1
|
Faria LV, Lopes MES, de Oliveira DP, da Silva FS, Fugivara CS, Nogueira AVB, Deschner J, Cirelli JA. Sustained release of Sr and Ca from a micronanotopographic titanium surface improves osteoblast function. Biometals 2025; 38:623-646. [PMID: 40097885 DOI: 10.1007/s10534-025-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
The surface chemistry and topographical features of dental implants play a crucial role in influencing the osseointegration process. Alkaline earth elements such as strontium (Sr) and calcium (Ca) exert beneficial effects in promoting bone formation. This study aimed to evaluate micronanotopographic cpTi substrates that doped these elements, Sr and Ca. The composition and morphology were analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Wettability assays, Sr and Ca release tests, and electrochemical behavior were also conducted. Proliferation, adhesion, and differentiation of MC3T3-E1 cells on this surface were evaluated in vitro. Direct fluorescence assays and SEM, cell viability, alkaline phosphatase (ALP) activity, and mineralization nodule formation were performed. The biological results showed the absence of cytotoxicity after the treatments, increased cell spreading on the micronanotopographic substrates, and greater mineralization nodule formation on surfaces doped with Sr and Sr/Ca. Gene and protein expression of osteoblastic markers were assessed through PCR and ELISA, and some genes were regulated on the doped surfaces at three and seven days of cell culture, like Bglap, Ibsp, Spp, Col1a1, and Runx2. The micronanotopographic substrates modified the physicochemical properties and morphology of the pre-osteoblasts. The results indicate that the biological effect of implants treated with Sr and Sr/Ca was significantly superior to that of polished surfaces and undoped micronanotopographic implants. Furthermore, the addition of Sr alone was sufficient to improve events related to osseointegration.
Collapse
Affiliation(s)
- Luan Viana Faria
- São Paulo State University (UNESP), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil
| | | | | | - Fernando Santos da Silva
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Juína, Mato Grosso, Brazil
| | | | - Andressa Vilas Boas Nogueira
- University Medical Center of the Johannes Gutenberg University Mainz (Universitätsmedizin Mainz), Mainz, Rhineland-Palatinate, Germany
| | - James Deschner
- University Medical Center of the Johannes Gutenberg University Mainz (Universitätsmedizin Mainz), Mainz, Rhineland-Palatinate, Germany
| | - Joni Augusto Cirelli
- São Paulo State University (UNESP), School of Dentistry at Araraquara, Araraquara, São Paulo, Brazil.
| |
Collapse
|
2
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Costa Filho PMD, Marcantonio CC, Oliveira DPD, Lopes MES, Puetate JCS, Faria LV, Carvalho LDF, Molon RSD, Garcia Junior IR, Nogueira AVB, Deschner J, Cirelli JA. Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study. J Appl Oral Sci 2024; 32:e20240144. [PMID: 39292113 PMCID: PMC11464079 DOI: 10.1590/1678-7757-2024-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the osseointegration of titanium (Ti) implants with micro-nano textured surfaces functionalized with strontium additions (Sr) in a pre-clinical rat tibia model. METHODOLOGY Ti commercially pure (cp-Ti) implants were installed bilaterally in the tibia of 64 Holtzman rats, divided into four experimental groups (n=16/group): (1) Machined surface - control (C); (2) Micro-nano textured surface treatment (MN); (3) Micro-nano textured surface with Sr2+ addition (MNSr); and (4) Micro-nano textured surface with a higher complementary addition of Sr2+ (MNSr+). In total, two experimental euthanasia periods were assessed at 15 and 45 days (n=8/period). The tibia was subjected to micro-computed tomography (μ-CT), histomorphometry with the EXAKT system, removal torque (TR) testing, and gene expression analysis by PCR-Array of 84 osteogenic markers. Gene expression and protein production of bone markers were performed in an in vitro model with MC3T3-E1 cells. The surface characteristics of the implants were evaluated by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and laser scanning confocal microscopy. RESULTS SEM, confocal, and EDS analyses demonstrated the formation of uniform micro-nano textured surfaces in the MN group and Sr addition in the MNSr and MNSr+ groups. TR test indicated greater osseointegration in the 45-day period for treated surfaces. Histological analysis highlighted the benefits of the treatments, especially in cortical bone, in which an increase in bone-implant contact was found in groups MN (15 days) and MNSr (45 days) compared to the control group. Gene expression analysis of osteogenic activity markers showed modulation of various osteogenesis-related genes. According to the in vitro model, RT-qPCR and ELISA demonstrated that the treatments favored gene expression and production of osteoblastic differentiation markers. CONCLUSIONS Micro-nano textured surface and Sr addition can effectively improve and accelerate implant osseointegration and is, therefore, an attractive approach to modifying titanium implant surfaces with significant potential in clinical practice.
