1
|
Chen J, Liu Q, Wan J, Cao Q, Guo Z, Tang K, Chen X, Lou Q, Xu X, Fu Y, Jin X, Zhang S, Yu X, Li C. Mineralized extracellular matrix composite scaffold incorporated with salvianolic acid A enhances bone marrow mesenchymal stem cell osteogenesis and promotes calvarial bone regeneration. BIOMATERIALS ADVANCES 2025; 175:214327. [PMID: 40319842 DOI: 10.1016/j.bioadv.2025.214327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Natural products, especially phenolic components isolated from Traditional Chinese Medicine (TCM), were reported to exhibit significant osteogenic potential in treating bone defects. However, low bioavailability, short half-life, and high clearance rate in the body hindered their practical applications in many cases. To develop delivery technologies for a bioactive phenolic acid from Salvia miltiorrhiza (Danshen), salvianolic acid A (SAA), a sustained release system based on biocompatible extracellular matrix (ECM) meticulously modified with a Hydroxyapatite (HAP) mineralized coating was established. The SAA construction of such delivery system not only addressed the low bioavailability of TCM formulation for SAA by local sustained release of this molecule, but also remarkably promoted its bone healing outcomes by synergizing with calcium and phosphate ion release during SAA release period. This approach collectively had a synergistic effect of osteogenesis with SAA, thereby significantly enhanced the efficacy of SAA in promoting bone formation. The in vitro experimental results indicated that the SAA@MECM exhibited good biocompatibility and significantly enhances angiogenesis and osteogenic differentiation. By day 14, compared to the MECM group, the gene expression levels of ColI, ALP, Runx-2, and OCN in the SAA-H group increased by 1.8, 1.5, 1.5, and 2.0 times, respectively. This demonstrates the potential role of SAA in promoting the activity and differentiation of osteoblasts, highlighting its potential applications in bone tissue engineering. Leveraging such favorable feature of this system, SAA-loaded MECM demonstrated extraordinary bone healing capability in a rat calvarial defect model by showing successful bridging of the defects and large amount of new bone formation. Histological analysis further confirmed its outstanding osteogenic potential, while the dense distribution of micro vessels in the newly formed bone revealed the scaffold's remarkable potential in enhancing vascularization. This study might offer an innovative delivery strategy for enhancing the efficacy of natural phenolic acids through biomaterials.
Collapse
Affiliation(s)
- Jiayu Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China
| | - Qing Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Jiayang Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Qihua Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China
| | - Zili Guo
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China
| | - Kaijia Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China
| | - Xin Chen
- Hangzhou Philosopher's Stone Biotechnology Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Qilei Lou
- Hangzhou Philosopher's Stone Biotechnology Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Xiaodong Xu
- Hangzhou Philosopher's Stone Biotechnology Co., Ltd., Hangzhou, Zhejiang, PR China
| | - Yong Fu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, Hangzhou City, Zhejiang Province, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Saroj S, Vijayalakshmi U. Structural, morphological and biological assessment of magnetic hydroxyapatite with superior hyperthermia potential for orthopedic applications. Sci Rep 2025; 15:3234. [PMID: 39863634 PMCID: PMC11762292 DOI: 10.1038/s41598-025-87111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth. In this study, iron-doped HA was synthesized using a refluxing-based sol-gel route with varying concentrations of iron (1-9 M%). Samples were analyzed using an X-ray diffractometer (XRD), UV-Vis Spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Scanning Electron Microscope (SEM). The biological assessment was carried out by hemolytic assay, anti-bacterial activity and in-vitro biocompatibility. XRD data confirmed the evolution of the hexagonal HA crystal structure with the reduction in the crystallinity and the crystallite size. All the characteristic bands were confirmed using FT-IR which also further proved the existence of A-type carbonated apatite. The UV-Vis spectra confirmed the reduction in the band gap energies owing to the substitution of iron. The SEM results showed a change in the shape of the samples with increasing iron concentration. The magnetic behavior of samples also altered from diamagnetic to ferromagnetic behavior due to the doping of iron with enhanced heating efficiency. All the samples were found to be hemocompatible. The antibacterial efficacy was found to be higher for E. coli (gram-negative) bacteria compared to S. aureus (gram-positive) bacteria. Moreover, the superior cell viability of MG-63 (osteoblast-like) cells was observed in Fe-doped HA, attributed to MTT assay which revealed the enhanced cell viability of osteoblast-like cells in the Fe-doped HA. These results strongly emphasize the potential of the developed samples for bone regeneration applications.
