1
|
Islam MA, Hossain N, Hossain S, Khan F, Hossain S, Arup MMR, Chowdhury MA, Rahman MM. Advances of Hydroxyapatite Nanoparticles in Dental Implant Applications. Int Dent J 2025; 75:2272-2313. [PMID: 39799064 DOI: 10.1016/j.identj.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity. The green synthesis method illustrated a new door to synthesize HAp for maintaining biocompatibilityand increasing antibacterial properties. The review also explores how HANPs improve the integration of implants with bone, support bone growth, and help treat sensitive teeth based on various laboratory and clinical studies. The usage of HAp in dentin and enamel shows higher potentiality through FTIR, XPS, XRD, EDS, etc., for mechanical stability and biological balance compared to natural teeth. Additionally, the use of HANPs in dental products like toothpaste and mouthwash is discussed, highlighting its potential to help rebuild tooth enamel and fight bacteria. There are some challenges for long-term usage against oral bacteria, but doping with inorganic materials, like Zn, has already solved this periodontal problem. Much more research is still essential to estimate the fabrication variation based on patient problems and characteristics. Still, it has favorable outcomes regarding its bioactive nature and antimicrobial properties. Due to their compatibility with biological tissues and ability to support bone growth, HANPs hold great promise for advancing dental materials and implant technology, potentially leading to better dental care and patient outcomes.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh.
| | - Sumaya Hossain
- Department of Pharmacy, Primeasia University, Dhaka, Dhaka, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | - Saniya Hossain
- Department of Microbiology, Jashore University of Science and Technology, Jessore, Jessore, Bangladesh
| | - Md Mostafizur Rahman Arup
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, Dhaka, Bangladesh
| | | | - Md Majibur Rahman
- Department of Microbiology, University of Dhaka, Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Liu N, Jiang F, Feng Z, Mei S, Cui Y, Zheng Y, Yang W, Wang B, Zhang W, Xie J, Zhang N. MgO@SiO 2 nanocapsules: a controlled magnesium ion release system for targeted inhibition of osteoarthritis progression. NANOSCALE ADVANCES 2025; 7:1814-1824. [PMID: 39911730 PMCID: PMC11791780 DOI: 10.1039/d4na00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by degenerative changes in articular cartilage and chronic inflammation. Recent studies suggest that intra-articular (i.a.) injection of magnesium salts holds promise as a therapeutic approach for OA. However, the rapid diffusion of magnesium ions limits their efficacy, resulting in a short duration of action. To overcome this limitation, we developed a nanoparticle delivery system using MgO@SiO2 core/shell nanoparticles, designed as a depot for the controlled release of magnesium ions. Electron microscopy confirmed the formation of the core/shell structure with silica shells of varying thickness. Release studies demonstrated that the silica coating effectively slows nanoparticle degradation, extending magnesium release to over 72 hours. In a rabbit OA model, i.a. injection of these nanocapsules significantly mitigated the pathological progression of OA within four weeks without inducing systemic toxicity. Immunohistochemical analysis further revealed that MgO@SiO2 nanocapsules alleviate the inflammatory response in OA cartilage by inhibiting the NF-κB/p65 signaling pathway. In summary, this study confirms the potential of intra-articular magnesium supplementation as a therapeutic option for OA and introduces a novel approach to enhance the delivery and efficacy of magnesium ions in OA treatment, addressing a relatively underexplored area in the field.
Collapse
Affiliation(s)
- Na Liu
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Fangchao Jiang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Zhizi Feng
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Sen Mei
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Yingna Cui
- Department of Chemistry of Dalian University Dalian Liaoning 116000 China
| | - Yu Zheng
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Wei Yang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Benjie Wang
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Weizhong Zhang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Jin Xie
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Nan Zhang
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| |
Collapse
|
3
|
Han D, Wang W, Gong J, Ma Y, Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine (Lond) 2024; 19:1689-1709. [PMID: 39163266 PMCID: PMC11389751 DOI: 10.1080/17435889.2024.2375958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Regenerative therapy, a key area of tissue engineering, holds promise for restoring damaged organs, especially in bone regeneration. Bone healing is natural to the body but becomes complex under stress and disease. Large bone deformities pose significant challenges in tissue engineering. Among various methods, scaffolds are attractive as they provide structural support and essential nutrients for cell adhesion and growth. Collagen and hydroxyapatite (HA) are widely used due to their biocompatibility and biodegradability. Collagen and nano-scale HA enhance cell adhesion and development. Thus, nano HA/collagen scaffolds offer potential solutions for bone regeneration. This review focuses on the use and production of nano-sized HA/collagen composites in bone regeneration.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| |
Collapse
|
4
|
Mei S, Jiang F, Liu N, Feng Z, Zheng Y, Yang W, Zhang W, Cui Y, Wang W, Xie J, Zhang N. Sol-gel synthesis of magnesium oxide nanoparticles and their evaluation as a therapeutic agent for the treatment of osteoarthritis. Nanomedicine (Lond) 2024; 19:1867-1878. [PMID: 39109508 PMCID: PMC11457622 DOI: 10.1080/17435889.2024.2382421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
Aim: We synthesized MgO NPs via sol-gel reaction and investigated them as carriers to deliver Mg2+ to the affected joint for osteoarthritis (OA).Materials & methods: The physicochemical properties of samples were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS) and x-ray diffraction (XRD). The release of Mg2+ was monitored by ICP-MS. The potential cytotoxicity was evaluated using MTT assay. The efficacy and biosafety were evaluated in a rabbit OA model.Results: MgO NPs can prolong the Mg2+ release time from 0.5 h to 12 h. No significant cytotoxicity was observed when concentrations below 250 μg/ml. Intra-articular samples could effectively alleviate the degeneration and destruction of the cartilage.Conclusion: this study demonstrates the potential of MgO NPs as a safe and effective treatment of OA. Simultaneously, the size of the particles may play a significant role in influencing the therapeutic outcome.
