1
|
Moayedi M, Ahmadi T, Nekouie V, Dehaghani MT, Shojaei S, Benisi SZ, Bakhsheshi-Rad HR. Preparation and assessment of polylactic acid-curcumin nanofibrous wound dressing containing silver nanoparticles for burn wound treatment. Burns 2025; 51:107442. [PMID: 40088691 DOI: 10.1016/j.burns.2025.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
This study aims to produce and evaluate nanofibrous wound dressings through the electrospinning method, utilizing polylactic acid (PLA), curcumin (Cur), and silver nanoparticles (AgNPs). For this purpose, five types of wound dressings with PLA, PLA+Cur, PLA+Cur+ 1 %AgNPs, PLA+Cur+ 2 %AgNPs and PLA+Cur+ 3 %AgNPs were produced using the electrospinning method. Analysis of the Fourier transform infrared spectroscopy and scanning electron microscopic observations indicated successful fabrication, with nanometer diameters achieved in all electrospun samples. Examination of water absorption of wound dressings revealed that over 40 h the electrospun samples had variable water absorption between 0 % and 0.25 %. The results of the curcumin release test over one week showed that the nanofibers with PLA+Cur+ 2 %AgNPs exhibited the lowest release rate, while those with PLA+Cur+ 3 %AgNPs showed the highest release. Assessment of mechanical properties revealed that the tensile strength of the nanofibers increased by adding curcumin to polylactic acid, while the addition of a high content of AgNPs led to a decrease in tensile strength. Also, the PLA+Cur dressing demonstrated 84.06 % and the PLA+Cur+ 3 %AgNPs dressing exhibited 99.12 % antibacterial properties. The cell culture test demonstrated that the incorporation of curcumin and AgNPs increasedboth the growth and proliferation, as well as the adhesion on the nanofibrous wound dressing. Thus, the PLA+Cur+ 1 %AgNPs nanofibrous scaffold, as a multipurpose dressing, presented considerable promise for wound healing and burn treatment.
Collapse
Affiliation(s)
- Mehri Moayedi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Vahid Nekouie
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK; Materials and Engineering Research Institute (MERI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Majid Taghian Dehaghani
- Department of Materials and Metallurgical Engineering, Abadeh Higher Education Centre, Shiraz University, Abadeh, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamalui Benisi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
2
|
Kaveh M, Badrossamay M, Foroozmehr E, Kharaziha M. Biodegradability, biocompatibility, and mechanical behavior of additively manufactured zinc scaffolds. J Mech Behav Biomed Mater 2025; 163:106868. [PMID: 39700653 DOI: 10.1016/j.jmbbm.2024.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Zinc is a promising material for biodegradable scaffolds due to its biocompatible nature and suitable degradation rate. However, its low mechanical strength limits its use in load-bearing applications. This study aims to address this challenge by optimizing the process parameters of pure zinc using laser-based powder bed fusion and designing zinc scaffolds with tailored structures. Scaffolds based on five different unit cell types (Diamond, gyroid, primitive, Fischer-Kock S, and I-WP) were designed and fabricated using the optimized process parameters. The resulting scaffolds were evaluated for mechanical properties, degradation behavior, and cytocompatibility evaluation. Results show that I-WP and primitive scaffolds exhibited superior mechanical properties with compressive yield strength of 36.1 ± 1.2 MPa and 33.5 ± 1.4 MPa, respectively. While all scaffolds displayed a degradation rate within the range of 0.14-0.15 mm/year, the I-WP and primitive design exhibited a slightly higher degradation rate (0.15 mm/year) compared to the gyroid, diamond, and Fischer Koch S scaffolds (0.14 mm/year). Zinc itself demonstrated excellent cytocompatibility, as evidenced by in vitro MTT assay and cell morphology studies. Unit cell morphology also could accelerate proliferation, where MG-63 cells formed bridges between the unit cell walls in Fischer Koch S scaffolds. Considering the targeted application (mandible or jawbone healing) and evaluating all findings, scaffolds with I-WP and primitive designs and wall thicknesses of 500 μm (S01) emerged as the most promising candidates in mandible healing injuries.