Collapse
Affiliation(s)
- Smrithi Saroj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Aydın B, Bozoğlu S, Karatepe N, Güner FS. Synthesis of Bovine Serum Albumin-Coated Magnetic Single-Walled Carbon Nanotubes as a Delivery System for Mitoxantrone. ACS OMEGA 2025; 10:102-113. [PMID: 39829559 PMCID: PMC11740624 DOI: 10.1021/acsomega.3c09608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 01/22/2025]
Abstract
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and N-hydroxysuccinimide were used as cross-linking agents. The success of the functionalization process was demonstrated through various analysis techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and scanning electron microscopy. The saturation magnetization of mCNT-BSA was 15.6 emu/g, indicating its potential for magnetically targeted drug delivery systems. Finally, MTO was physically loaded on the BSA-coated mCNT (mCNT-BSA) and the results were compared to those of mCNT. mCNT-BSA showed less drug loading capacity but more release response than mCNT. Considering drug release and cytotoxicity test results, MTO-loaded mCNT-BSA nanoparticles have great potential for cancer treatment.
Collapse
Affiliation(s)
- Buğçe Aydın
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Department
of Chemical Engineering, Ondokuz Mayıs
University, Samsun 55139, Türkiye
| | - Serdar Bozoğlu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - Nilgün Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - F. Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Türkiye
| |
Collapse
|
4
|
Kahraman E, Nasun-Saygili G. 5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies. Heliyon 2024; 10:e38494. [PMID: 39398033 PMCID: PMC11471203 DOI: 10.1016/j.heliyon.2024.e38494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
The present study focused on investigation of graphene oxide/hydroxyapatite (GO/HAp) and amine modified graphene oxide/hydroxyapatite (GO-NH2/HAp) composites as potential drug carrier agents for 5-Fluorouracil (5-FU). Incorporation of 5-Fluorouracil drug was performed via adsorption through π-π interactions and electrostatic attractions. Modification of graphene oxide was performed for the production of amine modified graphene oxide/hydroxyapatite composite with the intention of enhancing adsorption performance. The X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and zeta potential/particle size analysis were performed for particle characterization while Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis were used to analyze detailed morphological properties. Experimental design studies were followed out in order to determine the effect of adsorption parameters including graphene oxide amount, pH and initial drug concentration on 5-Fluorouracil adsorption behavior. Adsorption isotherms of both composites with unmodified and modified GO were best fitted to Freundlich model with R2 values of 0.9616 and 0.9682 respectively. The maximum adsorption capacities (qm) were calculated as 47.3 mg/g and 18.4 for graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites respectively at pH 2.0. The highest adsorption percentage was obtained for amine modified graphene oxide/hydroxyapatite composite as 40.87 % at pH 2.0 condition. In vitro release kinetic studies revealed that compliance with Higuchi and Korsmeyer-Peppas kinetic models were observed for graphene oxide/hydroxyapatite, whereas zero order and Korsmeyer-Peppas kinetic models pointed out as the well-fitted model for amine modified graphene oxide/hydroxyapatite composite. The release period of 5-FU drug from all composites were continued up to 8-10 h in physiological conditions (pH 7.4, 37 °C) indicating an achieved controlled release. Based on the overall findings, graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites could be suggested as a potential drug delivery agent for 5-FU in clinical applications.
