1
|
Zhang W, Xu J, Wang T, Lin X, Wang F. Graphdiyne as an emerging sensor platform: Principles, synthesis and application. J Adv Res 2024:S2090-1232(24)00468-5. [PMID: 39414227 DOI: 10.1016/j.jare.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Graphdiyne (GDY) is a kind of carbon material, which has highly delocalized π-conjugated system and feasible green synthesis. Nowadays, the use of GDY substrate as a sensing platform has become a new research hotspot and is rapidly developing. However, its application as a sensor is still relatively overlook compared to other fields. AIM OF REVIEW This study is for the purpose of making researchers have a complete comprehensive understanding of GDY and its associated sensing platforms. KEY SCIENTIFIC CONCEPTS OF REVIEW This study introduces the structure, unique characteristics, and synthesis progress of GDY material. Moreover, the article systematically summarizes the improvement of GDY-based sensors in life, health and environmental detection. It also discusses the opportunities and challenges of designing high-performance GDY-based sensing platforms with the assistance of machine learning and theoretical calculate. It has essential scientific and practical meaning for accelerating the development of sensing platforms which base on GDY, triggering unknown phenomena and knowledge of material research, and initiating unlimited space for scientific innovation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Tian Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Fu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, China.
| |
Collapse
|
2
|
Sayin S. A highly selective and sensitive fluorescence probe for dopamine determination based on a bisquinoline-substituted calix[4]arene carboxylic acid derivative. J Biomol Struct Dyn 2023; 42:13688-13696. [PMID: 37938142 DOI: 10.1080/07391102.2023.2278076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Dopamine (DA) at normal levels in the human body exhibits a high potential for maintaining a proper neuron network. However, their abnormalities in humans can bring out aggressive disorders such as Schizophrenia, hypertension, Tourette's syndrome, Alzheimer's disease, bipolar depression, Parkinson's disease, drug addiction and attention-deficit hyperactivity diseases. Hence, in this study, a bis-quinoline-substituted calix[4] arene carboxylic acid derivative (Quin-Calix-CO2H) at cone conformation was developed as an effective fluorescent sensor for the detection of a catecholamine neurotransmitter (dopamine). The structure of Quin-Calix-CO2H was confirmed using 1H-NMR, 13C-NMR, ESI-MS and elemental analysis techniques. The calixarene-based fluorescent sensor (Quin-Calix-CO2H) has shown fluorescence emission at 404 nm under the excitation of 270 nm. Further, biomolecules binding property of Quin-Calix-CO2H against various biomolecules such as L-cysteine (L-Cys), α-D-glucose (D-Glu), (+)-sodium-L-ascorbate (SAA), urea (UR), L-alanine (L-Ala) and dopamine (DA) exhibited that the fluorescent sensor enables selectively and sensitively detection for DA with a remarkable affinity. The probe Quin-Calix-CO2H has shown fluorescence quenching towards DA concentration ranging from 0 to 4.0 µM with a very low limit of detection (LOD) of 88.5 nmol L-1. In addition, the binding constant and stoichiometry as well as the mechanism of quenching have been also determined from the fluorescence data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Environmental Engineering, Giresun University, Giresun, Turkey
| |
Collapse
|
3
|
Liu X, Yu W, Mu X, Zhang W, Wang X, Gu Q. A fluorescence probe based on carbon dots for determination of dopamine utilizing its self-polymerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122112. [PMID: 36395584 DOI: 10.1016/j.saa.2022.122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A rapid and sensitive strategy for sensing dopamine (DA) was proposed based on the fluorescence quenching effects of polydopamine (PDA) on carbon dots (CDs). The green-emission fluorescence CDs were synthesized via a facile one-pot hydrothermal approach by employing p-phenylenediamine and ethanol as reagents. In alkaline environments, DA would polymerize to form PDA on surface of CDs, resulting in the fluorescence quenching of the detection system owing to the effects of fluorescence resonance energy transfer (FERT) and inner filter effect (IFE). The proposed fluorescence probe exhibits good selectivity and sensitivity to DA in the concentration range of 0.1-15 μM, with a limit of detection (LOD) of 37 nM. Results of detecting DA in serum samples indicate the broad potential of the proposed strategy for future application in diagnosis of DA-related diseases.
Collapse
Affiliation(s)
- Xin Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Yu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Xiaowei Mu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Qiang Gu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
4
|
Determination of Curcumin on Functionalized Carbon Nano Tube Modified Electrode and Probing its Interaction with DNA and Copper Ion. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Aqsa Batool Bukhari S, Nasir H, Sitara E, Akhtar T, Ramazan Oduncu M, Iram S, Pan L. Efficient electrochemical detection of dopamine with carbon nanocoils and copper tetra(p-methoxyphenyl)porphyrin nanocomposite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Bai Q, Luo H, Yi X, Shi S, Wang L, Liu M, Du F, Yang Z, Sui N. Nitrogen-Doped Graphdiyne Quantum-dots as an Optical-Electrochemical sensor for sensitive detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Li J, Wang Y, Zang J, Zhou Y, Su S, Zou Q, Yuan Y. A film electrode composed of micron-diamond embedded in phenolic resin derived amorphous carbon for electroanalysis of dopamine in the presence of uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Barbosa P, Mastelaro V, Vieira E, Do Carmo D. β‐cyclodextrin PAMAM dendrimer surface doped with silver and hexacyanoferrate (III) and its applications for dopamine detection in synthetic samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
11
|
Li J, Wang Y, Li R, Lu B, Yuan Y, Gao H, Song S, Zhou S, Zang J. Amorphous Carbon Film with Self‐modified Carbon Nanoparticles Synthesized by Low Temperature Carbonization of Phenolic Resin for Simultaneous Sensing of Dopamine and Uric Acid. ELECTROANAL 2021. [DOI: 10.1002/elan.202100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jilong Li
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Rushuo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Bowen Lu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yungang Yuan
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Hongwei Gao
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shuyu Zhou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| |
Collapse
|
12
|
Xiao J, Wang H, Li C, Deng K, Li X. A simple dopamine sensor using graphdiyne nanotubes and shortened carbon nanotubes for enhanced preconcentration and electron transfer. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
14
|
Zuaznabar-Gardona JC, Fragoso A. Electrochemistry of redox probes at thin films of carbon nano-onions produced by thermal annealing of nanodiamonds. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|