Collapse
Affiliation(s)
- Mahdi Kaveh
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohsen Badrossamay
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ehsan Foroozmehr
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
3
|
Zhang YS, Ke S, Hu X, Wang SY, Peng WQ, Qian XH, Tian LH, Wu HJ, Li BH, Zeng XT, Zhang LL. Enhancing wound healing through sonodynamic silver/barium titanate heterostructures-loading gelatin/PCL nanodressings. Int J Biol Macromol 2024; 283:137648. [PMID: 39547623 DOI: 10.1016/j.ijbiomac.2024.137648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bacterial infections present a formidable challenge in surgical procedures, and are a major threat to wound healing. Sonodynamic therapy (SDT) is a non-invasive approach for fighting pathogens; however, it is hindered by the efficiency of sonosensitizers and effective antibacterial time. In this study, we developed a biocompatible nanodressing to improve the antibacterial efficacy and accelerate wound healing via SDT. Silver nanoparticles (NPs) were synthesized on tetragonal barium titanate (BTO) NPs to create an Ag@BTO heterostructure of sonosensitizers to improve their piezocatalytic activities, which were then incorporated into gelatin/polycaprolactone (PCL) to form Ag@BTO-gelatin/PCL nanofiber (ABT-gP NFs) dressings. The loading of Ag@BTO NPs resulted in ABT-gP NFs with better mechanical properties and excellent piezocatalysis, which produced reactive oxygen species and Ag+ to kill bacteria during ultrasound (US) irradiation. Additionally, nanodressing released moderate amounts of silver ions without US, prolonging the antibacterial time, while promoting fibroblast migration. This approach was effective in killing Gram-positive and Gram-negative bacteria (100 % and 90.8 %, respectively), promoting cell migration in vitro and accelerating wound healing without adverse effects in vivo. This study extends the potential applications of ultrasound-triggered nanodressing to the field of wound healing.
Collapse
Affiliation(s)
- Yu-Sen Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Urology, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
| | - Shuai Ke
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Urology, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
| | - Xiao Hu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Urology, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China
| | - Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wan-Qi Peng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin-Hang Qian
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ling-Hui Tian
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui-Jun Wu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Urology, Zhongnan Hosptial of Wuhan University, Wuhan 430071, China.
| | - Ling-Ling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Mirzavandi Z, Poursamar SA, Amiri F, Bigham A, Rafienia M. 3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:58. [PMID: 39348082 PMCID: PMC11442632 DOI: 10.1007/s10856-024-06828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Tissue engineering scaffolds are three-dimensional structures that provide an appropriate environment for cellular attachment, proliferation, and differentiation. Depending on their specific purpose, these scaffolds must possess distinct features, including appropriate mechanical properties, porosity, desired degradation rate, and cell compatibility. This investigation aimed to fabricate a new nanocomposite scaffold using a 3D printing technique composed of poly(ε-caprolactone) (PCL)/Gelatin (GEL)/ordered mesoporous calcium-magnesium silicate (om-CMS) particles. Different weight ratios of om-CMS were added and optimized, and a series of scaffolds were constructed for comparison purposes, including PCL 50%/Gel 50%, PCL 50%/Gel 45%/om-CMS%5, and PCL 50%/Gel 40%/om-CMS%10. The optimized weight ratio of om-CMS was 10% without leaving behind negative effects on the filaments' structure. The scaffolds' physical and chemical properties were assessed using various techniques, and their degradation rate, bioactivity potential, cell viability, attachment, and ALP activity were evaluated in vitro. The results demonstrated that the PCL 50%/Gel 40%/om-CMS10% scaffold had promising potential for further studies in bone tissue regeneration.