Collapse
Affiliation(s)
- Pio Moerbeck da Costa Filho
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Camila Chiérici Marcantonio
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | | | - Maria Eduarda Scordamaia Lopes
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Julio Cesar Sanchez Puetate
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
- Universidad San Francisco de Quito USFQ, Escuela de Odontología, Departmento de Periodoncia, Quito, Pichincha, Ecuador
| | - Luan Viana Faria
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Letícia de Freitas Carvalho
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| | - Rafael Scaf de Molon
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraçatuba, Departamento de Diagnóstico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Idelmo Rangel Garcia Junior
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraçatuba, Departamento de Diagnóstico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Andressa Vilas Bôas Nogueira
- University Medical Mainz, Center of the Johannes Gutenberg University, Department of Periodontology and Operative Dentistry, Germany
| | - James Deschner
- University Medical Mainz, Center of the Johannes Gutenberg University, Department of Periodontology and Operative Dentistry, Germany
| | - Joni Augusto Cirelli
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Diagnóstico e Cirurgia, Araraquara, São Paulo, Brasil
| |
Collapse
|
4
|
Madiwal V, Khairnar B, Rajwade J. Enhanced antibacterial activity and superior biocompatibility of cobalt-deposited titanium discs for possible use in implant dentistry. iScience 2024; 27:108827. [PMID: 38303692 PMCID: PMC10831949 DOI: 10.1016/j.isci.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The clinical success of implants depends on rapid osseointegration, and new materials are being developed considering the increasing demand. Considering cobalt (Co) antibacterial characteristics, we developed Co-deposited titanium (Ti) using direct current (DC) sputtering and investigated it as a new material for implant dentistry. The material was characterized using atomic absorption spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The material's surface topography, roughness, surface wettability, and hardness were also analyzed. The Co thin film (Ti-Co15) showed excellent antibacterial effects against microbes implicated in peri-implantitis. Furthermore, Ti-Co15 was compatible and favored the attachment and spreading of MG-63 cells. The alkaline phosphatase and calcium mineralization activities of MG-63 cells cultured on Ti-Co15 remained unaltered compared to Ti. These data correlated well with the time-dependent expression of ALP, RUNX-2, and BMP-2 genes involved in osteogenesis. The results demonstrate that Co-deposited Ti could be a promising material in implant dentistry.