Collapse
Affiliation(s)
- Ebru Kahraman
- Chemical Engineering Department, Istanbul Technical University, 34469, Turkey
| | | |
Collapse
|
5
|
Güner Yılmaz Ö, Yılmaz A, Bozoglu S, Karatepe N, Batirel S, Sahin A, Güner FS. Single-Walled (Magnetic) Carbon Nanotubes in a Pectin Matrix in the Design of an Allantoin Delivery System. ACS OMEGA 2024; 9:10069-10079. [PMID: 38463283 PMCID: PMC10918663 DOI: 10.1021/acsomega.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 03/12/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) outperform other materials due to their high conductivity, large specific surface area, and chemical resistance. They have numerous biomedical applications, including the magnetization of the SWCNT (mSWCNT). The drug loading and release properties of see-through pectin hydrogels doped with SWCNTs and mSWCNTs were evaluated in this study. The active molecule in the hydrogel structure is allantoin, and calcium chloride serves as a cross-linker. In addition to mixing, absorption, and swelling techniques, drug loading into carbon nanotubes was also been studied. To characterize the films, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, surface contact angle measurements, and opacity analysis were carried out. Apart from these, a rheological analysis was also carried out to examine the flow properties of the hydrogels. The study was also expanded to include N-(9-fluorenyl methoxycarbonyl)glycine-coated SWCNTs and mSWCNTs as additives to evaluate the efficiency of the drug-loading approach. Although the CNT additive was used at a 1:1000 weight ratio, it had a significant impact on the hydrogel properties. This effect, which was first observed in the thermal properties, was confirmed in rheological analyses by increasing solution viscosity. Additionally, rheological analysis and drug release profiles show that the type of additive causes a change in the matrix structure. According to TGA findings, even though SWCNTs and mSWCNTs were not coated more than 5%, the coating had a significant effect on drug release control. In addition to all findings, cell viability tests revealed that hydrogels with various additives could be used for visual wound monitoring, hyperthermia treatment, and allantoin release in wound treatment applications.
Collapse
Affiliation(s)
- Ö.
Zeynep Güner Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Anıl Yılmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
| | - Serdar Bozoglu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Nilgun Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Saime Batirel
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
| | - Ali Sahin
- Department
of Biochemistry, Faculty of Medicine, Marmara
University, Istanbul 34854, Turkey
- Genetic
and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Fatma Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul 34469, Turkey
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Zuo X, Zhang D, Zhang J, Fang T. Magnetic induction heating and drug release properties of magnetic carbon nanotubes. Int J Hyperthermia 2023; 40:2280448. [PMID: 37987751 DOI: 10.1080/02656736.2023.2280448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
AIM The use of magnetic carbon nanotubes for multi-modal cancer treatment, incorporating both hyperthermia and drug delivery functions, has drawn substantial interest. Yet, the present method of regulating hyperthermia temperature involves manually adjusting the magnetic field intensity, adding to the complexity and difficulty of clinical applications. This study seeks to design novel magnetic carbon nanotubes capable of self-temperature regulation, and investigate their drug loading and release characteristics. METHODS Using the co-precipitation method, we synthesized magnetic carbon nanotubes with a Curie temperature of 43 °C. A comprehensive investigation was conducted to analyze their morphology, crystal structure, and magnetic characteristics. To enhance their functionality, chitosan and sodium alginate modifications were introduced, enabling the loading of the antitumor drug doxorubicin hydrochloride (DOX) into these magnetic carbon nanotubes. Subsequently, the loading and release properties of DOX were investigated within the modified magnetic nanotubes. RESULTS Under alternating magnetic field, magnetic carbon nanotubes exhibit self-regulating properties by undergoing a magnetic phase transition, maintaining temperatures around 43 °C as required for hyperthermia. On the other hand, during magnetic induction heating, the release percentage of DOX reached 23.5% within 2 h and 71.7% within 70 h at tumor pH conditions, indicating their potential for sustained drug release. CONCLUSIONS The prepared magnetic carbon nanotubes can effectively regulate the temperature during hyperthermia treatment while ensuring controlled drug release, which presents a promising method for preparing nanomaterials that synergistically enhance magnetic hyperthermia and chemotherapy drugs.
Collapse
Affiliation(s)
- Xudong Zuo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Jiandong Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| | - Tao Fang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, PR China
| |
Collapse
|
7
|
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023; 9:e21227. [PMID: 37954330 PMCID: PMC10637937 DOI: 10.1016/j.heliyon.2023.e21227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.