Collapse
Affiliation(s)
- Zahra Mirzavandi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshad Amiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhao Y, Zhong W. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Molecules 2023; 28:8025. [PMID: 38138515 PMCID: PMC10745526 DOI: 10.3390/molecules28248025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Polyester elastomers are highly flexible and elastic materials that have demonstrated considerable potential in various biomedical applications including cardiac, vascular, neural, and bone tissue engineering and bioelectronics. Polyesters are desirable candidates for future commercial implants due to their biocompatibility, biodegradability, tunable mechanical properties, and facile synthesis and fabrication methods. The incorporation of bioactive components further improves the therapeutic effects of polyester elastomers in biomedical applications. In this review, novel structural modification methods that contribute to outstanding mechanical behaviors of polyester elastomers are discussed. Recent advances in the application of polyester elastomers in tissue engineering and bioelectronics are outlined and analyzed. A prospective of the future research and development on polyester elastomers is also provided.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Manikandan V, Min SC. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review. Int J Biol Macromol 2023; 252:126381. [PMID: 37595723 DOI: 10.1016/j.ijbiomac.2023.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In food production sectors, food spoilage and contamination are major issues that threaten and negatively influence food standards and safety. Several physical, chemical, and biological methods are used to extend the shelf-life of food products, but they have their limitations. Henceforth, researchers and scientists resort to novel methods to resolve these existing issues. Nanomaterials-based extension of food shelf life has broad scope rendering a broad spectrum of activity including high antioxidant and antimicrobial activity. Numerous research investigations have been made to identify the possible roles of nanoparticles in food preservation. A wide range of nanomaterials via different approaches is ultimately applied for food preservation. Among them, chemically synthesized methods have several limitations, unlike biological synthesis. However, biological synthesis protocols are quite expensive and laborious. Predominant studies demonstrated that nanoparticles can protect fruits and vegetables by preventing microbial contamination. Though several nanomaterials designated for food preservation are available, detailed knowledge of the mechanism remains unclear. Hence, this review aims to highlight the various nanomaterials and their roles in increasing the shelf life of food products. Adding to the novel market trends, nano-packaging will open new frontiers and prospects for ensuring food safety and quality.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
8
|
Ma YF, Yan XZ. Periodontal Guided Tissue Regeneration Membranes: Limitations and Possible Solutions for the Bottleneck Analysis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:532-544. [PMID: 37029900 DOI: 10.1089/ten.teb.2023.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Guided tissue regeneration (GTR) is an important surgical method for periodontal regeneration. By placing barrier membrane on the root surface of the tooth to guide the adhesion and proliferation of periodontal ligament cells, periodontal tissue regeneration can be achieved. This review intends to analyze the current limitations of GTR membranes and to propose possible solutions for developing new ones. Limitations of current GTR membranes include nonabsorbable membranes and absorbable synthetic polymer membranes exhibit weak biocompatibility; when applying to a large defect wound, the natural collagen membrane with fast degradation rate have limited mechanical strength, and the barrier function may not be maintained well. Although the degradation time can be prolonged after cross-linking, it may cause foreign body reaction and affect tissue integration; The clinical operation of current barrier membranes is inconvenient. In addition, most of the barrier membranes lack bioactivity and will not actively promote periodontal tissue regeneration. Possible solutions include using electrospinning (ELS) techniques, nanofiber scaffolds, or developing functional gradient membranes to improve their biocompatibility; adding Mg, Zn, and/or other metal alloys, or using 3D printing technology to improve their mechanical strength; increasing the concentration of nanoparticles or using directional arrangement of membrane fibers to control the fiber diameter and porosity of the membrane, which can improve their barrier function; mixing natural and synthetic polymers as well as other biomaterials with different degradation rates in proportion to change the degradation rate and maintain barrier function; to improve the convenience of clinical operation, barrier membranes that meets personalized adhesion to the wound defect can be manufactured; developing local controlled release drug delivery systems to improve their bioactivity. Impact statement This review provides an up-to-date summary of commonly commercial periodontal guided tissue regeneration membranes, and analyze their limitations in clinical use. Using studies published recently to explore possible solutions from several perspectives and to raise possible strategies in the future. Several strategies have tested in vivo/in vitro, which will guide the way to propel clinical translation, meeting clinical needs.
Collapse
Affiliation(s)
- Yi-Fei Ma
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| | - Xiang-Zhen Yan
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Miętus M, Kolankowski K, Gołofit T, Denis P, Bandzerewicz A, Spychalski M, Mąkosa-Szczygieł M, Pilarek M, Wierzchowski K, Gadomska-Gajadhur A. From Poly(glycerol itaconate) Gels to Novel Nonwoven Materials for Biomedical Applications. Gels 2023; 9:788. [PMID: 37888360 PMCID: PMC10606113 DOI: 10.3390/gels9100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Electrospinning is a process that has attracted significant interest in recent years. It provides the opportunity to produce nanofibers that mimic the extracellular matrix. As a result, it is possible to use the nonwovens as scaffolds characterized by high cellular adhesion. This work focused on the synthesis of poly(glycerol itaconate) (PGItc) and preparation of nonwovens based on PGItc gels and polylactide. PGItc gels were synthesized by a reaction between itaconic anhydride and glycerol. The use of a mixture of PGItc and PLA allowed us to obtain a material with different properties than with stand-alone polymers. In this study, we present the influence of the chosen ratios of polymers and the OH/COOH ratio in the synthesized PGItc on the properties of the obtained materials. The addition of PGItc results in hydrophilization of the nonwovens' surface without disrupting the high porosity of the fibrous structure. Spectral and thermal analyzes are presented, along with SEM imagining. The preliminary cytotoxicity research showed that nonwovens were non-cytotoxic materials. It also helped to pre-determine the potential application of PGItc + PLA nonwovens as subcutaneous tissue fillers or drug delivery systems.
