1
|
Asadullah S, Ahmed M, Sarfraz S, Zahra M, Asari A, Wahab NHA, Sobia F, Iqbal DN. Polyimide biocomposites coated with tantalum pentoxide for stimulation of cell compatibility and enhancement of biointegration for orthopedic implant. Heliyon 2023; 9:e23284. [PMID: 38144283 PMCID: PMC10746511 DOI: 10.1016/j.heliyon.2023.e23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Orthopedic implants are an important tool in the treatment of musculoskeletal conditions and helped many patients to improve their quality of life. Various inorganic-organic biocomposites have been broadly investigated particularly in the area of load-bearing orthopedic/dental applications. Polyimide (PI) is a promising organic material and shows excellent mechanical properties, biocompatibility, bio-stability, and its elastic modulus is similar to human bone but it lacks bioactivity, which is very important for cell adhesion and ultimately for bone regeneration. In this research, tantalum pentoxide (Ta2O5) coating was prepared on the surface of PI by polydopamine (PDA) bonding. The results showed that Ta2O5 was evenly coated on the surface of PI, and with the concentration of Ta2O5 in the PDA suspension increased, the content of Ta2O5 particles on the surface of PI increased significantly. In addition, the Ta2O5 coating significantly increased the roughness and hydrophilicity of the PI matrix. Cell experiments showed that PI surface coating Ta2O5 could promote the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived stromal cells (BMSCs). The results demonstrated that fabricating Ta2O5 coating on the surface of PI through PDA bonding could improve the biocompatibility as well as bioactivity of PI, and increase the application potential of PI in the field of bone repair materials.
Collapse
Affiliation(s)
- Syed Asadullah
- Chandbagh College Kot Jilani, Muridke-Sheikhupura Road, Muridke, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore-54770, Pakistan
| | - Sadaf Sarfraz
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nurul Huda Abdul Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Farah Sobia
- Punjab Food Authority, 83-C, Muslim Town, Lahore-Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore-Pakistan
| |
Collapse
|
2
|
Zhang X, Guan S, Qiu J, Qiao Y, Qian S, Tan J, Yeung KWK, Liu X. Atomic Layer Deposition of Tantalum Oxide Films on 3D-Printed Ti6Al4V Scaffolds with Enhanced Osteogenic Property for Orthopedic Implants. ACS Biomater Sci Eng 2023. [PMID: 37378535 DOI: 10.1021/acsbiomaterials.3c00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
There is an evident advantage in personalized customization of orthopedic implants by 3D-printed titanium (Ti) and its alloys. However, 3D-printed Ti alloys have a rough surface structure caused by adhesion powders and a relatively bioinert surface. Therefore, surface modification techniques are needed to improve the biocompatibility of 3D-printed Ti alloy implants. In the present study, porous Ti6Al4V scaffolds were manufactured by a selective laser melting 3D printer, followed by sandblasting and acid-etching treatment and atomic layer deposition (ALD) of tantalum oxide films. SEM morphology and surface roughness tests confirmed that the unmelted powders adhered on the scaffolds were removed by sandblasting and acid-etching. Accordingly, the porosity of the scaffold increased by about 7%. Benefiting from the self-limitation and three-dimensional conformance of ALD, uniform tantalum oxide films were formed on the inner and outer surfaces of the scaffolds. Zeta potential decreased by 19.5 mV after depositing tantalum oxide films. The in vitro results showed that the adhesion, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells on modified Ti6Al4V scaffolds were significantly enhanced, which may be ascribed to surface structure optimization and the compatibility of tantalum oxide. This study provides a strategy to improve the cytocompatibility and osteogenic differentiation of porous Ti6Al4V scaffolds for orthopedic implants.