Collapse
Affiliation(s)
- Sen Mei
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Na Liu
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Zhizi Feng
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yu Zheng
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Wei Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yingna Cui
- Department of Chemistry, Dalian University, Dalian, Liaoning, 116000, China
| | - Weiming Wang
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Nan Zhang
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| |
Collapse
|
5
|
Proniewicz E, Vijayan AM, Surma O, Szkudlarek A, Molenda M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. Int J Mol Sci 2024; 25:4242. [PMID: 38673825 PMCID: PMC11050608 DOI: 10.3390/ijms25084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland;
| | | | - Olga Surma
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-055 Krakow, Poland;
| | - Marcin Molenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| |
Collapse
|
6
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Dai H, Wang J, Zhang H, Zhao J. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Front Bioeng Biotechnol 2024; 12:1342340. [PMID: 38567086 PMCID: PMC10986186 DOI: 10.3389/fbioe.2024.1342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haidong Dai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
7
|
Bider F, Miola M, Clejanu CE, Götzelmann J, Kuth S, Vernè E, Basu B, Boccaccini AR. 3D bioprinting of multifunctional alginate dialdehyde (ADA)-gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid. Int J Biol Macromol 2024; 257:128449. [PMID: 38029911 DOI: 10.1016/j.ijbiomac.2023.128449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The present work explores the 3D extrusion printing of ferulic acid (FA)-containing alginate dialdehyde (ADA)-gelatin (GEL) scaffolds with a wide spectrum of biophysical and pharmacological properties. The tailored addition of FA (≤0.2 %) increases the crosslinking between FA and GEL in the presence of calcium chloride (CaCl2) and microbial transglutaminase, as confirmed using trinitrobenzenesulfonic acid (TNBS) assay. In agreement with an increase in crosslinking density, a higher viscosity of ADA-GEL with FA incorporation was achieved, leading to better printability. Importantly, FA release, enzymatic degradation and swelling were progressively reduced with an increase in FA loading to ADA-GEL, over 28 days. Similar positive impact on antibacterial properties with S. epidermidis strains as well as antioxidant properties were recorded. Intriguingly, FA incorporated ADA-GEL supported murine pre-osteoblast proliferation with reduced osteosarcoma cell proliferation over 7 days in culture, implicating potential anticancer property. Most importantly, FA-incorporated and cell-encapsulated ADA-GEL can be extrusion printed to shape fidelity-compliant multilayer scaffolds, which also support pre-osteoblast cells over 7 days in culture. Taken together, the present study has confirmed the significant potential of 3D bioprinting of ADA-GEL-FA ink to obtain structurally stable scaffolds with a broad spectrum of biophysical and therapeutically significant properties, for bone tissue engineering applications.
Collapse
Affiliation(s)
- Faina Bider
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy
| | - Corina-Elena Clejanu
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Johanna Götzelmann
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sonja Kuth
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Enrica Vernè
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science Bangalore, Bangalore 560012, India
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Bulut N, Kaygili O, Hssain AH, Dorozhkin SV, Abdelghani B, Orek C, Kebiroglu H, Ates T, Kareem RO. Mg-Dopant Effects on Band Structures of Zn-Based Hydroxyapatites: A Theoretical Study. IRANIAN JOURNAL OF SCIENCE 2023; 47:1843-1859. [DOI: 10.1007/s40995-023-01531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/28/2023] [Indexed: 07/02/2024]
|
9
|
Ge M, Xie D, Yang Y, Liang H, Gu J, Zhang Q, Xie J, Tian Z. Biocompatibility and antibacterial activity of MgO/Ca3(PO4)2 composite ceramic scaffold based on vat photopolymerization technology. BIOMATERIALS ADVANCES 2023; 154:213644. [PMID: 37778294 DOI: 10.1016/j.bioadv.2023.213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Recent advancements in medical technology and increased interdisciplinary research have facilitated the development of the field of medical engineering. Specifically, in bone repair, researchers and potential users have placed greater demands on orthopedic implants regarding their biocompatibility, degradation rates, antibacterial properties, and other aspects. In response, our team developed composite ceramic samples using degradable materials calcium phosphate and magnesium oxide through the vat photopolymerization (VP) technique. The calcium phosphate content in each sample was, respectively, 80 %, 60 %, 40 %, and 20 %. To explore the relationship between the biocompatibility, antibacterial activity, and MgO content of the samples, we cultured them with osteoblasts (MC3T3-E1), Escherichia coli (a gram-negative bacterium), and Staphylococcus aureus (a gram-positive bacterium). Our results demonstrate that as the MgO content of the sample increases, its biocompatibility improves but its antibacterial activity decreases. Regarding the composite material samples, the 20 % calcium phosphate content group exhibited the best biocompatibility. However, after 0.5 h of co-cultivation, the antibacterial rates of all groups except the 20 % calcium phosphate content group co-cultured with S. aureus exceed 80 %. Furthermore, after 3 h, the antibacterial rates against E. coli exceed 95 % in all groups. This is because higher levels of MgO correspond to lower pH values and Mg2+ concentrations in the cell and bacterial culture solutions, which ultimately promote cell and bacterial proliferation. This elevates the biocompatibility of the samples, albeit at the expense of their antimicrobial efficacy. Thus, modulating the MgO content in the composite ceramic samples provides a strategy to develop gradient composite scaffolds for better control of their biocompatibility and antibacterial performance during different stages of bone regeneration.