Collapse
Affiliation(s)
- Magdalena Miętus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Krzysztof Kolankowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Maciej Spychalski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland;
| | - Marcin Mąkosa-Szczygieł
- Department of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway;
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Agnieszka Gadomska-Gajadhur
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| |
Collapse
|
10
|
Suo L, Wu H, Wang P, Xue Z, Gao J, Shen J. The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold. J Biomed Mater Res B Appl Biomater 2023; 111:73-84. [PMID: 35841326 DOI: 10.1002/jbm.b.35133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022]
Abstract
Periodontal disease is a common disease in the oral field, and many researchers are studying periodontal disease and try to find some biological scaffold materials to make periodontal tissue regenerative. In this study, we attempted to construct a carbon nanotube/chitosan/sodium alginate (CNT/CS/AL) ternary composite hydrogel and then prepare porous scaffold by 3D printing technology. Subsequently, characterizing the materials and testing the mechanical properties of the scaffold. Additionally, its effect on the proliferation of human periodontal ligament cells (hPDLCs) and its antibacterial effect on Porphyromonas gingivalis were detected. We found that CNT/CS/AL porous composite scaffolds with uniform pores could be successfully prepared. Moreover, with increasing CNT concentration, the degradation rate and the swelling degree of scaffold showed a downward trend. The compressive strength test indicated the elastic modulus of composite scaffolds ranged from 18 to 80 kPa, and 1% CNT/CS/AL group had the highest quantitative value. Subsequently, cell experiments showed that the CNT/CS/AL scaffold had good biocompatibility and could promote the proliferation of hPDLCs. Among 0.1%-1% CNT/CS/AL groups, the biocompatibility of 0.5% CNT/CS/AL scaffold performed best. Meanwhile, in vitro antibacterial experiments showed that the CNT/CS/AL scaffold had a certain bacteriostatic effect on P. gingivalis. When the concentration of CNT was more than 0.5%, the antimicrobial activity of composite scaffold was significantly promoted, and about 30% bacteria were inactivated. In conclusion, this 3D-printed CNT/CS/AL composite scaffold, with good material properties, biocompatibility and bacteriostatic activity, may be used for periodontal tissue regeneration, providing a new avenue for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Lai Suo
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hongshan Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Puyu Wang
- Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhijun Xue
- Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jing Gao
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Nanosilica-Anchored Polycaprolactone/Chitosan Nanofibrous Bioscaffold to Boost Osteogenesis for Bone Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248832. [PMID: 36557965 PMCID: PMC9786850 DOI: 10.3390/molecules27248832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The strategy of incorporating bioactive inorganic nanomaterials without side effects as osteoinductive supplements is promising for bone regeneration. In this work, a novel biomass nanofibrous scaffold synthesized by electrospinning silica (SiO2) nanoparticles into polycaprolactone/chitosan (PCL/CS) nanofibers was reported for bone tissue engineering. The nanosilica-anchored PCL/CS nanofibrous bioscaffold (PCL/CS/SiO2) exhibited an interlinked continuous fibers framework with SiO2 nanoparticles embedded in the fibers. Compact bone-derived cells (CBDCs), the stem cells derived from the bone cortex of the mouse, were seeded to the nanofibrous bioscaffolds. Scanning electron microscopy and cell counting were used to observe the cell adhesion. The Counting Kit-8 (CCK-8) assay was used. Alkaline phosphatase (ALP), Alizarin red staining, real-time Polymerase Chain Reaction and Western blot tests were performed to confirm the osteogenesis of the CBDCs on the bioscaffolds. The research results demonstrated that the mechanical property of the PCL together with the antibacterial and hydrophilic properties of the CS are conducive to promoting cell adhesion, growth, migration, proliferation and differentiation. SiO2 nanoparticles, serving as bone induction factors, effectively promote the osteoblast differentiation and bone regeneration. This novel SiO2-anchored nanofibrous bioscaffold with superior bone induction activity provides a better way for bone tissue regeneration.