Collapse
Affiliation(s)
- Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shiwei Guan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Cixi Center of Biomaterials Surface Engineering, Ningbo 315300, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R. 999077, P.R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- Cixi Center of Biomaterials Surface Engineering, Ningbo 315300, China
| |
Collapse
|
3
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
4
|
Wang X, Zhou K, Li Y, Xie H, Wang B. Preparation, modification, and clinical application of porous tantalum scaffolds. Front Bioeng Biotechnol 2023; 11:1127939. [PMID: 37082213 PMCID: PMC10110962 DOI: 10.3389/fbioe.2023.1127939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Porous tantalum (Ta) implants have been developed and clinically applied as high-quality implant biomaterials in the orthopedics field because of their excellent corrosion resistance, biocompatibility, osteointegration, and bone conductivity. Porous Ta allows fine bone ingrowth and new bone formation through the inner space because of its high porosity and interconnected pore structure. It contributes to rapid bone integration and long-term stability of osseointegrated implants. Porous Ta has excellent wetting properties and high surface energy, which facilitate the adhesion, proliferation, and mineralization of osteoblasts. Moreover, porous Ta is superior to classical metallic materials in avoiding the stress shielding effect, minimizing the loss of marginal bone, and improving primary stability because of its low elastic modulus and high friction coefficient. Accordingly, the excellent biological and mechanical properties of porous Ta are primarily responsible for its rising clinical translation trend. Over the past 2 decades, advanced fabrication strategies such as emerging manufacturing technologies, surface modification techniques, and patient-oriented designs have remarkably influenced the microstructural characteristic, bioactive performance, and clinical indications of porous Ta scaffolds. The present review offers an overview of the fabrication methods, modification techniques, and orthopedic applications of porous Ta implants.
Collapse
Affiliation(s)
| | | | | | - Hui Xie
- *Correspondence: Hui Xie, ; Benjie Wang,
| | | |
Collapse
|
5
|
Băilă DI, Păcurar R, Savu T, Zaharia C, Trușcă R, Nemeș O, Górski F, Păcurar A, Pleșa A, Sabău E. Mechanical and Wetting Properties of Ta 2O 5 and ZnO Coatings on Alloy Substrate of Cardiovascular Stents Manufactured by Casting and DMLS. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5580. [PMID: 36013717 PMCID: PMC9412485 DOI: 10.3390/ma15165580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
In the last years, additive manufacturing technologies have been developed, especially direct metal laser sintering, and used in the dental and medical implant domains. Cardiovascular stents have evolved from bioinert, bare metal cages to biomimetic devices that promote tissue regeneration or healing. In this paper, comparisons concerning mechanical properties between Co-Cr alloy and cast 304L stainless steel were realized using FEM analysis, necessary for manufacturing cardiovascular stents by DMLS technology using Co-Cr alloy. The purpose of this paper consists of the evaluation of the contact angle at the interface of the Co-Cr alloy manufactured by DMLS, respectively, cast stainless steel 304L, and thin film deposition realized by the e-gun method (Ta2O5 and ZnO). Scanning electronic microscopy SEM and EDX techniques were employed for morphological investigation of the sintered samples manufactured by the DMLS process. They were also used for semi-quantitative and qualitative chemical and metallographic analyses. The e-gun coating was used to obtain thin films with the nanometer order of Ta2O5 and ZnO with a protective role to improve the corrosion resistance, roughness, and antiseptic role.
Collapse
Affiliation(s)
- Diana-Irinel Băilă
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Blv. Splaiul Independenței, No. 313, Sector 6, 060042 Bucharest, Romania
| | - Răzvan Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Tom Savu
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, Blv. Splaiul Independenței, No. 313, Sector 6, 060042 Bucharest, Romania
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Blv. Splaiul Independenței, No. 313, Sector 6, 060042 Bucharest, Romania
| | - Ovidiu Nemeș
- Department of Environmental Engineering and Sustainable Development Entrepreneurship, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Filip Górski
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Ancuța Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Alin Pleșa
- Department of Mechatronics and Machine Dynamics, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Emilia Sabău
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Fernández-Lizárraga M, García-López J, Rodil SE, Ribas-Aparicio RM, Silva-Bermudez P. Evaluation of the Biocompatibility and Osteogenic Properties of Metal Oxide Coatings Applied by Magnetron Sputtering as Potential Biofunctional Surface Modifications for Orthopedic Implants. MATERIALS 2022; 15:ma15155240. [PMID: 35955174 PMCID: PMC9369574 DOI: 10.3390/ma15155240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Biomaterials with adequate properties to direct a biological response are essential for orthopedic and dental implants. The surface properties are responsible for the biological response; thus, coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have been suggested as promising for orthopedic and dental implants. However, a comparative study among them is still missing to select the most promising for bone-growth-related applications. In this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffraction, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion, viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem cells plated on the coatings were measured to define the biological response. Results confirmed that all coatings were biocompatible. However, a more significant number of cells and proliferative cells were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5 seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time than TiO2 and ZrO2.