Collapse
Affiliation(s)
- Mengxing Ge
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deqiao Xie
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Youwen Yang
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Huixin Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jiasen Gu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiuwei Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jianling Xie
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Jiangxi University of Science and Technology, Ganzhou 341000, China.
| |
Collapse
|
10
|
Rittidach T, Sillapaprayoon S, Chantho V, Pimtong W, Charoenphandhu N, Thongbunchoo J, Krishnamra N, Bootchanont A, Porjai P, Pon-On W. Investigation on the physical properties and biocompatibility of zirconia-alumina-silicate@diopside composite materials and its in vivo toxicity study in embryonic zebrafish. RSC Adv 2023; 13:30575-30585. [PMID: 37859778 PMCID: PMC10583262 DOI: 10.1039/d3ra04555b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Bioceramic materials have a wide range of applications in the biomedical field, such as in the repair of bone defects and dental surgery. Silicate-based bioceramics have attracted biomedical researchers' interest due to their bioactivity and biodegradability. In this study, extended the scope of ZAS utilization in bone tissue engineering by introducing calcium-magnesium-silicate (diopside, CMS) as an interface material aim to develop a machinable bioceramic composite (ZASCMS) by the sol-gel method. The physicochemical characterization, in vitro biological properties and in vivo zebrafish cytotoxicity study of ZAS-based composites as a function of CMS contents, 0, 25, 50, 75 and 100 wt%, were performed. Results showed that the as-prepared ZASCMS possessed porous architecture with well-interconnected pore structure. Results also revealed that the mechanical properties of ZASCMS composite materials were gradually improved with increasing CMS contents. The ZASCMS composites with more than 50 wt% CMS had the highest compressive strength and modulus of 6.78 ± 0.62 MPa and 340.10 ± 16.81 MPa, respectively. Regarding in vitro bioactivities, the composite scaffolds were found to stimulate osteoblast-like UMR-106 cell adhesion, growth, and proliferation. The antibacterial activity of the ZASCMS composite scaffolds was tested against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) also exhibited an antibacterial property. Furthermore, the in vivo studies using embryonic zebrafish were exposed to as-prepared particles (0-500 μg mL-1) and showed that the synthesized ZAS, CMS and ZASCMS composite particles were non-toxic based on the evaluation of survivability, hatching rate and embryonic morphology. In conclusions, our results indicated that the synthesized composite exhibited their biological properties and antibacterial activity, which could well be a promising material with high potential to be applied in orthopaedic and dental tissue engineering.
Collapse
Affiliation(s)
- Tanawut Rittidach
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Varissara Chantho
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Physiology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Institute of Molecular Biosciences, Mahidol University Nakhon Pathom 73170 Thailand
- The Academy of Science, The Royal Society of Thailand Dusit Bangkok 10300 Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Physiology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Physiology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Atipong Bootchanont
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathum Thani 12120 Thailand
| | - Porramain Porjai
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathum Thani 12120 Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
11
|
Gavinho SR, Pádua AS, Holz LIV, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2717. [PMID: 37836358 PMCID: PMC10574208 DOI: 10.3390/nano13192717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023]
Abstract
The non-surgical treatments are being required to reconstruct damaged tissue, prioritizing our body's natural healing process. Thus, the use of bioactive materials such as bioactive glass has been studied to support the repair and restoration of hard and soft tissue. Thus, in this work Bioglass 45S5 was developed, adding 1 and 2%mol of SrO or MgO and the physical and biological properties were evaluated. The addition of MgO and SrO at the studied concentrations promoted the slight increase in non-bridging oxygens number, observed through the temperature shift in phase transitions to lower values compared to Bioglass 45S5. The insertion of the ions also showed a positive effect on Saos-2 cell viability, decreasing the cytotoxic of Bioglass 45S5. Besides the Ca/P ratio on the pellets surface demonstrating no evidence of higher reactivity between Bioglass 45S5 and Bioglass with Sr and Mg, micrographs show that at 24 h the Ca/P rich layer is denser than in Bioglass 45S5 after the contact with simulated body fluid. The samples with Sr and Mg show a higher antibacterial effect compared to Bioglass 45S5. The addition of the studied ions may benefit the biological response of Bioglass 45S5 in dental applications as scaffolds or coatings.
Collapse
Affiliation(s)
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | | | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Manuel Almeida Valente
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (M.P.F.G.)
| | | |
Collapse
|
12
|
Wang Y, Wu Z, Wang T, Tang W, Li T, Xu H, Sun H, Lin Y, Tonin BSH, Ye Z, Fu J. Bioactive Dental Resin Composites with MgO Nanoparticles. ACS Biomater Sci Eng 2023; 9:4632-4645. [PMID: 37486960 DOI: 10.1021/acsbiomaterials.3c00490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Photoactivating dental resin composites have been the most prevailing material for repairing dental defects in various clinical scenarios due to their multiple advantages. However, compared to other restorative materials, the surface of resin-based composites is more susceptible to plaque biofilm accumulation, which can lead to secondary caries and restoration failure. This study introduced different weight fractions (1, 2, 5, 10, and 15%) of magnesium oxide nanoparticles (MgONPs) as antibacterial fillers into dental resin composites. Multifarious properties of the material were investigated, including antibacterial activity against a human salivary plaque-derived biofilm, cytotoxicity on human gingival fibroblasts, mechanical and physicochemical properties as well as the performance when subjected to thermocycling aging treatment. Results showed that the incorporation of MgONPs significantly improved the composites' anti-biofilm capability even at a low amount of 2 wt % without compromising the mechanical, physicochemical, and biocompatibility performances. The results of the thermocycling test suggested certain of aging resistance. Moreover, a small amount of MgONPs possibly made a difference in enhancing photoactivated polymerization and increasing the curing depth of experimental resin composites. Overall, this study highlights the potential of MgONPs as an effective strategy for developing antibacterial resin composites, which may help mitigating cariogenic biofilm-associated secondary caries.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| | - Zhongyuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ting Wang
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| | - Weilong Tang
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Tingting Li
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| | - Haiping Xu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| | - Hui Sun
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bruna S H Tonin
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040904, SP, Brazil
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
13
|
Burdusel AC, Neacsu IA, Birca AC, Chircov C, Grumezescu AM, Holban AM, Curutiu C, Ditu LM, Stan M, Andronescu E. Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration. J Funct Biomater 2023; 14:378. [PMID: 37504872 PMCID: PMC10381662 DOI: 10.3390/jfb14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdusel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Carmen Curutiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Ditu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| |
Collapse
|
14
|
Soliman YM, Mabrouk M, Raboh ASA, Ereiba KT, Beherei HH. Comparative Study of Bi2 O3 , MgO and ZrO2 Nanomaterials designed by Polymer Sacrificial Method for Amoxicillin delivery and Bone Regeneration: In-Vitro Studies.. [DOI: 10.21203/rs.3.rs-3146890/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Hard tissue scientists face many difficulties, including persistent osteomyelitis and diseased bone abnormalities. Inorganic mesoporous nanomaterials are excellent candidates for the adsorption and loading of bioactive medicinal substances because to their chemical-physical characteristics. Recently, zirconium oxide, magnesium oxide and bismuth oxide nanoparticles are of great surface area and biocompatibility, and they have been described as a new drug delivery carrier. In this study, amoxicillin antibiotic was loaded into the prepared mesoporous nanomaterials (ZrO2, MgO and Bi2O3) to form a local antibiotic delivery system. The prepared mesoporous nanomaterials were investigated by XRD, FTIR, TEM, zeta potential and BET surface area measurements. Amoxicillin antibiotic was released from the prepared mesoporous nanomaterials in PBS. The effectiveness of the antibacterial study against several gram-positive and gram-negative bacterial strains was assessed. The cytotoxicity study of the human osteoblast-like cells (MG-63) was tested for all prepared mesoporous nanomaterials utilizing MTT assay. ZrO2 demonstrated particle diameters in the range of (5.26– 11.47nm), MgO was (70–80nm) and Bi2O3 was (9.79– 13.7nm). The greater surface area was confirmed for Bi2O3 sample (3.99 m2g− 1) by BET surface area. Amoxicillin loaded mesoporous nano powders exhibited impressive antibacterial and antifungal activities. MgO and Bi2O3 mesoporous nanoparticles exhibited better antimicrobial activities compared to ZrO2 sample. The proliferation for all samples gave good results especially for MgO and Bi2O3. As a result, the produced mesoporous nanomaterials have a significant potential for use as medicine delivery systems for bone regeneration and for enhancing the properties of other products in medical applications.
