramics modified with ZnO exhibited significantly higher antibacterial efficiency than pure ZrO2 ceramics, the ZrO2-ZnO ceramics had a significant killing effect 8 hours. 4) The removed implants and the tissue surrounding the implant were subjected to HE staining. For ZrO2-ZnO ceramics, inflammation was slight, while for pure ZrO2 ceramics, the inflammatory response could be seen that the antibacterial rate of the ZrO2-ZnO ceramics was significantly better than that of the pure ZrO2 ceramics group. 5) It could be seen that the cytotoxicity did not increase proportionally with the increase of concentration, all of viability were still above 80%. This suggested that our materials were safe and could be applied as a type of potential biomaterial in the future. 6) Further animal studies demonstrated that the implant was in good position without dislocation. This resulted implied that the proposed method can achieve accurate 3D printing preparation of ceramic joints. In addition, the femurs and surrounding muscles around the implant were then sectioned and HE stained. Results of muscle tissue sections further showed no significant tissue abnormalities, and the growth of new bone tissue was observed in the sections of bone tissue. Conclusion: 1) The ceramic 3D printing technology combined with antibacterial nano-modification can quickly customize the ideal implant material with precise structure, wear-resistant and effective antibacterial properties. 2) Two inherent technical problems (fragile and sintering induced irregular shrinkage) of 3D printed ceramics were effectively minimized by optimizing the reaction conditions and selective area inversing compensation. 3) ZnO nano-materials were modified on the ceramic surface, which could effectively killing pathogenic bacteria.
Collapse
Affiliation(s)
- Yanglong Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Kuan Liu
- Institute of Translational Medicine, Nanchang University, Nanchang330088, People’s Republic of China
| | - Jianjian Deng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Jing Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Fanrong Ai
- School of Mechanical & Electronic Engineering, Nanchang University, Nanchang330031, People’s Republic of China
| | - Huan Ouyang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Tianlong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Jingyu Jia
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Xigao Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Xiaolei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang330088, People’s Republic of China
| |
Collapse
|