1
|
Tincu R, Mihaila M, Bostan M, Istrati D, Badea N, Lacatusu I. Hybrid Albumin-Decorated Lipid-Nanocarrier-Mediated Delivery of Polyphenol-Rich Sambucus nigra L. in a Potential Multiple Antitumoural Therapy. Int J Mol Sci 2024; 25:11206. [PMID: 39456987 PMCID: PMC11508305 DOI: 10.3390/ijms252011206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The current research attempted to address the suitability of bioactive Sambucus nigra extract entrapped in albumin-decorated nanostructured lipid carriers (NLCs) as a promising "adjuvant" in improving tumour penetration for multiple antitumour therapy. The new hybrid albumin-decorated NLCs were characterised based on, e.g., the particle size, zeta electrokinetic potential, SambucusN entrapment efficiency, and fluorescence spectroscopy and tested for different formulation parameters. The antioxidant activity of NLC-SambucusN was significantly enhanced by a bovine serum albumin (BSA) polymer coating. According to the real-time cell analysis (RTCA) results, NLC-I-SambucusN-BSA behaved similarly to the chemotherapeutic drug, cisplatin, with cell viability for LoVo tumour cells of 21.81 ± 1.18%. The new albumin-NLC-SambucusN arrested cancer cells in G1 and G2 cycles and intensified the apoptosis process in both early and late phases. An advanced induction, over 50% apoptosis in LoVo colon cells, was registered for 50 μg/mL of NLC-II-SambucusN-BSA, a fourfold increase compared to that of untreated cells. RTCA and flow cytometry results showed that concentrations of the hybrid NLC-SambucusN up to 50 μg/mL do not affect the proliferation of normal HUVEC cells. This approach provides insightful information regarding the involvement of phytochemicals in future therapeutic strategies. Albumin-decorated NLCs can be considered a noteworthy strategy to be connected to antitumour therapeutic protocols.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai No. 16, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independetei, 050096 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| |
Collapse
|
2
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
3
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
5
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Fasina O, Baskaran P, Boddu SHS, Tiwari AK, Chen P, Lyman CC, Babu RJ. 3D-Printed Capsaicin-Loaded Injectable Implants for Targeted Delivery in Obese Patients. AAPS PharmSciTech 2023; 24:200. [PMID: 37783858 DOI: 10.1208/s12249-023-02647-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Padmamalini Baskaran
- College of Pharmacy, Howard University, Washington, District of Columbia, 20059, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio, 43614, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Candace C Lyman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA.
| |
Collapse
|
6
|
Iordache TA, Badea N, Mihaila M, Crisan S, Pop AL, Lacatusu I. Polygonum cuspidatum Loaded Nanostructured Lipid Carriers for Dual Inhibition of TNF-α- and IL-6 Cytokines and Free Radical Species. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093492. [PMID: 37176373 PMCID: PMC10179770 DOI: 10.3390/ma16093492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The main objective of this study was the testing of natural compounds, such as Polygonum cuspidatum (PgnC) loaded into nanostructured lipid carriers (NLC), which can act as a "double-edged sword" aimed at simultaneously combating dangerous free radicals and inhibiting pro-inflammatory cytokines. Resveratrol-rich PgnC extract was paired with another phytochemical, Diosgenin (DSG), in NLC. The lipid nanocarriers carrying both herbals (NLC-DSG-PgnC) had spherical diameters (100 ± 2 50 nm), a polydispersity index of ~0.15, and electrokinetic potentials greater than -46.5 mV. Entrapment efficiencies of 65% for PgnC and 87% for DSG were determined by chromatographic and UV-Vis spectroscopy assays. Cell cytotoxicity analysis proved that 50 µg/mL of NLC-PgnC and dual-NLC ensured a biocompatible effect like the untreated cells. The dual-NLC assured a much slower in vitro release of DSG and PgnC (67% PgnC and 48% DSG) than the individual-NLC (78% PgnC and 47% DSG) after 4 h of experiments. NLC encapsulating PgnC presented a superior ability to capture cationic radicals: 74.5 and 77.9%. The chemiluminescence results pointed out the non-involvement of DSG in stopping oxygenated free radicals, while the antioxidant activity was maintained at a level higher than 97% for dual-NLC. NLC-DSG-PgnC ensured a promising capacity for inhibition of pro-inflammatory cytokine IL-6, ranging from 91.9 to 94.9%.