Collapse
Affiliation(s)
- Saniha Ajith
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | | | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
8
|
Chakraborty G, Meher M, Dash S, Rout RN, Pradhan S, Sahoo D. Strategies for Targeted Delivery via Structurally Variant Polymeric Nanocarriers. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe last decade has seen a meteoric rise in studies investigating polymeric aggregates as nanocarriers. When it comes to morphology, size, functionality, and immunostability, polymeric nanocarriers (PNCs) are unparalleled. With characteristics such as large surface area to volume ratio, amphiphilic nano‐environment, non‐toxic components, chemically modifiable composition, external surface alteration potential, uniform particle size, and stimuli‐dependent self‐assembly, PNCs have emerged as strong candidates for therapeutic applications. The article reviews the latest research on different challenges and strategies for targeted drug delivery and shall serve as guide to the researchers in designing site‐specific nanocarriers for application in future. The review systematically discusses the fundamental structural variation of the nanocarriers with emphasis on the influence of chemical alterations and the resulting effects on functionality; addresses the difficulties encountered with modes of administration; target selectivity and stimulus response.
Collapse
Affiliation(s)
- Gulmi Chakraborty
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Minakshi Meher
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Sanjay Dash
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Rudra Narayan Rout
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Sibananda Pradhan
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| | - Dipanjali Sahoo
- Department of Chemistry C.V. Raman Global University Odisha 752054 India
| |
Collapse
|
9
|
Nana AB, Marimuthu T, Wamwangi D, Kondiah PPD, Choonara YE. Design and Evaluation of Composite Magnetic Iron-Platinum Nanowires for Targeted Cancer Nanomedicine. Biomedicines 2023; 11:1857. [PMID: 37509497 PMCID: PMC10377173 DOI: 10.3390/biomedicines11071857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of the study was to synthesize and investigate the influence of geometrical structure, magnetism, and cytotoxic activity on core-shell platinum and iron-platinum (Fe/Pt) composite nanowires (NWs) for potential application in targeted chemotherapeutic approaches. The Pt-NWs and Fe/Pt composite NWs were synthesized via template electrodeposition, using anodic aluminum oxide (AAO) membranes. The Fe/Pt composite NWs (Method 1) was synthesized using two electrodeposition steps, allowing for greater control of the diameter of the NW core. The Fe/Pt composite NWs (Method 2) was synthesized by pulsed electrodeposition, using a single electrolytic bath. The properties of the synthesized NWs were assessed by high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, powder X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), vibrating-sample magnetometry (VSM), and surface charge (zeta potential). A microscopy image analysis of the NWs revealed the presence of high-aspect-ratio NWs with nominal diameters of 40-50 nm and lengths of approximately <4 µm. The obtained powder XRD patterns confirmed the presence of a polycrystalline structure for both Pt NWs and Fe/Pt composite NWs. The potential utility of the synthesized NW nanoplatforms for anticancer activity was investigated using Tera 1 cells and Mouse 3T3 cells. Pt-NWs displayed modest cytotoxic activity against Tera 1 cells, while the Fe/Pt composite NWs (both Methods 1 and 2) demonstrated enhanced cytotoxic activity compared to the Pt-NWs on Tera 1 cells. The Fe/Pt composite NWs (Method 1) displayed ferromagnetic behavior and enhanced cytotoxic activity compared to Pt-NWs on Tera 1 cells, thus providing a sound basis for future magnetically targeted chemotherapeutic applications.
Collapse
Affiliation(s)
- Abu Bakr Nana
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Daniel Wamwangi
- School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
10
|
Qian G, Xiong L, Ye Q. Hydroxyapatite-based carriers for tumor targeting therapy. RSC Adv 2023; 13:16512-16528. [PMID: 37274393 PMCID: PMC10234259 DOI: 10.1039/d3ra01476b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
At present, targeted drug delivery is regarded as the most effective means of tumor treatment, overcoming the lack of conventional chemotherapeutics that are difficult to reach or enter into cancer cells. Hydroxyapatite (HAP) is the main component of biological hard tissue, which can be regarded as a suitable drug carrier due to its biocompatibility, nontoxicity, biodegradation, and absorbability. This review focuses on the cutting edge of HAP as a drug carrier in targeted drug delivery systems. HAP-based carriers can be obtained by doping, modification, and combination, which benefit to improve the loading efficiency of drugs and the response sensitivity of the microenvironment in the synthesis process. The drug adsorbed or in situ loaded on HAP-based carriers can achieve targeted drug delivery and precise treatment through the guidance of the in vivo microenvironment and the stimulation of the in vitro response. In addition, HAP-based drug carriers can improve the cellular uptake rate of drugs to achieve a higher treatment effect. These advantages revealed the promising potential of HAP-based carriers from the perspective of targeted drug delivery for tumor treatment.