Collapse
|
15
|
Wang Y, Wu Z, Wang T, Tian J, Zhou Z, Guo D, Tonin BSH, Ye Z, Xu H, Fu J. Antibacterial and physical properties of resin cements containing MgO nanoparticles. J Mech Behav Biomed Mater 2023; 142:105815. [PMID: 37068430 DOI: 10.1016/j.jmbbm.2023.105815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Cariogenic bacteria and dental plaque biofilm at prosthesis margins are considered a primary risk factor for failed restorations. Resin cement containing antibacterial agents can be beneficial in controlling bacteria and biofilm. This work aimed to evaluate the impact of incorporating magnesium oxide nanoparticles (MgONPs) as an antibacterial filler into dual-cure resin cement on bacteriostatic activity and physical properties, including mechanical, bonding, and physicochemical properties, as well as performance when subjected to a 5000-times thermocycling regimen. Experimental resin cements containing MgONPs of different mass fractions (0, 2.5%, 5%, 7.5% and 10%) were developed. Results suggested that the inclusion of MgONPs markedly improved the materials' bacteriostatic effect against Streptococcus mutans without compromising the physical properties when its addition reached 7.5 wt%. The mechanical properties of the specimens did not significantly decline after undergoing aging treatment, except for the flexural properties. In addition, the cements displayed good bonding performance and the material itself was not prone to cohesive fracture in the failure mode analysis. Furthermore, MgONPs possibly have played a role in decelerating material aging during thermocycling and enhancing bonding fastness in the early stage of cementation, which requires further investigation. Overall, developing MgONPs-doped resin cements can be a promising strategy to improve the material's performance in inhibiting cariogenic bacteria at restoration margins, in order to achieve a reduction in biofilm-associated secondary caries and a prolonged restoration lifespan.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zhongyuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Tian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Zixuan Zhou
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Di Guo
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Bruna S H Tonin
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040904, SP, Brazil
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., 999077, China
| | - Haiping Xu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
16
|
Ribeiro TP, Flores M, Madureira S, Zanotto F, Monteiro FJ, Laranjeira MS. Magnetic Bone Tissue Engineering: Reviewing the Effects of Magnetic Stimulation on Bone Regeneration and Angiogenesis. Pharmaceutics 2023; 15:1045. [PMID: 37111531 PMCID: PMC10143200 DOI: 10.3390/pharmaceutics15041045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold-cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.
Collapse
Affiliation(s)
- Tiago P. Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Miguel Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Sara Madureira
- Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Centro de Investigação Interdisciplinar em Saúde, Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Francesca Zanotto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Information Engineering, University of Padua, Via Gradenigo 6/b, 35131 Padova, Italy
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Marta S. Laranjeira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
17
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Bioglass obtained via one-pot synthesis as osseointegrative drug delivery system. Int J Pharm 2023; 633:122610. [PMID: 36669580 DOI: 10.1016/j.ijpharm.2023.122610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Osseointegration is a fundamental process during which implantable biomaterial integrates with host bone tissue. The surgical procedure of biomaterial implantation is highly associated with the risk of bacterial infection. Thus, the research continues for biodegradable bone void fillers which are able to stimulate the bone tissue regeneration and locally deliver the antibacterial agent. Herein, we obtained bifunctional bioglass (BG) using novel, preoptimized, rapid one-pot synthesis. Following the ISO Standards, the influence of the obtained BG on osteoblast-mediated phenomena, such as osteoconduction and osteoinduction was assessed and compared to two commercial materials: bioactive glass powder 45S and bioactive glass powder 85S. Direct-contact tests revealed osteoblast adhesion to BG particles; whereas, tests on extracts confirmed high viability of cells incubated with BG extract. Analyses of gene expression, alkaline phosphatase activity, and calcium phosphates deposition confirmed the stimulation of early and late stages of osteoblast differentiation and mineralization. Additionally, an extended evaluation of intracellular calcium fluctuations revealed a possible correlation between osteoblast calcium uptake and extracellular matrix mineralization. Moreover, proposed bioglass exhibited satisfactory doxycycline adsorption capacity and release profile. The obtained results confirmed the bifunctionality of the proposed BG and indicated its potential as osseointegrative bone drug delivery system.
