1
|
Liu X, Zhou E, Fan Y, Wang F, Xu D. Riboflavin-mediated extracellular electron transfer enhances microbiologically influenced corrosion of 316L stainless steel by Enterococcus faecalis. Bioelectrochemistry 2025; 165:108982. [PMID: 40209334 DOI: 10.1016/j.bioelechem.2025.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
316L stainless steel (SS) is widely used in medical implants due to its excellent mechanical properties. However, the increasing use of metallic implants has made microbiologically influenced corrosion (MIC) a significant safety concern, as it can release harmful metal ions in the body. Despite this risk, research on MIC behavior and mechanisms of 316L SS in the intestinal environment is limited. This study provides novel evidence that Enterococcus faecalis, an intestinal electroactive microorganism, contributes to MIC of 316L SS. MIC occurrence by E. faecalis was confirmed in nutrient-rich media and simulated intestinal fluid, with increased MIC rates under carbon starvation, suggesting an extracellular electron transfer (EET) mechanism. Electrochemical tests and material analyses supported a riboflavin-mediated EET mechanism, indicating that E. faecalis biofilms deteriorate the protective oxide layer on 316L SS through EET, with riboflavin accelerating corrosion. These findings identify EET as the primary mechanism by which E. faecalis enhances MIC in the gut, providing insights into intestinal corrosion risks and guiding the development of corrosion-resistant biomaterials.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Enze Zhou
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China; Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China.
| | - Fuhui Wang
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Dake Xu
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
2
|
Shao Y, Jiang Y, Wang Y, Dong Q, Wang C, Wang Y, Xue F, Chu C, Bai J. Electrodepositing Ag on Anodized Stainless Steel for Enhanced Antibacterial Properties and Corrosion Resistance. J Funct Biomater 2025; 16:19. [PMID: 39852575 PMCID: PMC11765652 DOI: 10.3390/jfb16010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Antibacterial stainless steels have been widely used in biomedicine, food, and water treatment. However, the current antibacterial stainless steels face challenges in balancing corrosion resistance and antibacterial effectiveness, limiting their application range and lifespan. In this study, an oxide layer sealed with antibacterial Ag particles was constructed on the surface of 304 stainless steel through anodizing and electrodeposition, and the process parameters were optimized for achieving long-term antibacterial properties. The electrochemical tests demonstrated that the composite coating effectively enhanced the corrosion resistance of 304 stainless steel. The X-ray photoelectron spectroscopy analysis revealed the close binding mechanism between the Ag particles and the micropores in the oxide layer. Furthermore, the antibacterial stainless steel has an antibacterial rate of 99% against Escherichia coli (E. coli) and good biocompatibility. This study provides an effective approach for designing efficient, stable, and safe antibacterial stainless steel.
Collapse
Affiliation(s)
- Yi Shao
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Yue Jiang
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Yongfeng Wang
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Qiangsheng Dong
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
| | - Cheng Wang
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
| | - Yan Wang
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Feng Xue
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Chenglin Chu
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| | - Jing Bai
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; (Y.S.); (Y.J.); (C.W.); (F.X.)
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China; (Y.W.); (Y.W.)
| |
Collapse
|
3
|
Wieczerzak K, Klimashin FF, Sharma A, Altenried S, Maniura-Weber K, Ren Q, Michler J. Developing a High-Throughput Platform for the Discovery of Sustainable Antibacterial Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60018-60026. [PMID: 39453916 PMCID: PMC11551899 DOI: 10.1021/acsami.4c14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/27/2024]
Abstract
Healthcare-associated infections (HCAIs) pose a significant global health challenge, exacerbated by the rising threat of antimicrobial resistance (AMR). This study introduces a high-throughput platform designed to identify sustainable antibacterial surfaces, exemplified by a copper-silver-zirconium (CuAgZr) alloy library. Utilizing combinatorial synthesis and advanced characterization techniques, material libraries (MatLibs) are generated and evaluated to rapidly screen diverse alloy compositions. The results demonstrate the ability to reproducibly create alloys with significant antimicrobial properties and high hardness, making them suitable for biomedical applications. The study highlights the critical role of compositional precision in developing materials that balance mechanical strength with antibacterial efficacy. Additionally, this approach ensures significant cost-effectiveness, facilitating the identification of economically viable alloy compositions. This research underscores the potential of high-throughput materials science to expedite the discovery of sustainable solutions for reducing HCAIs and addressing AMR, signaling a leap forward in sustainable healthcare material development.