Collapse
Affiliation(s)
- Gongming Qian
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology Wuhan 430081 China
| | - Lingya Xiong
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
| | - Qing Ye
- College of Resource and Environmental Engineering, Wuhan University of Science & Technology Wuhan 430081 China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology Wuhan 430081 China
| |
Collapse
|
11
|
Aghaei A, Shaterian M, Danafar H, Likozar B, Šuligoj A, Gyergyek S. Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation. Mikrochim Acta 2023; 190:184. [PMID: 37069457 DOI: 10.1007/s00604-023-05761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet-visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 μg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 μg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of -29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology. Graphical abstract.
Collapse
Affiliation(s)
- Afsoon Aghaei
- Department of Chemistry, Faculty of Science, University of Zanjan, 451561319, Zanjan, 45371-38791, Iran.
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan, 451561319, Zanjan, 45371-38791, Iran.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Andraž Šuligoj
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Sašo Gyergyek
- Department for Materials Synthesis, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
Dommeti VK, Roy S, Pramanik S, Merdji A, Ouldyerou A, Özcan M. Design and Development of Tantalum and Strontium Ion Doped Hydroxyapatite Composite Coating on Titanium Substrate: Structural and Human Osteoblast-like Cell Viability Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1499. [PMID: 36837128 PMCID: PMC9966348 DOI: 10.3390/ma16041499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In order to reduce the loosening of dental implants, surface modification with hydroxyapatite (HA) coating has shown promising results. Therefore, in this present study, the sol-gel technique has been employed to form a tantalum and strontium ion-doped hybrid HA layer coating onto the titanium (Ti)-alloy substrate. In this study, the surface modification was completed by using 3% tantalum pent oxide (Ta2O5), 3% strontium (Sr), and a combination of 1.5% Ta2O5 and 1.5% Sr as additives, along with HA gel by spin coating technique. These additives played a prominent role in producing a porous structure layer coating and further cell growth. The MG63 cell culture assay results indicated that due to the incorporation of strontium ions along with tantalum embedded in HA, cell proliferation increased significantly after a 48 h study. Therefore, the present results, including microstructure, crystal structure, binding energy, and cell proliferation, showed that the additives 1.5% Ta2O5 and 1.5% Sr embedded in HA on the Ti-substrate had an optimized porous coating structure, which will enhance bone in-growth in surface-modified Ti-implants. This material had a proper porous morphology with a roughness profile, which may be suitable for tissue in-growth between a surface-modified textured implant and bone interface and could be applicable for dental implants.
Collapse
Affiliation(s)
- Vamsi Krishna Dommeti
- Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Sandipan Roy
- Department of Mechanical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Ali Merdji
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara 29000, Algeria
- Laboratory of Mechanics Physics of Materials (LMPM), Faculty of Technology, Djillali Liabes University, Sidi Bel Abbès 22000, Algeria
| | - Abdelhak Ouldyerou
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara 29000, Algeria
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
13
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
14
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
15
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
16
|
Oliveira TM, Berti FCB, Gasoto SC, Schneider B, Stimamiglio MA, Berti LF. Calcium Phosphate-Based Bioceramics in the Treatment of Osteosarcoma: Drug Delivery Composites and Magnetic Hyperthermia Agents. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:700266. [PMID: 35047940 PMCID: PMC8757807 DOI: 10.3389/fmedt.2021.700266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The use of biomaterials in medicine is not recent, and in the last few decades, the research and development of biocompatible materials had emerged. Hydroxyapatite (HAp), a calcium phosphate that constitutes a large part of the inorganic composition of human bones and teeth, has been used as an interesting bioceramic material. Among its applications, HAp has been used to carry antitumor drugs, such as doxorubicin, cisplatin, and gemcitabine. Such HAp-based composites have an essential role in anticancer drug delivery systems, including the treatment of osteosarcoma. In addition, the association of this bioceramic with magnetic nanoparticles (MNPs) has also been used as an effective agent of local magnetic hyperthermia. Further, the combined approach of the aforementioned techniques (HAp scaffolds combined with anti-tumor drugs and MNPs) is also an attractive therapeutical alternative. Considering the promising role of the use of bioceramics in modern medicine, we proposed this review, presenting an updated perspective on the use of HAp in the treatment of cancer, especially osteosarcoma. Finally, after giving the current progress in this field, we highlight the urgent need for efforts to provide a better understanding of their potential applications.