Collapse
Affiliation(s)
- Vaibhav Madiwal
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Bhushan Khairnar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411 004, India
- Savitribai Phule Pune University, Homi Bhabha Road, Pune, Maharashtra 411 007, India
| |
Collapse
|
5
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Liu Y, Zhang B, Liu F, Qiu Y, Mu W, Chen L, Ma C, Ye T, Wang Y. Strontium doped electrospinning fiber membrane with antibacterial and osteogenic properties prepared by pulse electrochemical method. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
López-Valverde N, Macedo-de-Sousa B, López-Valverde A, Ramírez JM. Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10040360. [PMID: 33800702 PMCID: PMC8066819 DOI: 10.3390/antibiotics10040360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) dental implant failure as a result of infection has been established at 40%, being regarded as one of the most habitual and untreatable problems. Current research is focused on the design of new surfaces that can generate long-lasting, infection-free osseointegration. The purpose of our study was to assess studies on Ti implants coated with different antibacterial surfaces, assessing their osseointegration. The PubMed, Web of Science and Scopus databases were electronically searched for in vivo studies up to December 2020, selecting six studies that met the inclusion criteria. The quality of the selected studies was assessed using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) criteria and Systematic Review Center for Laboratory animal Experimentation's (SYRCLE's) risk of bias tool. Although all the included studies, proved greater osseointegration capacity of the different antibacterial surfaces studied, the methodological quality and experimental models used in some of them make it difficult to draw predictable conclusions. Because of the foregoing, we recommend caution when interpreting the results obtained.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Bruno Macedo-de-Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I-Edifício Central Rua Larga, 3004-504 Coimbra, Portugal;
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Correspondence:
| | - Juan Manuel Ramírez
- Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal S/N, 14071 Cordoba, Spain;
| |
Collapse
|
8
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
9
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
10
|
Influence of Two-Stage Anodization on Properties of the Oxide Coatings on the Ti–13Nb–13Zr Alloy. COATINGS 2020. [DOI: 10.3390/coatings10080707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The increasing demand for titanium and its alloys used for implants results in the need for innovative surface treatments that may both increase corrosion resistance and biocompatibility and demonstrate antibacterial protection at no cytotoxicity. The purpose of this research was to characterize the effect of two-stage anodization—performed for 30 min in phosphoric acid—in the presence of hydrofluoric acid in the second stage. Scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, glow discharge optical emission spectroscopy, nanoindentation and nano-scratch tests, potentiodynamic corrosion studies, and water contact angle measurements were performed to characterize microstructure, mechanical, chemical and physical properties. The biologic examinations were carried out to determine the cytotoxicity and antibacterial effects of oxide coatings. The research results demonstrate that two-stage oxidation affects several features and, in particular, improves mechanical and chemical behavior. The processes influencing the formation and properties of the oxide coating are discussed.
Collapse
|
11
|
Zhou X, Atsuta I, Ayukawa Y, Narimatsu I, Zhou T, Hu J, Koyano K. Effects of Different Divalent Cation Hydrothermal Treatments of Titanium Implant Surfaces for Epithelial Tissue Sealing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2038. [PMID: 32349433 PMCID: PMC7254254 DOI: 10.3390/ma13092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
The improvement of peri-implant epithelium (PIE) adhesion to titanium (Ti) may promote Ti dental implant stability. This study aims to investigate whether there is a positive effect of Ti hydrothermally treated (HT) with calcium chloride (CaCl2), zinc chloride (ZnCl2), and strontium chloride (SrCl2) on promoting PIE sealing. We analyzed the response of a rat oral epithelial cell (OEC) culture and performed an in vivo study in which the maxillary right first molars of rats were extracted and replaced with calcium (Ca)-HT, zinc (Zn)-HT, strontium (Sr)-HT, or non-treated control (Cont) implants. The OEC adhesion on Ca-HT and Zn-HT Ti plates had a higher expression of adhesion proteins than cells on the Cont and Sr-HT Ti plates. Additionally, the implant PIE of the Ca-HT and Zn-HT groups revealed better expression of immunoreactive laminin-332 (Ln-322) at 2 weeks after implantation. The Ca-HT and Zn-HT groups also showed better attachment at the implant-PIE interface, which inhibited horseradish peroxidase penetration. These results demonstrated that the divalent cations of Ca (Ca2+) and Zn (Zn2+)-HT improve the integration of epithelium around the implant, which may facilitate the creation of a soft barrier around the implant to protect it from foreign body penetration.
Collapse
Affiliation(s)
- Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Tianren Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| |
Collapse
|
12
|
Ding X, Li X, Li C, Qi M, Zhang Z, Sun X, Wang L, Zhou Y. Chitosan/Dextran Hydrogel Constructs Containing Strontium-Doped Hydroxyapatite with Enhanced Osteogenic Potential in Rat Cranium. ACS Biomater Sci Eng 2019; 5:4574-4586. [DOI: 10.1021/acsbiomaterials.9b00584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Zhe Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | | | | | | |
Collapse
|