Collapse
Affiliation(s)
- Krzysztof Wieczerzak
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Fedor F. Klimashin
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Amit Sharma
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Stefanie Altenried
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Johann Michler
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| |
Collapse
|
4
|
Georgakopoulos-Soares I, Papazoglou EL, Karmiris-Obratański P, Karkalos NE, Markopoulos AP. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf B Biointerfaces 2023; 231:113584. [PMID: 37837687 DOI: 10.1016/j.colsurfb.2023.113584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The spread of bacteria through contaminated surfaces is a major issue in healthcare, food industry, and other economic sectors. The widespread use of antibiotics is not a sustainable solution in the long term due to the development of antibiotic resistance. Therefore, surfaces with antibacterial properties have the potential to be a disruptive approach to combat microbial contamination. Different methods and approaches have been studied to impart or enhance antibacterial properties on surfaces. The surface roughness and texture are inherent parameters that significantly impact the antibacterial properties of a surface. They are also directly related to the previously employed machining and treatment methods. This review article discusses the correlation between surface roughness and antibacterial properties is presented and discussed. It begins with an introduction to the concepts of surface roughness and texture, followed by a description of the most commonly utilized machining methods and surface. A thorough analysis of bacterial adhesion and growth is then presented. Finally, the most recent studies in this research area are comprehensively reviewed. The studies are sorted and classified based on the utilized machining and treatment methods, which are divided into mechanical processes, surface treatments and coatings. Through the systematic review and record of the recent advances, the authors aim to assist and promote further research in this very promising and extremely important direction, by providing a systematic review of recent advances.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Emmanouil L Papazoglou
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Panagiotis Karmiris-Obratański
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Cracow, Poland.
| | - Nikolaos E Karkalos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Angelos P Markopoulos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| |
Collapse
|
5
|
Erdogan Y, Ercan B. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties. ACS Biomater Sci Eng 2023; 9:693-704. [PMID: 36692948 PMCID: PMC9930089 DOI: 10.1021/acsbiomaterials.2c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
Collapse
Affiliation(s)
- Yasar
Kemal Erdogan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Biomedical Engineering, Isparta University
of Applied Science, Isparta 32260, Turkey
| | - Batur Ercan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey,BIOMATEN,
METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey,. Phone: +90 (312) 210-2513
| |
Collapse
|
6
|
A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the therapeutic effects of ions when released in physiological environments. Recent studies have shown that metallic ions like Ag+, Sr2+, Mg2+, Mn2+, Cu2+, Ca2+, P+5, etc., have shown promising results in drug delivery systems and regenerative medicine. These metallic ions can be loaded in nanoparticles, mesoporous bioactive glass nanoparticles (MBGNs), hydroxyapatite (HA), calcium phosphates, polymeric coatings, and salt solutions. The metallic ions can exhibit different functions in the physiological environment such as antibacterial, antiviral, anticancer, bioactive, biocompatible, and angiogenic effects. Furthermore, the metals/metalloid ions can be loaded into scaffolds to improve osteoblast proliferation, differentiation, bone development, fibroblast growth, and improved wound healing efficacy. Moreover, different ions possess different therapeutic limits. Therefore, further mechanisms need to be developed for the highly controlled and sustained release of these ions. This review paper summarizes the recent progress in the use of metallic/metalloid ions in regenerative medicine and encourages further study of ions as a solution to cure diseases.
Collapse
|
7
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
8
|
Lan Y, Yang J, Liu X, Zhao H, Zhang X, Yin X, Yang C, Yang K, Liu Y. Inhibition efficiency of 304-Cu stainless steel against oral bacterial biofilm. J Appl Biomater Funct Mater 2022; 20:22808000211065259. [PMID: 35086381 DOI: 10.1177/22808000211065259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE This study aims to evaluate the antibacterial properties of 304 Cu-bearing stainless steel (SS) with different Cu contents (0, 2.5, 4.5 wt.%) against oral biofilms of Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), and their mixture. METHODS Bacterial biofilms on the surface of 304-Cu SS were characterized by plate counting, 4', 6-diamidino-2-phenylindole (DAPI) staining with aid of sanning electron microscopy (SEM) and 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). In addition, the inhibition zone method was also employed to evaluate the antibacterial properties of 304-Cu SS. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to assess the cytotoxicity and apoptosis rate of 304-Cu SS, respectively. RESULTS 304-4.5Cu SS could effectively inhibit the attachment, formation, activity, and metabolism of bacterial biofilm, possessing the best antibacterial properties exceeding 99.9% of antibacterial rate against S. mutans, S. sanguinis, and their mixture. The diameters of inhibition zones to S. mutans and S. sanguinis on the surface of 304-4.5Cu SS were 21.7 and 14.7 mm, respectively. The results of cell experiments in vitro showed that both 304-2.5Cu SS and 304-4.5Cu SS had no evident cytotoxicity with an identical grade 1. The apoptosis rate exhibited a gradually increased tendency with increase of the Cu content in 304 SS. CONCLUSIONS 304-4.5Cu SS without cytotoxic effect on NIH3T3 cells has obvious antibacterial activity against S. mutans, S. sanguinis and their mixture. CLINICAL SIGNIFICANCE The Cu-bearing stainless steel provides a new solution to be used as oral orthodontic devices for inhibiting oral microflora imbalance and enamel demineralization.