Collapse
|
19
|
Lacambra-Andreu X, Maazouz A, Lamnawar K, Chenal JM. A Review on Manufacturing Processes of Biocomposites Based on Poly(α-Esters) and Bioactive Glass Fillers for Bone Regeneration. Biomimetics (Basel) 2023; 8:81. [PMID: 36810412 PMCID: PMC9945144 DOI: 10.3390/biomimetics8010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. During these last 20 years, those biocomposites have been explored for making complex geometry devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides an overview of the current development of manufacturing process with synthetic biodegradable poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the different works based on these biocomposites will be classified according to their manufacturing process. New processing techniques, particularly additive manufacturing processes, open up a new range of possibilities. These techniques have shown the possibility to customize bone implants for each patient and even create scaffolds with a complex structure similar to bone. At the end of this manuscript, a contextualization exercise will be performed to identify the main issues of process/resorbable biocomposites combination identified in the literature and especially for resorbable load-bearing applications.
Collapse
Affiliation(s)
- Xavier Lacambra-Andreu
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Abderrahim Maazouz
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- Hassan II Academy of Science and Technology, Rabat 10100, Morocco
| | - Khalid Lamnawar
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-Marc Chenal
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
20
|
Dong Y, Yao L, Cai L, Jin M, Forouzanfar T, Wu L, Liu J, Wu G. Antimicrobial and Pro-Osteogenic Coaxially Electrospun Magnesium Oxide Nanoparticles-Polycaprolactone /Parathyroid Hormone-Polycaprolactone Composite Barrier Membrane for Guided Bone Regeneration. Int J Nanomedicine 2023; 18:369-383. [PMID: 36700148 PMCID: PMC9869899 DOI: 10.2147/ijn.s395026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction An antibacterial and pro-osteogenic coaxially electrospun nanofiber guided bone regeneration (GBR) membrane was fabricated to satisfy the complicated and phased requirements of GBR process. Methods In this study, we synthesize dual-functional coaxially electrospun nanofiber GBR membranes by encapsulating parathyroid hormone (PTH) in the core layer and magnesium oxide nanoparticles (MgONPs) in the shell layer (MgONPs-PCL/PTH-PCL). Herein, the physicochemical characterization of MgONPs-PCL/PTH-PCL, the release rates of MgONPs and PTH, and antibacterial efficiency of the new membrane were evaluated. Furthermore, the pro-osteogenicity of the membranes was assessed both in-vitro and in-vivo. Results We successfully fabricated a coaxially electrospun nanofiber MgONPs-PCL/PTH-PCL membrane with the majority of nanofibers (>65%) ranged from 0.40~0.60μm in diameter. MgONPs-PCL/PTH-PCL showed outstanding antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through the release of MgONPs. We also discovered that the incorporation of MgONPs significantly prolonged the release of PTH. Furthermore, both the in-vivo and in-vitro studies demonstrated that high dosage of PTH promoted pro-osteogenicity of the membrane to improve bone regeneration efficacy with the presence of MgONPs. Conclusion The new composite membrane is a promising approach to enhance bone regeneration in periodontitis or peri-implantitis patients with large-volume bone defects.
Collapse
Affiliation(s)
- Yiwen Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Litao Yao
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands,Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence: Litao Yao, Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China, Zhejiang, Email
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Mi Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Lianjun Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Jinsong Liu, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Email
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| |
Collapse
|
21
|
Zhu Y, Zhao S, Cheng L, Lin Z, Zeng M, Ruan Z, Sun B, Luo Z, Tang Y, Long H. Mg 2+ -mediated autophagy-dependent polarization of macrophages mediates the osteogenesis of bone marrow stromal stem cells by interfering with macrophage-derived exosomes containing miR-381. J Orthop Res 2022; 40:1563-1576. [PMID: 34727384 DOI: 10.1002/jor.25189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Magnesium ion (Mg2+ ) has received increased attention due to the roles it plays in promoting osteogenesis and preventing inflammation. This study was designed to investigate the mechanism by which Mg2+ influences the osteoblastic differentiation of bone marrow stromal stem cells (BMSCs). The polarization of Mø (macrophages) was measured after treatment with Mg2+ . Meanwhile, autophagy in Mø was measured by detecting LC3B expression. Mø-derived exosomes were isolated and cocultured with BMSCs; after which, osteogenic differentiation was evaluated by Alizarin Red staining and detection of alkaline phosphatase (ALP). Our results showed that Mg2+ could induce autophagy in macrophages and modulate the M1/M2 polarization of macrophages. Mg2+ -mediated macrophages could facilitate the osteogenic differentiation of BMSCs by regulating autophagy, and this facilitation by Mg2+ -mediated macrophages was closely related to macrophage-derived exosomes, and especially exosomes containing miR-381. However, miR-381 in macrophages did not influence autophagy or the polarization of Mg2+ -mediated macrophages. Furthermore, macrophage-derived exosomes containing miR-381 mainly determined the osteogenic differentiation of BMSCs. Mg2+ -mediated macrophages were shown to promote the osteogenic differentiation of BMSCs via autophagy through reducing miR-381 in macrophage-derived exosomes. In conclusion, our results suggest Mg2+ -mediated macrophage-derived exosomes containing miR-381 as novel vehicles for promoting the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Buhua Sun
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhongwei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Yifu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China.,Department of Orthopaedics, Xiangya Third Hospital of Central South University, Changsha, Hunan, PR China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| |
Collapse
|
22
|