Collapse
Affiliation(s)
- Tiê Menezes Oliveira
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Sidney Carlos Gasoto
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | - Bertoldo Schneider
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Guo J, Jiang H, Teng Y, Xiong Y, Chen Z, You L, Xiao D. Recent advances in magnetic carbon nanotubes: synthesis, challenges and highlighted applications. J Mater Chem B 2021; 9:9076-9099. [PMID: 34668920 DOI: 10.1039/d1tb01242h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic carbon nanotubes (MCNTs), consisting of carbon nanotubes (CNTs) and magnetic nanoparticles (MNPs), have enormous exploration and application potentials due to their superior physical and chemical properties, such as unique magnetism and high enrichment performance. This review concentrates on the rapid advances in the synthesis and application of magnetic carbon nanotubes. Great progress has been made in the preparation of MCNTs by developing methods including chemical vapor deposition, pyrolysis procedure, sol-gel process, template-based synthesis, filling process and hydrothermal/solvothermal method. Various applications of MCNTs as a mediator of the adsorbent in magnetic solid-phase extraction, sensors, antibacterial agents, and imaging system contrast agents, and in drug delivery and catalysis are discussed. In order to overcome the drawbacks of MCNTs, such as sidewall damage, lack of convincing quantitative characterization methods, toxicity and environmental impact, and deficiency of extraction performance, researchers proposed some solutions in recent years. We systematically review the latest advances in MCNTs and discuss the direction of future development.
Collapse
Affiliation(s)
- Jiabei Guo
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China. .,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
18
|
Heragh BK, Javanshir S, Mahdavinia GR, Jamal MRN. Hydroxyapatite grafted chitosan/laponite RD hydrogel: Evaluation of the encapsulation capacity, pH-responsivity, and controlled release behavior. Int J Biol Macromol 2021; 190:351-359. [PMID: 34492248 DOI: 10.1016/j.ijbiomac.2021.08.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
In this study, a pH-responsive drug carrier was developed for the controllable release of drugs in the gastric environment. Chitosan (CS), a pH-sensitive biopolymer, and laponite RD (LAP), a nano-clay with a high drug-loading capability, were used to design the new carrier. Hydroxyapatite (HA) was grafted into CS/LAP matrix through a simple co-precipitation technique to overcome the burst release of the CS/LAP. The structural analysis and swelling tests of products demonstrated that the co-precipitation method has led to the penetration of HA nanoparticles inside the CS/LAP matrix and occupying its hollow pores. Occupation of the empty pores can lead to the entrapment of drug molecules, thereby reducing the release rate. The nanocomposite showed a high loading capacity to ofloxacin as a drug model. The effects of HA content on release behavior of nanocomposite were investigated at simulated gastric (pH 1.2) and intestine (pH 7.4) environments. The results indicated a high pH sensitivity for CS/LAP/HA. HA grafting reduced the release rate remarkably regardless of pH. The release rate of CS/LAP/HA decreased by 44-63% in pH 1.2 and 41-51% in pH 7.4 compared to CS/LAP. Kinetic studies indicated that grafting the HA in CS/LAP has changed the drug release mechanism.
Collapse
Affiliation(s)
- Bagher Kazemi Heragh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114 Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114 Tehran, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran.
| | - Mohammad Reza Naimi Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| |
Collapse
|
19
|
Influence of Terbium Ions and Their Concentration on the Photoluminescence Properties of Hydroxyapatite for Biomedical Applications. NANOMATERIALS 2021; 11:nano11092442. [PMID: 34578759 PMCID: PMC8466322 DOI: 10.3390/nano11092442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
A new generation of biomaterials with terbium-doped hydroxyapatite was obtained using a coprecipitation method. The synthesis of new materials with luminescent properties represents a challenging but important contribution due to their potential applications in biomedical science. The main objective of this study was to revel the influence of terbium ions on the design and structure of hydroxyapatite. Different concentrations of terbium, described by the chemical formula Ca10−xTbx(PO4)6(OH)2, where x is in the range of 0 to 1, were considered. The consequence of ion concentration on hydroxyapatite morphology was also investigated. The morphology and structure, as well as the optical properties, of the obtained nanomaterials were characterized using X-ray powder diffraction analysis (XRD), Fourier Transform Infrared spectrometry (FTIR), SEM and TEM microscopy, UV-Vis and photoluminescence spectroscopies. The measurements revealed that terbium ions were integrated into the structure of hydroxyapatite within certain compositional limits. The biocompatibility and cytotoxicity of the obtained powders evaluated using MTT assay, oxidative stress assessment and fluorescent microscopy revealed the ability of the synthesized nanomaterials to be used for biological system imaging.