Collapse
Affiliation(s)
- Yiliang Lan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Yang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xianbo Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hanyu Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinrui Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xueliang Yin
- School of Metallurgy, Liaoning Institute of Science and Technology, Benxi, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Yi Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
9
|
Zhang Z, Zhang XR, Jin
T, Yang CG, Sun YP, Li Q, Yang K. Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel. RARE METALS 2022; 41:559-569. [PMID: 34177195 PMCID: PMC8214840 DOI: 10.1007/s12598-021-01751-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 05/03/2023]
Abstract
Copper (Cu)-bearing stainless steel has testified its effectiveness to reduce the risk of bacterial infections. However, its antibacterial mechanism is still controversial. Therefore, three 430 ferritic stainless steels with different Cu contents are selected to conduct deeper research by the way of bacterial inactivation from two aspects of material and biology. Hereinto, electrochemical and antibacterial results show that the increase in Cu content simultaneously improves the corrosion resistance and antibacterial property of 430 stainless steel. In addition, it is found that Escherichia coli (E. coli) on the surface 430 Cu-bearing stainless steel by the dry method of inoculation possesses a rapid inactivation ability. X-ray photoelectron spectroscopy (XPS) aids with ion chelation experiments prove that Cu (I) plays a more crucial role in the contact-killing efficiency than Cu (II), resulting from more production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Zhuang Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036 China
| | - Xin-Rui Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
| | - Tao Jin
- Department of Nephrology, Shenyang Chest Hospital, Shenyang, 110044 China
| | - Chun-Guang Yang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
| | - Yu-Peng Sun
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
| | - Qi Li
- College of Chemistry, Liaoning University, Shenyang, 110036 China
| | - Ke Yang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
| |
Collapse
|
10
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
11
|
Yin H, Wu Y, Li X, Zhang G, Zhang P, Li W, Zhao A. Morphology and Antibacterial Properties of Copper Precipitates in Ferrite Stainless Steel. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 2021; 30:711-719. [PMID: 33424212 PMCID: PMC7781434 DOI: 10.1007/s11665-020-05374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
The size of copper precipitates is the main factor affecting the antibacterial performance of antibacterial stainless steel. To study the mechanism of copper precipitate growth in ferritic stainless steel, the shape coefficient η and average specific interfacial energy of copper precipitate σ ¯ were calculated. The growth process of copper precipitate was observed by atomic probe tomography and transmission electron microscope. The results show that the shape coefficient of copper precipitate was 3.053, and the average specific interfacial energy was σ ¯ = 0.4832 - 0.1652 × 10 - 3 T . The increase in the aging time resulted in an increase in the size of copper precipitates and a decrease in the number density. In addition, with the increase in the aspect ratio, the shape of the precipitated phase changed from an initial spherical shape to ellipsoid shape and finally to a rod shape. The increase in the annealing time enhanced the antibacterial activity of the tested steel until almost 100% of the bacteria were killed. Thus, the antibacterial performance is closely related to the size and total surface area per unit area of the precipitate.
Collapse
Affiliation(s)
- Hongxiang Yin
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Yi Wu
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Xiang Li
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Guanzhen Zhang
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Pengpai Zhang
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Wenbo Li
- Metal and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081 China
| | - Aimin Zhao
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083 China
| |
Collapse
|
12
|
Effects of Ag-Rich Nano-Precipitates on the Antibacterial Properties of 2205 Duplex Stainless Steel. METALS 2020. [DOI: 10.3390/met11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The effects of the addition of silver on the microstructural variation and antibacterial performance of 2205 duplex stainless steel after solution and aging treatment were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and antibacterial testing. The microstructure showed that 2205Ag is composed of a ferrite (α) + austenite (γ) duplex phase and Ag-rich nano-precipitates (Ag-NPs). The morphology of the Ag-NPs varied from spherical to polygonal after aging treatment at 450 °C for 4 h. These precipitates were identified as face-centered-cubic structures with a lattice parameter of a = 0.354 nm and a mismatch of δ = 0.84% relative to the austenite matrix. Notably, 2205Ag with polygonal Ag-NPs exhibited excellent antibacterial properties that were superior to those of 2205Ag with spherical Ag-NPs.