Collapse
Affiliation(s)
- Teodora-Alexandra Iordache
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6th Dinu Vintila Street, 021101 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Simona Crisan
- R.D. Center, A.C. HELCOR, Victor Babes Street, 430082 Baia Mare, Romania
| | - Anca Lucia Pop
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| |
Collapse
|
7
|
Tincu R, Mihaila M, Bostan M, Teodorescu F, Istrati D, Badea N, Lacatusu I. Novel Bovine Serum Albumin-Decorated-Nanostructured Lipid Carriers Able to Modulate Apoptosis and Cell-Cycle Response in Ovarian, Breast, and Colon Tumoral Cells. Pharmaceutics 2023; 15:1125. [PMID: 37111611 PMCID: PMC10144507 DOI: 10.3390/pharmaceutics15041125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A novel nanoscale approach was developed for the improved cellular internalization of hybrid bovine serum albumin-lipid nanocarriers loaded with piperine (NLC-Pip-BSA) in different tumor cells. The effect of the BSA-targeted-NLC-Pip and untargeted-NLC-Pip on the viability, proliferation, and levels of cell-cycle damage and apoptosis in the colon (LoVo), ovarian (SKOV3) and breast (MCF7) adenocarcinoma cell lines was comparatively discussed. NLCs were characterized concerning particle size, morphology, zeta potential, phytochemical encapsulation efficiency, ATR-FTIR, and fluorescence spectroscopy. The results showed that NLC-Pip-BSA showed a mean size below 140 nm, a zeta potential of -60 mV, and an entrapment efficiency of 81.94% for NLC-Pip and 80.45% for NLC-Pip-BSA. Fluorescence spectroscopy confirmed the coating of the NLC with the albumin. By MTS and RTCA assays, NLC-Pip-BSA showed a more pronounced response against the LoVo colon cell line and MCF-7 breast tumor cell lines than against the ovarian SKOV-3 cell line. Flow cytometry assay demonstrated that the targeted NLC-Pip had more cytotoxicity and improved apoptosis than the untargeted ones in MCF-7 tumor cells (p < 0.05). NLC-Pip caused a significant increase in MCF-7 breast tumor cell apoptosis of ~8X, while NLC-Pip-BSA has shown an 11-fold increase in apoptosis.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Florina Teodorescu
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| |
Collapse
|
8
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
9
|
Trandafir LM, Dodi G, Frasinariu O, Luca AC, Butnariu LI, Tarca E, Moisa SM. Tackling Dyslipidemia in Obesity from a Nanotechnology Perspective. Nutrients 2022; 14:nu14183774. [PMID: 36145147 PMCID: PMC9504099 DOI: 10.3390/nu14183774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and dyslipidemia are the main features of metabolic syndrome, expressed mainly by adipose tissue dysfunction and connected by similar pathways and pharmacotherapy. Conventional drugs used in these two associated disorders are limited due to poor drug efficiency, non-specificity, and toxic side effects. Therefore, novel solutions for tackling obesity-associated diseases and providing insights into the development of innovative or improved therapies are necessary. Targeted nanotherapy is a revolutionary technology, offering a promising solution for combatting the disadvantages of currently available therapies for treating obesity and dyslipidemia due to its superior features, which include specific cell targeting, the protection of drugs against physiological degradation, and sustained drug release. This review presents a brief assessment of obesity and dyslipidemia, their impacts on human health, current treatment, and limitations, and the role and potential use of nanotechnology coupled with targeted drug delivery and nutraceuticals as emerging therapies. To the best of our knowledge, this paper presents, for the first time in the literature, a comparison between obesity and dyslipidemia nano-formulations based on drugs and/or natural extracts applied in experimental studies.