Collapse
|
12
|
Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:233-248. [PMID: 36065207 PMCID: PMC9440077 DOI: 10.1016/j.jdsr.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anatomy of the oral and maxillofacial sites is complex, and bone defects caused by trauma, tumors, and inflammation in these zones are extremely difficult to repair. Among the most effective and reliable methods to attain osteogenesis, the guided bone regeneration (GBR) technique is extensively applied in defective oral and maxillofacial GBR. Furthermore, endowing biofunctions is crucial for GBR materials applied in repairing defective alveolar and maxillofacial bones. In this review, recent advances in designing and fabricating GBR materials applied in oral and maxillofacial sites are classified and discussed according to their biofunctions, including maintaining space for bone growth; facilitating the adhesion, migration, and proliferation of osteoblasts; facilitating the migration and differentiation of progenitor cells; promoting vascularization; providing immunoregulation to induce osteogenesis; suppressing infection; and effectively mimicking natural tissues using graded biomimetic materials. In addition, new processing strategies (e.g., 3D printing) and new design concepts (e.g., developing bone mimetic extracellular matrix niches and preparing scaffolds to suppress connective tissue to actively acquire space for bone regeneration), are particularly worthy of further study. In the future, GBR materials with richer biological functions are expected to be developed based on an in-depth understanding of the mechanism of bone-GBR-material interactions.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Chengmin Feng
- Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author.
| |
Collapse
|
13
|
Magnesium-Containing Silicate Bioceramic Degradable Intramedullary Nail for Bone Fractures. CRYSTALS 2022. [DOI: 10.3390/cryst12070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramedullary nails (INs) have significant advantages in rigid fracture fixation. Due to the stress shielding effect and lack of biological activity, traditional metal INs often lead to delay union or nonunion fracture healing. Undegradable metals also need to be removed by a second surgery, which will impose a potential risk to the patient. Current degradable biomaterials with low strength cannot be used in INs. Manufacturing high-strength biodegradable INs (BINs) is still a challenge. Here, we reported a novel high strength bioactive magnesium-containing silicate (CSi-Mg) BIN. This BIN is manufactured by using casting, freeze drying, and sintering techniques and has extremely high bending strength and stable internal and external structures. The manufacturing parameters were systematically studied, such as the paste component, freeze-drying process, and sintering process. This manufacturing method can be applied to various sizes of BINs. The CSi-Mg BIN also has good bioactivity and biodegradation properties. This novel bioactive BIN is expected to replace the traditional metal INs and become a more effective way of treating fractures.
Collapse
|
14
|
Wang F, Xia D, Wang S, Gu R, Yang F, Zhao X, Liu X, Zhu Y, Liu H, Xu Y, Liu Y, Zhou Y. Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration. Bioact Mater 2022; 13:53-63. [PMID: 35224291 PMCID: PMC8844648 DOI: 10.1016/j.bioactmat.2021.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Guided bone regeneration membranes have been effectively applied in oral implantology to repair bone defects. However, typical resorbable membranes composed of collagen (Col) have insufficient mechanical properties and high degradation rate, while non-resorbable membranes need secondary surgery. Herein, we designed a photocrosslinkable collagen/polycaprolactone methacryloyl/magnesium (Col/PCLMA/Mg) composite membrane that provided spatiotemporal support effect after photocrosslinking. Magnesium particles were added to the PCLMA solution and Col/PCLMA and Col/PCLMA/Mg membranes were developed; Col membranes and PCL membranes were used as controls. After photocrosslinking, an interpenetrating polymer network was observed by scanning electron microscopy (SEM) in Col/PCL and Col/PCL/Mg membranes. The elastic modulus, swelling behavior, cytotoxicity, cell attachment, and cell proliferation of the membranes were evaluated. Degradation behavior in vivo and in vitro was monitored according to mass change and by SEM. The membranes were implanted into calvarial bone defects of rats for 8 weeks. The Col/PCL and Col/PCL/Mg membranes displayed much higher elastic modulus (p < 0.05), and a lower swelling rate (p < 0.05), than Col membranes, and there were no differences in cell biocompatibility among groups (p > 0.05). The Col/PCL and Col/PCL/Mg membranes had lower degradation rates than the Col membranes, both in vivo and in vitro (p < 0.05). The Col/PCL/Mg groups showed enhanced osteogenic capability compared with the Col groups at week 8 (p < 0.05). The Col/PCL/Mg composite membrane represents a new strategy to display space maintenance and enhance osteogenic potential, which meets clinical needs. Photocrosslinked Col/PCL and Col/PCL/Mg membranes displayed good mechanical support to provide space for bone regeneration. Col/PCL and Col/PCL/Mg membranes had suitable degradation rates for the maintenance duration of bone regeneration. Photocrosslinked Col/PCL/Mg membranes enhanced osteogenesis and expedited the formation of high-quality bone on week 8.