Lei F, Xiong Y, Wang Y, Zhang H, Liang Z, Li J, Feng Y, Hao X, Wang Z. Design, Synthesis, and Biological Evaluation of Novel Evodiamine Derivatives as Potential Antihepatocellular Carcinoma Agents. J Med Chem 2022; 65:7975-7992. [PMID: 35639640 DOI: 10.1021/acs.jmedchem.2c00520] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evodiamine has many biological activities. Herein, we synthesize 23 disubstituted derivatives of N14-phenyl or the E-ring of evodiamine and conduct systematic structure-activity relationship studies. In vitro antiproliferative activity indicated that compounds F-3 and F-4 dramatically inhibited the proliferation of Huh7 (IC50 = 0.05 or 0.04 μM, respectively) and SK-Hep-1 (IC50 = 0.07 or 0.06 μM, respectively) cells. Furthermore, compounds F-3 and F-4 could double inhibit topoisomerases I and II, inhibit invasion and migration, block the cell cycle to the G2/M stage, and induce apoptosis as well. Additionally, compounds F-3 and F-4 could also inhibit the activation of HSC-T6 and reduce the secretion of collagen type I to slow down the progression of liver fibrosis. Most importantly, compound F-4 (TGI = 60.36%) inhibited tumor growth more significantly than the positive drug sorafenib. To sum up, compound F-4 has excellent potential as a strong candidate for the therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ziyi Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Kalpana M, Nagalakshmi R. Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method. Appl Biochem Biotechnol 2022; 195:3994-4010. [PMID: 35596884 DOI: 10.1007/s12010-022-03968-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
In the past, bone fractures due to accidents were rectified by surgery and reconstruction of bone structure. In recent times, researchers have been made to find a solution by producing alternate biomaterials. Hydroxyapatite (HAp) is one of the most important bioactive materials used as a substitute for human hard tissue because of its composition being very similar to human bones and teeth. A study has proved that HAp has been used for bone regeneration in clinical trials in the mid-1980. HAp has been used as implant coatings and graft materials and also used as granules, cement, and pastes for bone regenerative applications. HAp coatings on bioimplants improved biocompatibility, bioactivity, and biological fixation. Moreover, some of the deposition methods can be employed to increase the cellular responses of bone regeneration such as sputtering, spraying, electrodeposition, and pulsed layer deposition. The researcher has prepared hydroxyapatite from chemical and natural sources. The surface area and intrinsic properties of the HAp play a vital role in bone-related applications. This can be achieved by synthesizing the HAp from natural sources rather than synthetic materials. The HAp obtained from the chemical source is not fulfilling the requirements of the natural bone. A variety of biowaste materials such as eggshell, crab shell, snail shell, bovine bone, fishbone, and fish scales are available in nature and can be converted to useful calcium source for HAp. The present study is to produce the HAp from biowaste materials like eggshell and chemical sources using the wet precipitation method. The synthesized HAp is coated on the Ti6Al4V alloy using the electrodeposition method, and it is immersed in SBF solution at 37 °C for corrosion testing. The coated samples are investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), electrochemical study, field emission scanning electron icroscopy (FESEM), energy dispersive X-ray analysis (EDAX), AFM, and antibacterial activity with two different microorganisms. FTIR and XRD confirm the functional groups and crystallinity of the HAp. The good antibacterial activity of the HAp is observed against two bacterial strains. The corrosion studies reveal that the HAp derived from a natural source is eco-friendly and nontoxic and has excellent corrosion resistivity and cell adhesion properties. A strong bond is formed between the naturally derived HAp with bone tissue which is involved in the bio-resorption process and does not pose any side effect to the human body compared to synthetically derived HAp. In addition, the biowaste materials are converted to useful biomaterials and can reduce environmental pollution.
Collapse
Affiliation(s)
- M Kalpana
- Department of Chemistry, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation (Deemed to be University), Rajiv Gandhi Salai, Paiyanoor, Kancheepuram District, 603104, Tamil Nadu, India
| | - R Nagalakshmi
- Department of Chemistry, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation (Deemed to be University), Rajiv Gandhi Salai, Paiyanoor, Kancheepuram District, 603104, Tamil Nadu, India.
| |
Collapse
|
24
|
Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022; 347:89-103. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.
Collapse
|
25
|
Jin Y, Wang Y, Chen Y, Han T, Chen Y, Wang C. Enhanced Antibacterial Ability and Bioactivity of Polyetherketoneketone Modified with LL-37. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4578-4588. [PMID: 35380840 DOI: 10.1021/acs.langmuir.1c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.
Collapse
Affiliation(s)
- Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Complete Genome Sequence of Bacillus toyonensis Strain HA0190, Isolated from a Commercial Hydroxyapatite Product Extensively Used as a Synthetic Bone Graft Substitute. Microbiol Resour Announc 2022; 11:e0010522. [PMID: 35377175 PMCID: PMC9022546 DOI: 10.1128/mra.00105-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacillus toyonensis is a member of the Bacillus cereus group and is used as a probiotic in animal feeds and biological applications. We report the 5.8-Mbp genome sequence of strain HA0190, an isolate from a commercial hydroxyapatite nanoparticle product. The genome contains a circular chromosome and two plasmids, pBT001 and pBT002.
Collapse
|
27
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
28
|
Draft Genome Sequence of the Multidrug-Resistant Strain Stenotrophomonas maltophilia N0320, Isolated from a Commercial Nanoparticle Product. Microbiol Resour Announc 2021; 10:e0091421. [PMID: 34709057 PMCID: PMC8552681 DOI: 10.1128/mra.00914-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen that is frequently associated with hospital infections. We report the 4.8-Mbp draft genome sequence of the oxidase-positive S. maltophilia strain N0320, an isolate from a commercial hydroxyapatite nanoparticle product.