Collapse
Affiliation(s)
- Laura M. Trandafir
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Otilia Frasinariu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Alina C. Luca
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Lacramioara I. Butnariu
- Department of Medical Genetics, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Elena Tarca
- Department of Pediatric Surgery, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Stefana M. Moisa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
10
|
Li J, Duan H, Liu Y, Wang L, Zhou X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022; 14:1445. [PMID: 35890340 PMCID: PMC9320151 DOI: 10.3390/pharmaceutics14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a global public health issue that results in many health complications or comorbidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy alone or combined with either lifestyle alteration or surgery represents the main modality to combat obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability, target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide, and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. Herein, by analyzing the current situation and challenges of various new obesity treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the advanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological activities and applications in obesity treatment, are systematically summarized. Finally, based on the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and challenges in this field are proposed.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Hongli Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Yan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Lu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Salicin and Hederacoside C-Based Extracts and UV-Absorbers Co-Loaded into Bioactive Lipid Nanocarriers with Promoted Skin Antiaging and Hydrating Efficacy. NANOMATERIALS 2022; 12:nano12142362. [PMID: 35889587 PMCID: PMC9321659 DOI: 10.3390/nano12142362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
Conventional and herbal active principles can be combined in a beneficial harmony using their best features and compensating for the certain weaknesses of each. The study will answer the question, “how can willow bark extract (Wbe) or ivy leaf extract (Ile) influence the photoprotective, skin permeation and hydration properties of Bioactive Lipid Nanocarriers (BLN) loaded with UV-filters and selected herbals?”. BLN-Wbe/Ile-UV-filters were characterized for particle size, zeta potential, thermal behavior, entrapment efficiency and drug loading. The formulated BLN-hydrogels (HG) were subjected to in vitro release and permeation experiments. The in vitro determination of sun protection factors, as well as comparative in vitro photostability tests, rheology behavior and in vivo hydration status have been also considered for hydrogels containing BLN-Ile/Wbe-UV-filters. Photoprotection of BLN-HG against UVA rays was more pronounced as compared with the UVB (UVA-PF reached values of 30, while the maximum SPF value was 13). The in vitro irradiation study demonstrated the photostability of BLN-HG under UV exposure. A noteworthy cosmetic efficacy was detected by in vivo skin test (hydration effect reached 97% for the BLN-Wbe-UV-filters prepared with pomegranate oil). The research novelty, represented by the first-time co-optation of the active herbal extracts (Wbe and Ile) together with two synthetic filters in the same nanostructured delivery system, will provide appropriate scientific support for the cosmetic industry to design novel marketed formulations with improved quality and health benefices.
Collapse
|
12
|
Relationship between the Antifungal Activity of Chitosan-Capsaicin Nanoparticles and the Oxidative Stress Response on Aspergillus parasiticus. Polymers (Basel) 2022; 14:polym14142774. [PMID: 35890550 PMCID: PMC9322876 DOI: 10.3390/polym14142774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as “oxidative stress”, which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.
Collapse
|
13
|
Iordache TA, Badea N, Mihaila M, Crisan S, Pop AL, Lacatusu I. Challenges in Coopted Hydrophilic and Lipophilic Herbal Bioactives in the Same Nanostructured Carriers for Effective Bioavailability and Anti-Inflammatory Action. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3035. [PMID: 34835798 PMCID: PMC8624441 DOI: 10.3390/nano11113035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
There is ongoing research on various herbal bioactives and delivery systems which indicates that both lipid nanocarriers and herbal medicines will be fine tunned and integrated for future bio-medical applications. The current study was undertaken to systematically develop NLC-DSG-yam extract for the improved efficacy of herbal Diosgenin (DSG) in the management of anti-inflammatory disorders. NLCs were characterized regarding the mean size of the particles, morphological characteristics, physical stability in time, thermal behaviour, and entrapment efficiency of the herbal bioactive. Encapsulation efficiency and in vitro antioxidant activity measured the differences between the individual and dual co-loaded-NLC, the co-loaded one assuring a prolonged controlled release of DSG and a more emphasized ability of capturing short-life reactive oxygen species (ROS). NLCs safety properties were monitored following the in vitro MTS ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay) and RTCA (Real-Time Cell Analysis) assays. Concentrations less than 50 μg/mL showed no cytotoxic effects during in vitro cytotoxicity assays. Besides, the NLC-DSG-yam extract revealed a great anti-inflammatory effect, as the production of pro-inflammatory cytokines (TNF-alpha, IL-6) was significantly inhibited at 50 μg/mL NLC (e.g., 98.2% ± 1.07 inhibition of TNF-α, while for IL-6 the inhibition percentage was of 62% ± 1.07). Concluding, using appropriate lipid nanocarriers, the most desirable properties of herbal bioactives could be improved.