Collapse
Affiliation(s)
- Mariana Fernández-Lizárraga
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa María Ribas-Aparicio
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (R.M.R.-A.); (P.S.-B.)
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
- Correspondence: (R.M.R.-A.); (P.S.-B.)
| |
Collapse
|
7
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
8
|
Asadullah S, Mei S, Yang K, Hu X, Wang F, Yu B, Wu Z, Wei J. Tantalum oxide submicro-particles into microporous coating on polyimide possessing antibacterial property and inducing cellular response for orthopedic application. J Mech Behav Biomed Mater 2021; 124:104800. [PMID: 34507034 DOI: 10.1016/j.jmbbm.2021.104800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
Surface characteristics of the biomaterials have significant effects on response of osteoblast and formation of new bone tissue. In this study, to improve the bio-performance of polyimide (PI) as an implantable material for bone substitute, concentrated sulfuric acid suspension with tantalum (V) oxide (vTO) submicro-particles of 10w% (PIST10) and 15w% (PIST15) was utilized to modify PI surface. After sulfonation, microporous coatings including vTO particles were created on PI (PIST10 and PIST15) while microporous coating without vTO particles was also created on PI (PIS). Results showed that surface roughness, hydrophilicity and protein adsorption of PIST15 was remarkably higher than PIST10 and PIS. Furthermore, after soaking into simulated body fluid (SBF), no apatite mineralization on PIS was found, while PIST15 with high vTO content exhibited better apatite mineralization compared with PIST10. Moreover, PIS showed low antibacterial property, while PIST15 with high vTO content revealed better antibacterial property compared with PIST10. In addition, cellular response (such as adhesion, proliferation and alkaline phosphatase activity) of bone marrow stromal cells (BMSC) of rat to PIST15 was higher than PIST10 and PIS. In conclusion, the microporous coating of PIST15 including vTO submicro-particles possessed good antibacterial property and bioactivity, which significantly promoted the responses of BMSC. Therefore, PIST15 has potential application prospects for bone substitute.
Collapse
Affiliation(s)
- Syed Asadullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Kong Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610064, China.
| | - Xinglong Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
9
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Băilă DI, Vițelaru C, Trușcă R, Constantin LR, Păcurar A, Parau CA, Păcurar R. Thin Films Deposition of Ta 2O 5 and ZnO by E-Gun Technology on Co-Cr Alloy Manufactured by Direct Metal Laser Sintering. MATERIALS 2021; 14:ma14133666. [PMID: 34209275 PMCID: PMC8269889 DOI: 10.3390/ma14133666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022]
Abstract
In recent years in the dental field, new types of materials and techniques for the manufacturing of dental crowns and analog implants have been developed to improve the quality of these products. The objective of this article was to perform the surface characterization and determine the properties of Co-Cr alloy samples fabricated by the direct metal laser sintering (DMLS) process and coated by e-gun technology with thin films of Ta2O5 and ZnO. Both oxides are frequently used for dental products, in pharmacology, cosmetics, and medicine, due to their good anticorrosive, antibacterial, and photo-catalytic properties. Following the deposition of thin oxide films on the Co-Cr samples fabricated by DMLS, a very fine roughness in the order of nanometers was obtained. Thin films deposition was realized to improve the hardness and the roughness of the Co-Cr parts fabricated by the DMLS process. Surface characterization was performed using SEM-EDS, AFM, and XRD. AFM was used to determine the roughness of the samples and the nanoindentation curves were determined to establish the hardness values and modulus of elasticity.