Collapse
|
20
|
Hemmati K, Ahmadi Nasab N, Hesaraki S, Nezafati N. In vitro evaluation of curcumin-loaded chitosan-coated hydroxyapatite nanocarriers as a potential system for effective treatment of cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1267-1287. [PMID: 33820489 DOI: 10.1080/09205063.2021.1910920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanotechnology has many potential applications in cancer treatment. For example, nano-drug delivery systems (NDDS) with high bioavailability, biodegradability, and biocompatibility have been developed, in order to increase the therapeutic effects of anticancer drugs. Among these NDDS, high-performance hydroxyapatite (HA) nanoparticles are rapidly advancing in the targeted cancer treatment due to their numerous benefits. Curcumin is an herbal metabolite that acts as a chemical inhibitor through the inhibition of tumor cells and the progression of many cancers. However, the poor bioavailability of curcumin is the most important challenge in using this substance. In this study, HA nanoparticles coated by chitosan were used as a pH-sensitive biopolymer to improve the efficiency and bioavailability of curcumin. For this purpose, HA nanoparticles were first synthesized by the sol-gel method. Then, a layer of chitosan was coated on it, and the curcumin drug was encapsulated in the nanocarrier, under controlled conditions. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the nanocarriers. In the second part, nano-drugs prepared by various bioassays were examined. For this purpose, the rate of cytotoxicity by the methyl-thiazol-tetrazolium (MTT) assay and the rate of apoptosis induction by the acridine orange and ethidium bromide (AO/EB) staining method on the brain carcinoma U87MG cell line were investigated.
Collapse
Affiliation(s)
- Katayon Hemmati
- Hormoz Research Center, University of Hormozgan, Bandar Abbas, Iran.,Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | | | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Nader Nezafati
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
21
|
Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4137-4146. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| |
Collapse
|
22
|
Tahir D, Abdullah B, Ilyas S, Fahri AN, Anugrah MA, Kim K, Kang HJ. Decreasing charge recombination by magnetic trap of iron‐carbon (Fe‐AC) composite for enhanced photocatalytic performance. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dahlang Tahir
- Department of Physics Hasanuddin University Makassar Indonesia
| | | | - Sultan Ilyas
- Department of Physics Hasanuddin University Makassar Indonesia
| | | | | | - Kyousik Kim
- Department of Physics Chungbuk National University Cheongju South Korea
| | - Hee Jae Kang
- Department of Physics Chungbuk National University Cheongju South Korea
| |
Collapse
|
23
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
24
|
Saleemi M, Kong Y, Yong P, Wong E. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101855] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23378-23387. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, bipolar electrochemistry is used to perform wireless indirect electrodeposition of two different polymer coatings on both sides of carbon nanotube arrays. Using a thermoresponsive hydrogel on one side and an inert insoluble polymer on the other side, it is possible to generate, in a single step, a nanoporous reservoir with Janus character closed on one side by a thermoresponsive membrane. The thermoresponsive polymer, poly(N-isopropylacrylamide) (pNIPAM), is generated by the local reduction of persulfate ions, which initiates radical polymerization of NIPAM. Electrophoretic paint (EP) is chosen as an inert polymer. It is deposited by precipitation because of a local decrease in pH during water oxidation. Both polymers can be deposited simultaneously on opposite sides of the bipolar electrode during the application of the electric field, yielding a double-modified Janus object. Moreover, the length and thickness of the polymer layers can be controlled by varying the electric field and the deposition time. This concept is applied to vertically aligned carbon nanotube arrays (VACNTs), trapped inside an anodic aluminum oxide membrane, which can further be used as a smart reservoir for chemical storage and release. A fluorescent dye is loaded in the VACNTs and its release is studied as a function of temperature. Low temperature, when the hydrogel layer is in the swollen state, allows diffusion of the molecule. Dye release occurs on the hydrogel-modified side of the VACNTs. At high temperatures, when the hydrogel layer is in the collapsed state, dye release is blocked because of the impermeability of the pNIPAM layer. This concept paves the way toward the design of advanced devices in the fields of drug storage and directed delivery.