Collapse
Affiliation(s)
- Teodora-Alexandra Iordache
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 6th Dinu Vintila Street, 021102 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
| | - Mirela Mihaila
- Virology Institute “Stefan S. Nicolau”, Romanian Academy, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
| | - Simona Crisan
- RD Center, AC HELCOR, Victor Babes St., 430082 Baia Mare, Romania;
| | - Anca Lucia Pop
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
| |
Collapse
|
14
|
Lacatusu I, Iordache TA, Mihaila M, Mihaiescu DE, Pop AL, Badea N. Multifaced Role of Dual Herbal Principles Loaded-Lipid Nanocarriers in Providing High Therapeutic Efficacity. Pharmaceutics 2021; 13:pharmaceutics13091511. [PMID: 34575585 PMCID: PMC8465057 DOI: 10.3390/pharmaceutics13091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Although many phytochemicals have been used in traditional medicine, there is a great need to refresh the health benefits and adjust the shortcomings of herbal medicine. In this research, two herbal principles (Diosgenin and Glycyrrhiza glabra extract) coopted in the Nanostructured Lipid Carriers have been developed for improving the most desirable properties of herbal medicine—antioxidant and anti-inflammatory actions. The contribution of phytochemicals, vegetable oils and of lipid matrices has been highlighted by comparative study of size, stability, entrapment efficiency, morphological characteristics, and thermal behavior. According to the in vitro MTS and RTCA results, the dual herbal-NLCs were no cytotoxic toward endothelial cells at concentrations between 25 and 100 µg/mL. A rapid release of Glycyrrhiza glabra and a motivated delay of Diosgenin was detected by the in vitro release experiments. Dual herbal-NLCs showed an elevated ability to annihilate long-life cationic radicals (ABTS•+) and short-life oxygenated radicals (an inhibition of 63.4% ABTS•+, while the ability to capture radical oxygen species reached 96%). The production of pro-inflammatory cytokines was significantly inhibited by the newly herbals-NLC (up to 97.9% inhibition of TNF-α and 62.5% for IL-6). The study may open a new pharmacotherapy horizon; it provides a comprehensive basis for the use of herbal-NLC in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ioana Lacatusu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Teodora Alexandra Iordache
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Mirela Mihaila
- Virology Institute Stefan S. Nicolau, Romanian Academy, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- RD Center, AC Helcor, Victor Babes St., 430082 Baia Mare, Romania
- Correspondence: (A.L.P.); (N.B.)
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (T.A.I.); (D.E.M.)
- Correspondence: (A.L.P.); (N.B.)
| |
Collapse
|
15
|
Shende P, Narvenker R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Lacatusu I, Istrati D, Bordei N, Popescu M, Seciu A, Panteli L, Badea N. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110412. [DOI: 10.1016/j.msec.2019.110412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
|
17
|
Huang D, Deng M, Kuang S. Polymeric Carriers for Controlled Drug Delivery in Obesity Treatment. Trends Endocrinol Metab 2019; 30:974-989. [PMID: 31668904 PMCID: PMC6927547 DOI: 10.1016/j.tem.2019.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
The global rise in the prevalence of obesity and affiliated metabolic syndrome poses a significant threat to human health. Various approaches, including bariatric surgery and pharmacotherapy, have been used in the clinical setting for obesity treatment; however, these conventional options remain ineffective and carry risks of adverse effects. Therefore, treatments with higher efficacy and specificity are urgently required. Emerging drug delivery systems use polymeric materials and chemical strategies to improve therapeutic efficacy and specificity through stabilization and spatiotemporally controlled release of antiobesity agents. In this review, we provide insights into current treatments for obesity with a focus on recent developments of polymeric carriers for enhanced antiobesity drug delivery.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|