Collapse
|
29
|
Yue O, Wang X, Liu X, Hou M, Zheng M, Wang Y, Cui B. Spider-Web and Ant-Tentacle Doubly Bio-Inspired Multifunctional Self-Powered Electronic Skin with Hierarchical Nanostructure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004377. [PMID: 34075730 PMCID: PMC8336620 DOI: 10.1002/advs.202004377] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/09/2021] [Indexed: 05/27/2023]
Abstract
For the practical applications of wearable electronic skin (e-skin), the multifunctional, self-powered, biodegradable, biocompatible, and breathable materials are needed to be assessed and tailored simultaneously. Integration of these features in flexible e-skin is highly desirable; however, it is challenging to construct an e-skin to meet the requirements of practical applications. Herein, a bio-inspired multifunctional e-skin with a multilayer nanostructure based on spider web and ant tentacle is constructed, which can collect biological energy through a triboelectric nanogenerator for the simultaneous detection of pressure, humidity, and temperature. Owing to the poly(vinyl alcohol)/poly(vinylidene fluoride) nanofibers spider web structure, internal bead-chain structure, and the collagen aggregate nanofibers based positive friction material, e-skin exhibits the highest pressure sensitivity (0.48 V kPa-1 ) and high detection range (0-135 kPa). Synchronously, the nanofibers imitating the antennae of ants provide e-skin with short response and recovery time (16 and 25 s, respectively) to a wide humidity range (25-85% RH). The e-skin is demonstrated to exhibit temperature coefficient of resistance (TCR = 0.0075 °C-1 ) in a range of the surrounding temperature (27-55 °C). Moreover, the natural collagen aggregate and the all-nanofibers structure ensure the biodegradability, biocompatibility, and breathability of the e-skin, showing great promise for practicability.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Mengdi Hou
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Manhui Zheng
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Youyou Wang
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Boqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| |
Collapse
|
30
|
Formulation of inherently antimicrobial magnesium oxychloride cement and the effect of supplementation with silver phosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112158. [PMID: 34082963 DOI: 10.1016/j.msec.2021.112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
The growing threat of bacterial resistance to antibiotics is driving an increasing need for new antimicrobial strategies. This work demonstrates the potential of magnesium oxychloride cements (MOC) to be used as inorganic antimicrobial biomaterials for bone augmentation. An injectable formulation was identified at a powder to liquid ratio of 1.4 g mL-1, with an initial setting time below 30 mins and compressive strength of 35 ± 9 MPa. Supplementation with Ag3PO4 to enhance the antimicrobial efficacy of MOC was explored, and shown via real time X-ray diffraction to retard the formation of hydrated oxychloride phases by up to 30%. The antimicrobial efficacy of MOC was demonstrated in vitro against Staphylococcus aureus and Pseudomonas aeruginosa, forming zones of inhibition and significantly reducing viability in broth culture. Enhanced efficacy was seen for silver doped formulations, with complete eradication of detectable viable colonies within 3 h, whilst retaining the cytocompatibility of MOC. Investigating the antimicrobial mode of action revealed that Mg and Ag release and elevated pH contributed to MOC efficacy. Sustained silver release was demonstrated over 14 days, suggesting the Ag3PO4 modified formulation offers two mechanisms of infection treatment, combining the inherent antimicrobial properties of MOC with controlled release of inorganic antimicrobials.
Collapse
|
31
|
Zhu L, Li J, Fan X, Hu X, Chen J, Liu Y, Hao X, Shi T, Wang Z, Zhao Q. Design, synthesis and antitumor activity evaluation of Chrysamide B derivatives. Bioorg Chem 2021; 111:104828. [PMID: 33895605 DOI: 10.1016/j.bioorg.2021.104828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
Marine natural products derived from special or extreme environment provide an important source for the development of anti-tumor drugs due to their special skeletons and functional groups. In this study, based on our previous work on the total synthesis and structure revision of the novel marine natural product Chrysamide B, a group of its derivatives were designed, synthesized, and subsequently of which the anti-cancer activity, structure-activity relationships and cellular mechanism were explored for the first time. Compared with Chrysamide B, better anti-cancer performance of some derivatives against five human cancer cell lines (SGC-7901, MGC-803, HepG2, HCT-116, MCF-7) was observed, especially for compound b-9 on MGC-803 and SGC-7901 cells with the IC 50 values of 7.88 ± 0.81 and 10.08 ± 1.08 μM, respectively. Subsequently, cellular mechanism study suggested that compound b-9 treatment could inhibit the cellular proliferation, reduce the migration and invasion ability of cells, and induce mitochondrial-dependent apoptosis in gastric cancer MGC-803 and SGC-7901 cells. Furthermore, the mitochondrial-dependent apoptosis induced by compound b-9 is related with the JAK2/STAT3/Bcl-2 signaling pathway. To conclude, our results offer a new structure for the discovery of anti-tumor lead compounds from marine natural products.
Collapse
Affiliation(s)
- Longqing Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Material Medical/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese academy of sciences, Guangzhou, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Nguyen DTC, Dang HH, Vo DVN, Bach LG, Nguyen TD, Tran TV. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124146. [PMID: 33053473 DOI: 10.1016/j.jhazmat.2020.124146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 05/21/2023]
Abstract
The occurrence and influence of dyes-containing effluents are alarmingly serious; hence, the treatment of such wastewater needs to be undertaken. Here, we report the biosynthesis strategy and utilisation of MgO nanoparticles (MgO NPs) from distinct Tecoma stans (L.) plant extracts (flower, bark, and leaf). The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. For adsorption experiments, the impact of pH, contact time, concentration, and pH on uptake efficiency of congo red (CR) and crystal violet (CV) dyes were investigated and then optimized using response surface methodology and Box-Behnken design. Under the optimal conditions, 99.7% CR (at Ci = 9.33 mg/L, Dos = 0.22, pH = 7.9) and 90.8% CV (at Ci = 5.0 mg/L, Dos = 0.3, pH = 6.3) were attained. The maximum adsorption capacities were calculated from 89.24 to 150.49 mg/g, where MgO NPs derived from flower extract gave better adsorption efficiency than those from other extracts. Therefore, MgO NPs material from Tecoma stans (L.) flower extract is expected as a perspective adsorbent for the effective remediation of organic dyes.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - Huy Hoang Dang
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Long Giang Bach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Trinh Duy Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
33
|
Coelho CC, Padrão T, Costa L, Pinto MT, Costa PC, Domingues VF, Quadros PA, Monteiro FJ, Sousa SR. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep 2020; 10:19098. [PMID: 33154428 PMCID: PMC7645747 DOI: 10.1038/s41598-020-76063-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
Bone graft infections are serious complications in orthopaedics and the growing resistance to antibiotics is increasing the need for antibacterial strategies. The use of magnesium oxide (MgO) is an interesting alternative since it possesses broad-spectrum antibacterial activity. Additionally, magnesium ions also play a role in bone regeneration, which makes MgO more appealing than other metal oxides. Therefore, a bone substitute composed of hydroxyapatite and MgO (HAp/MgO) spherical granules was developed using different sintering heat-treatment cycles to optimize its features. Depending on the sintering temperature, HAp/MgO spherical granules exhibited distinct surface topographies, mechanical strength and degradation profiles, that influenced the in vitro antibacterial activity and cytocompatibility. A proper balance between antibacterial activity and cytocompatibility was achieved with HAp/MgO spherical granules sintered at 1100 ºC. The presence of MgO in these granules was able to significantly reduce bacterial proliferation and simultaneously provide a suitable environment for osteoblasts growth. The angiogenic and inflammation potentials were also assessed using the in vivo chicken embryo chorioallantoic membrane (CAM) model and the spherical granules containing MgO stimulated angiogenesis without increasing inflammation. The outcomes of this study evidence a dual effect of MgO for bone regenerative applications making this material a promising antibacterial bone substitute.