Collapse
Affiliation(s)
- Malinee Niamlaem
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Oranit Phuakkong
- Division of Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Bertrand Goudeau
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Research Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment: RNN-CMSEE and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Dodzi Zigah
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, Pessac Cedex 33607, France
| |
Collapse
|
26
|
Nanomaterials and Their Negative Effects on Human Health. APPLICATIONS OF NANOMATERIALS IN HUMAN HEALTH 2020. [PMCID: PMC7305518 DOI: 10.1007/978-981-15-4802-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs to be summarized. Nanoparticles with size below 100 nm could pass into the lung and then to blood through inhalation, ingestion, and skin contact. As nanotechnology innovation is expected to achieve $ 2231 million by 2025, humans will be exposed ever increasingly in day-to-day life and in industries. In this review, the latest synthetic methodology of silica, dendrimers, and CNTs, their biological applications (in vitro and in vivo) related to toxicity were discussed. In terms of structured silica, the toxic and non-toxic effect induced by specific templates (cetylpyridinium bromide, cetyltrimethylammonium bromide, dipalmitoylphosphatidylcholine, C16L-tryptophan, C16-L-histidine, and C16-L-poline) that are used to generate mesoporous silica, silica nanoparticle sizes (25, 50, 60, 115, and 500 nm), and silane functionalization (NH2 and COOH) were discussed. The recent applications of different generations (G3, G4, G5, and G6) of amphiphilic Janus dendrimers were discussed along with toxicity effect of different charged dendrimers (cationic and anionic) and effect of PEGylation. Recent synthesis, advantages, and disadvantages of carbon nanotubes (CNTs) were presented for structures like single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The influence of diameter of SWCNTs (linear and short), thickness (thin and thick), effect of oxidation, metal oxide species (TiO2, Fe, and Au), and biocompatible polymers (polyethylene glycol, bisphosphonate, and alendronate) were shown in relation to molecular pathways in animal cells.
Collapse
|
27
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
28
|
Andronescu E, Predoi D, Neacsu IA, Paduraru AV, Musuc AM, Trusca R, Oprea O, Tanasa E, Vasile OR, Nicoara AI, Surdu AV, Iordache F, Birca AC, Iconaru SL, Vasile BS. Photoluminescent Hydroxylapatite: Eu 3+ Doping Effect on Biological Behaviour. NANOMATERIALS 2019; 9:nano9091187. [PMID: 31443424 PMCID: PMC6780766 DOI: 10.3390/nano9091187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.
Collapse
Affiliation(s)
- Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adina Magdalena Musuc
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Ilie Murgulescu Institute of Physical Chemistry, 060021 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu Oprea
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Eugenia Tanasa
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Otilia Ruxandra Vasile
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian Vasile Surdu
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department of Biochemistry, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania
| | - Alexandra Catalina Birca
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 077125 Magurele, Romania
| | - Bogdan Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| |
Collapse
|
29
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|
30
|
Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:616-630. [PMID: 30948098 DOI: 10.1016/j.msec.2019.03.043] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
With advances in nanotechnology, the applications of nanomaterial are developing widely and greatly. The characteristic properties of carbon nanotubes (CNTs) make them the most selective candidate for various multi-functional applications. The greater surface area of the CNTs in addition to the capability to manipulate the surfaces and dimensions has provided greater potential for this nanomaterial. The CNTs possess greater potential for applications in biomedicine due to their vital electrical, chemical, thermal, and mechanical properties. The unique properties of CNT are exploited for numerous applications in the biomedical field. They are useful in both therapeutic and diagnostic applications. They form novel carrier systems which are also capable of site-specific delivery of therapeutic agents. In addition, CNTs are of potential application in biosensing. Many recently reported advanced systems of CNT could be exploited for their immense potential in biomedicine in the future.
Collapse
Affiliation(s)
- V R Raphey
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - T K Henna
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - K P Nivitha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - P Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| |
Collapse
|