Collapse
Affiliation(s)
- Diana-Irinel Băilă
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, Polytechnic University of Bucharest, Splaiul Independenţei nr. 313, Sector 6, 060042 Bucharest, Romania;
- Correspondence: (D.-I.B.); (R.P.)
| | - Cătălin Vițelaru
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Roxana Trușcă
- Department of Manufacturing Engineering, Faculty of Industrial Engineering and Robotics, Polytechnic University of Bucharest, Splaiul Independenţei nr. 313, Sector 6, 060042 Bucharest, Romania;
| | - Lidia Ruxandra Constantin
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Ancuța Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics, Management and Production Management, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania;
| | - Constantina Anca Parau
- National Institute for Research and Development in Optoelectronics, Atomiștilor 409, 077125 Măgurele, Romania; (C.V.); (L.R.C.); (C.A.P.)
| | - Răzvan Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics, Management and Production Management, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania;
- Correspondence: (D.-I.B.); (R.P.)
| |
Collapse
|
11
|
Cai C, Wang X, Li B, Dong K, Shen Y, Li Z, Shen L. Fabrication of Hydroxyapatite/Tantalum Composites by Pressureless Sintering in Different Atmosphere. ACS OMEGA 2021; 6:12831-12840. [PMID: 34056434 PMCID: PMC8154243 DOI: 10.1021/acsomega.1c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 05/02/2023]
Abstract
The effect of sintering atmosphere (air and Ar) and temperature (1100, 1200, 1300 °C) on the microstructure, mechanical properties, and bioactivity of hydroxyapatite/tantalum (HA/Ta) composites were systematically investigated by pressureless sintering of the mixture of HA and Ta powders. It shows that the sintering atmosphere greatly impacts the phase composition and microstructure of the HA/Ta composites. The higher diffusion of atoms promotes shrinkage and causes deeper reaction fusion between the HA matrix and Ta, which improved the interfacial binding of the HA/Ta composites. The refined grain structure and improved interfacial binding obtained within the Ar atmosphere compared to the air atmosphere benefit the mechanical properties. The maximum bending strength and shrinkage observed for the composites sintered at 1300 °C in the Ar atmosphere are 27.24 MPa and 6.65%, respectively. The cell counting kit-8 (CCK-8) method was used to investigate the in vitro cytocompatibility of HA/Ta composites. The results revealed that the HA/Ta composites sintered with different conditions have no cytotoxicity. The simulated body fluid (SBF) soaking results showed that all of the studied composites possess desirable bioactivity, as demonstrated by their ability to form calcium-deficient carbonate apatite layer on the surfaces. For composites sintered at 1300 °C, the surface apatite layer coverage of the composites obtained in the Ar atmosphere was increased by 139.7% than the ones obtained in air, which confirmed an enhanced bioactive mineralization ability. The results indicated that the HA/Ta composites sintered at 1300 °C in Ar possess desirable mechanical properties and bioactivity. This work opens up the new possibility for preparing HA-based composites and is of great value in biomedical applications.
Collapse
Affiliation(s)
- Cuiling Cai
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xinyu Wang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan
Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong
Laboratory, Xianhu Hydrogen
Valley, Foshan 528200, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Binbin Li
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Kuo Dong
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Ying Shen
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi Li
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Linyi Shen
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Wuhan 430070, China
- Biomedical
Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
12
|
Pang Z, Pan Z, Ma M, Xu Z, Mei S, Jiang Z, Yin F. Nanostructured Coating of Non-Crystalline Tantalum Pentoxide on Polyetheretherketone Enhances RBMS Cells/HGE Cells Adhesion. Int J Nanomedicine 2021; 16:725-740. [PMID: 33542627 PMCID: PMC7853447 DOI: 10.2147/ijn.s286643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.