Collapse
Affiliation(s)
- Catarina C Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. .,FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal.
| | - Tatiana Padrão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Laura Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Marta T Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal
| | - Paulo C Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratório de Tecnologia Farmacêutica, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV/GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Paulo A Quadros
- FLUIDINOVA, S.A., Rua Engenheiro Frederico Ulrich, 2650, 4470-605, Maia, Portugal
| | - Fernando J Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
34
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
35
|
Pavithra S, Mohana B, Mani M, Saranya PE, Jayavel R, Prabu D, Kumaresan S. Bioengineered 2D Ultrathin Sharp-Edged MgO Nanosheets Using Achyranthes aspera Leaf Extract for Antimicrobial Applications. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01772-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Ribeiro TP, Monteiro FJ, Laranjeira MS. PEGylation of iron doped hydroxyapatite nanoparticles for increased applicability as MRI contrast agents and as drug vehicles: A study on thrombogenicity, cytocompatibility and drug loading. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI, Tahir MB, Kabli MR. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01414-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Antifungal Activity of Magnesium Oxide Nanoparticles: Effect on the Growth and Key Virulence Factors of Candida albicans. Mycopathologia 2020; 185:485-494. [PMID: 32328890 DOI: 10.1007/s11046-020-00446-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
The aim of this research was to study the effects of different concentrations of magnesium oxide nanoparticles (MgO NPs) on the growth and key virulence factors of Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) of MgO NPs against C. albicans was determined by the micro-broth dilution method. A time-kill curve of MgO NPs and C. albicans was established to investigate the ageing effect of MgO NPs on C. albicans. Crystal violet staining, the MTT assay, and inverted fluorescence microscopy were employed to determine the effects of MgO NPs on C. albicans adhesion, two-phase morphological transformation, biofilm biomass, and metabolic activity. The time-kill curve showed that MgO NPs had fungicidal and antifungal activity against C. albicans in a time- and concentration-dependent manner. Semi-quantitative crystal violet staining and MTT assays showed that MgO NPs significantly inhibited C. albicans biofilm formation and metabolic activity, and the difference was statistically significant (p < 0.001). Inverted fluorescence microscopy showed that MgO NPs could inhibit the formation of C. albicans biofilm hyphae. Adhesion experiments showed that MgO NPs significantly inhibited the initial adhesion of C. albicans (p < 0.001). This study demonstrates that MgO NPs can effectively inhibit the growth, initial adhesion, two-phase morphological transformation, and biofilm formation of C. albicans and is an antifungal candidate.
Collapse
|
40
|
Luque-Agudo V, Fernández-Calderón MC, Pacha-Olivenza MA, Pérez-Giraldo C, Gallardo-Moreno AM, González-Martín ML. The role of magnesium in biomaterials related infections. Colloids Surf B Biointerfaces 2020; 191:110996. [PMID: 32272388 DOI: 10.1016/j.colsurfb.2020.110996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.
Collapse
Affiliation(s)
- Verónica Luque-Agudo
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain
| | - Miguel A Pacha-Olivenza
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- University of Extremadura, Department of Biomedical Science, Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Amparo M Gallardo-Moreno
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain.
| | - M Luisa González-Martín
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain; University Institute of Extremadura Sanity Research (iNube), Badajoz, Spain
| |
Collapse
|
41
|
Abstract
The dextran-thyme magnesium-doped hydroxyapatite (10MgHAp-Dex-thyme) composite layers were prepared by a dip-coating procedure from stable suspensions and further analyzed for the first time. Different characterization techniques were employed to explore the physical-chemical features of the 10MgHAp-Dex-thyme suspensions and derived coatings. Information regarding the 10MgHAp-Dex-thyme suspensions was extracted on the basis of dynamic light scattering, zeta potential, and ultrasound measurements. The crystalline quality of the biocomposite powders—resulting after the centrifugation of suspensions—and the layers deposited on glass was assessed by X-ray diffraction in symmetric and grazing incidence geometries, respectively. The chemical structure and presence of functional groups were evaluated for both powder and coating by Fourier transform infrared spectroscopy in attenuated total reflectance mode. The extent of the antimicrobial effect range of the biocomposite suspensions and coatings was tested against different Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa) and fungus (Candida albicans) strains with promising results.
Collapse
|
42
|
Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability. COATINGS 2019. [DOI: 10.3390/coatings9120814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomaterials used for the manufacture of biomedical devices must have suitable surface properties avoiding bacterial colonization and/or proliferation. Most biomaterial-related infections start during the surgery. Bacteria can begin colonization of the surface of a device right after implantation or in the next few hours. This time may also be sufficient to begin the deterioration of a biodegradable implant. This work explores the surface changes that hydrophobic films of poly(lactic) acid reinforced with Mg particles, prepared by solving-casting, undergone after in vitro degradation at different times. Hydrophobicity, surface tension, zeta potential, topography, and elemental composition were obtained from new and aged films. The initial degradation for 4 h was combined with unspecific bacterial adhesion and viability tests to check if degraded films are more or less susceptible to be contaminated. The degradation of the films decreases their hydrophobicity and causes the appearance of a biocompatible layer, composed mainly of magnesium phosphate. The release of Mg2+ is very acute at the beginning of the degradation process, and such positive charges may favor the electrostatic approach and attachment of Staphylococci. However, all bacteria attached on the films containing Mg particles appeared damaged, ensuring the bacteriostatic effect of these films, even after the first hours of their degradation.
Collapse
|