Collapse
|
13
|
Zhang W, Li P, Shen G, Mo X, Zhou C, Alexander D, Rupp F, Geis-Gerstorfer J, Zhang H, Wan G. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioact Mater 2020; 6:975-989. [PMID: 33102940 PMCID: PMC7560602 DOI: 10.1016/j.bioactmat.2020.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Appropriately adapted comprehensive mechanical properties, degradation behavior and biocompatibility are prerequisites for the application of Zn-based biodegradable implants. In this study, hot-extruded Zn-0.5Cu-xFe (x = 0.1, 0.2 and 0.4 wt%) alloys were fabricated as candidates for biodegradable materials for guided bone regeneration (GBR) membranes. The hot-extrusion process and Cu alloying were expected mostly to enhance the mechanical properties, and the Fe alloying was added mainly for regulating the degradation. The microstructure, mechanical properties and in vitro degradation behavior were systematically investigated. The ZnCuFe alloys were composed of a Zn matrix and FeZn13 phase. With increasing Fe content, a higher FeZn13 phase precipitation with larger particles was observed. Since elongation declined significantly until fracture with increasing Fe content up to 0.4 wt%, the ZnCuFe (0.2 wt%) alloy achieved a good balance between mechanical strength and ductility, with an ultimate tensile strength of 202.3 MPa and elongation at fracture of 41.2%. Moreover, the addition of Fe successfully accelerated the degradation of ZnCuFe alloys. The ZnCuFe (0.2 wt%) alloy showed relatively uniform corrosion in the long-term degradation test. Furthermore, extracts of the ZnCuFe (0.2 wt%) alloy showed no apparent cytotoxic effects against L929 fibroblasts, Saos-2 osteoblasts or TAg periosteal cells. The ZnCuFe (0.2 wt%) alloy exhibited the potential to inhibit bacterial adhesion of Streptococcus gordonii and mixed oral bacteria. Our study provides evidence that the ZnCuFe (0.2 wt%) alloy can represent a promising material for the application as a suitable GBR membrane.
Collapse
Affiliation(s)
- Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ping Li
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen, 72076, Germany
| | - Gang Shen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoshan Mo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chao Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen, 72076, Germany
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen, 72076, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen, 72076, Germany.,Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen, 72076, Germany
| | - Haijun Zhang
- Department of Interventional and Vascular Surgery, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China.,National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic & Development Zone, Dezhou, Shandong, 251100, China
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
14
|
Formation of 2D calcium hydroxyapatite on stainless steel modified with a TiN sublayer. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Strategies for improving antimicrobial properties of stainless steel. MATERIALS 2020; 13:ma13132944. [PMID: 32630130 PMCID: PMC7372344 DOI: 10.3390/ma13132944] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
In this review, strategies for improving the antimicrobial properties of stainless steel (SS) are presented. The main focus given is to present current strategies for surface modification of SS, which alter surface characteristics in terms of surface chemistry, topography and wettability/surface charge, without influencing the bulk attributes of the material. As SS exhibits excellent mechanical properties and satisfactory biocompatibility, it is one of the most frequently used materials in medical applications. It is widely used as a material for fabricating orthopedic prosthesis, cardiovascular stents/valves and recently also for three dimensional (3D) printing of custom made implants. Despite its good mechanical properties, SS lacks desired biofunctionality, which makes it prone to bacterial adhesion and biofilm formation. Due to increased resistance of bacteria to antibiotics, it is imperative to achieve antibacterial properties of implants. Thus, many different approaches were proposed and are discussed herein. Emphasis is given on novel approaches based on treatment with highly reactive plasma, which may alter SS topography, chemistry and wettability under appropriate treatment conditions. This review aims to present and critically discuss different approaches and propose novel possibilities for surface modification of SS by using highly reactive gaseous plasma in order to obtain a desired biological response.