Collapse
Affiliation(s)
- Zhiying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| |
Collapse
|
13
|
Mei S, Wang F, Hu X, Yang K, Xie D, Yang L, Wu Z, Wei J. Construction of a hierarchical micro & nanoporous surface for loading genistein on the composite of polyetheretherketone/tantalum pentoxide possessing antibacterial activity and accelerated osteointegration. Biomater Sci 2021; 9:167-185. [PMID: 33165465 DOI: 10.1039/d0bm01306d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous tantalum pentoxide (NTP) particles with a pore size of about 10 nm were synthesized and blended with polyetheretherketone (PEEK) to fabricate a PEEK/NTP composite (PN). Subsequently, PN was treated by concentrated sulfuric acid to create a microporous surface (pore size of around 2 μm) on sulfonated PN (SPN), which formed a hierarchical micro & nanoporous surface. Compared with PN, the porous surface of SPN exhibited higher roughness, hydrophilicity, and surface energy. In addition, genistein (GT) was loaded into the porous surface of SPN (SPNG), which showed high GT loading capacity and sustained release of GT into phosphate buffered saline (PBS). Moreover, SPNG revealed excellent antibacterial activity, which inhibited bacterial (E. coli and S. aureus) growth in vitro due to the synergistic effects of both sulfonic acid (SO3H) groups and the sustained release of GT. Compared with PN, SPN significantly improved the adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells in vitro. Moreover, compared with SPN, SPNG further enhances the cell responses. Compared with PN, SPN remarkably improved bone formation and osteointegration in vivo. Furthermore, compared with SPN, SPNG further enhanced the osteointegration. In short, SPNG with a micro & nanoporous surface, SO3H groups, and the sustained release of GT exhibited antibacterial activity and accelerated osteointegration, which would have tremendous potential as drug-loaded implants for bone substitute.
Collapse
Affiliation(s)
- Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Grishchenko DN, Slobodyuk AB, Kuryavyi VG, Medkov MA. Tantalum-Containing Bioactive Glass-Ceramics: A Mechanism of Suppression of the Biological Activity of the 45S5 Bioglass by Doping with Ta2O5. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Maleki-Ghaleh H, Khalil-Allafi J, Horandghadim N, Keikhosravani P, Hosseini MG. Structural characterization, mechanical, and electrochemical studies of hydroxyapatite-titanium composite coating fabricated using electrophoretic deposition and reaction bonding process. J Biomed Mater Res B Appl Biomater 2019; 108:2119-2130. [PMID: 31886952 DOI: 10.1002/jbm.b.34551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
In the present work, hydroxyapatite (HA)-titanium (Ti, 20 wt%) composite coating was coated on NiTi alloy substrate by EPD (electrophoretic deposition) process. Before applying the coating, the HA powder was composed with Ti powder using a ball milling process. Influence of the ball milling time on morphology and phase structure of HA-Ti powder was evaluated using TEM and XRD analysis. After composing the HA particles with Ti, the HA-Ti composite powders were coated on the NiTi substrate by the EPD process in an n-butanol medium for 2 min, with the applied voltage of 60 V. XRD and SEM analysis were utilized to evaluate the phase analysis and morphology of the coatings. Mechanical and electrochemical characteristic of the coatings were also assessed using the micro-indentation, micro-scratch, and polarization tests, respectively. The results revealed that the milling process time had a significant influence on reaction bonds and optimum mixing time was 4 hr. Micro-hardness of the HA-Ti composite coating (304 HV) was substantially higher than the HA coating (72 HV). Also, as the HA coating was composed with Ti particles, the amount of force (in the micro-scratch test) required for detaching the coating from the NiTi substrate increased from 7.1 to 17.8 N. The polarization results showed that the HA-Ti composite coating had a higher electrochemical resistance compared with the HA coating. Corrosion resistance of the NiTi alloy coated with HA increased from 133 kΩ.cm2 to 2,720 kΩ.cm2 after composed with the Ti particles.
Collapse
Affiliation(s)
- Hossein Maleki-Ghaleh
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Nazila Horandghadim
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Pardis Keikhosravani
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mir Ghasem Hosseini
- Department of Physical Chemistry, Electrochemistry Research Laboratory, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Department of Materials Science and Nanotechnology, Near East University, North Cyprus, Mersin, Turkey
| |
Collapse
|