Collapse
|
16
|
He L, Cui Y, Zhang C. The corrosion resistance, cytotoxicity, and antibacterial properties of lysozyme coatings on orthodontic composite arch wires. RSC Adv 2020; 10:18131-18137. [PMID: 35517200 PMCID: PMC9053745 DOI: 10.1039/d0ra02988b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: The corrosion resistance of new orthodontic composite arch wires (CAWs), which have excellent mechanical properties in a simulated oral environment, must be improved. This study explored the susceptibility to corrosion, in vitro cytotoxicity, and antibacterial properties of lysozyme-coated CAWs. Methods: Lysozyme coating of laser-welded CAW surfaces was prepared by liquid phase deposition. Four groups of CAW specimens were prepared: uncoated CAWs and CAWs coated with 20, 40, and 60 g L−1 lysozyme. The surface morphology of the lysozyme coatings was characterized by atomic force microscopy. The samples were immersed in artificial saliva (AS) for 2 weeks, and corrosion morphology was then observed by scanning electron microscopy. Corrosion behavior was characterized according to weight loss and electrochemical properties. The cytotoxicity and antibacterial properties of lysozyme-coated CAWs were assessed by cell counting kit-8 assay and a live/dead bacterial test, respectively. Results: Surfaces in the three lysozyme coating groups exhibited film-like deposition, the thickness of which increased with the lysozyme concentration. Surface pitting and copper ion precipitation decreased with increasing lysozyme concentration in coatings. The corrosion tendency declined as the corrosion and pitting potentials decreased. The corrosion morphology and electrochemical parameters together indicated that lysozyme coatings increased corrosion resistance. The coatings also reduced cytotoxicity to L-929 cells and increased anti-Staphylococcus aureus ability. Conclusions: Lysozyme coating of CAW surfaces by liquid phase deposition improved the corrosion resistance of CAWs. The protective coatings improved biocompatibility and endowed the CAW surfaces with certain degrees of anti-Staphylococcus aureus activity. Different lysozyme concentrations had different protective effects, with 40 g L−1 maybe being the ideal lysozyme concentration for CAW coatings. The corrosion resistance of new orthodontic composite arch wires (CAWs), which have excellent mechanical properties in a simulated oral environment, must be improved.![]()
Collapse
Affiliation(s)
- Longwen He
- Orthodontic Department, Stomatological Hospital, Southern Medical University Guangzhou 510280 China +86 18565578907
| | - Ye Cui
- Orthodontic Department, Stomatological Hospital, Southern Medical University Guangzhou 510280 China +86 18565578907
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University Guangzhou 510280 China +86 18565578907
| |
Collapse
|
17
|
Wen L, Wanpei H, Qian L, Xu L, Rongsheng C, Hongwei N, Weiting Z. Antibacterial properties of Ag/TiO 2/PDA nanofilm on anodized 316L stainless steel substrate under illumination by a normal flashlight. JOURNAL OF MATERIALS SCIENCE 2020; 55:9538-9550. [PMID: 32367893 PMCID: PMC7197247 DOI: 10.1007/s10853-020-04610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The demand of medical materials for rapid and efficient elimination of bacteria has seen a dramatic surge over the past few years. In this study, antibacterial nanofilms with reactive oxygen species were generated by photocatalysis. To prepare these nanofilms, Ag and amorphous TiO2 nanoparticles decorated on polydopamine (PDA) were coated on three-dimensional (3D) nanopore arrays, which was fabricated on a substrate of anodized stainless steel. All the antibacterial tests were conducted with a household flashlight, which may be considered as a practical approach for antibacterial materials. The photoelectrochemical property of the 3D Ag/TiO2/PDA nanofilm on 316L stainless steel (Ag/TiO2/PDA SS) was about 15 times higher than that of the annealed Ag/TiO2/PDA SS, and consequently, it exhibited higher antibacterial activity. The enhanced photoelectrochemical property is attributed to the successful separation of electrons (amorphous TiO2) and holes (Ag nanoparticles). Further, when a plate containing 3D Ag/TiO2/PDA SS was irradiated with visible light just for 10 min, it immediately destroyed the bacteria in 106 CFU/mL without any bacterial colony. After five weeks, there were still no bacterial colonies in the plate corresponding to Ag/TiO2/PDA SS under visible light, while Ag/TiO2/PDA SS in dark had a negligible effect on the bacteria, i.e., the antibacterial mechanism through direct contact and ion dissolution was not efficient. The excellent antibacterial properties of 3D Ag/TiO2/PDA SS illuminated by flashlight provides an efficient, facile, and cost-effective technique for the development of antibacterial medical materials to meet the increasing demand of eliminating bacterial infections.
Collapse
Affiliation(s)
- Li Wen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Hu Wanpei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Liu Qian
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Liang Xu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Chen Rongsheng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Ni Hongwei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| | - Zhan Weiting
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081 China
- Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081 China
| |
Collapse
|