Collapse
|
15
|
Bilal B, Niazi R, Nadeem S, Farid MA, Nazir MS, Akhter T, Javed M, Mohyuddin A, Rauf A, Ali Z, Naqvi SAR, Muhammad N, Elkaeed EB, Ibrahium HA, Awwad NS, Hassan SU. Fabrication of Guided Tissue Regeneration Membrane Using Lignin-Mediated ZnO Nanoparticles in Biopolymer Matrix for Antimicrobial Activity. Front Chem 2022; 10:837858. [PMID: 35518713 PMCID: PMC9063929 DOI: 10.3389/fchem.2022.837858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Periodontal disease is a common complication, and conventional periodontal surgery can lead to severe bleeding. Different membranes have been used for periodontal treatment with limitations, such as improper biodegradation, poor mechanical property, and no effective hemostatic property. Guided tissue regeneration (GTR) membranes favoring periodontal regeneration were prepared to overcome these shortcomings. The mucilage of the chia seed was extracted and utilized to prepare the guided tissue regeneration (GTR) membrane. Lignin having antibacterial properties was used to synthesize lignin-mediated ZnO nanoparticles (∼Lignin@ZnO) followed by characterization with analytical techniques like Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, and scanning electron microscope (SEM). To fabricate the GTR membrane, extracted mucilage, Lignin@ZnO, and polyvinyl alcohol (PVA) were mixed in different ratios to obtain a thin film. The fabricated GTR membrane was evaluated using a dynamic fatigue analyzer for mechanical properties. Appropriate degradation rates were approved by degradability analysis in water for different intervals of time. The fabricated GTR membrane showed excellent antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial species.
Collapse
Affiliation(s)
- Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Rimsha Niazi
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Toheed Akhter
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Zulfiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, , Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Semi Pilot Plant, Nuclear Materials Authority, Cairo, Egypt
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
16
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
17
|
PVP/Highly Dispersed AgNPs Nanofibers Using Ultrasonic-Assisted Electrospinning. Polymers (Basel) 2022; 14:polym14030599. [PMID: 35160588 PMCID: PMC8840217 DOI: 10.3390/polym14030599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles (AgNPs) are novel materials with antibacterial, antifungal, and antiviral activities over a wide range. This study aimed to prepare polyvinylpyrrolidone (PVP) electrospinning composites with uniformly distributed AgNPs. In this study, starch-capped ~2 nm primary AgNPs were first synthesized using Atmospheric pressure Pulsed Discharge Plasma (APDP) at AC 10 kV and 10 kHz. Then, 0.6 wt.% AgNPs were mixed into a 10 wt.% PVP ethanol-based polymer solution and coiled through an Ultrasonic-assisted Electrospinning device (US-ES) with a 50 W and 50 kHz ultrasonic generator. At 12 kV and a distance of 10 cm, this work successfully fabricated AgNPs-PVP electrospun fibers. The electrospun products were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High-Resolution TEM (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermogravimetric (TG), and X-ray Photoelectron Spectroscopy (XPS) methods.
Collapse
|
18
|
Dai T, Ma J, Ni S, Liu C, Wang Y, Wu S, Liu J, Weng Y, Zhou D, Jimenez-Franco A, Zhao H, Zhao X. Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112656. [PMID: 35034813 DOI: 10.1016/j.msec.2022.112656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Electrospun PCL scaffolds have been widely used for tissue engineering as they have shown great potential to mimic the structure of the natural extracellular matrix (ECM). However, the small pore size and low bioactivity of the scaffolds limit cell migration and tissue formation. In this study, PCL (polycaprolactone), PCL/PEG (polyethylene glycol), and PCL/PEG/ATP (nano-attapulgite) scaffolds were fabricated via electrospinning. To increase the porosity of the scaffolds, they were washed to remove water-soluble PEG fibers. Then the porous structure was measured using scanning electron microscopy (SEM) and atomic force microscopy (AFM), which showed an increased porosity when PEG fibers were removed in PCL/PEG and PCL/PEG/ATP scaffolds. Moreover, the mechanical properties were also analyzed in dry and wet conditions. In vitro mouse multipotent mesenchymal precursor cells were used to assess the biocompatibility of the scaffolds, and osteogenesis was analyzed using CCK-8 and real-time PCR (RT-PCR) methods. Moreover, in vivo μCT, histological and immunohistochemical analyses were conducted to evaluate new bone formation in rat cranium defect models. Washed PCL/PEG/ATP scaffolds were implanted into the cranium defects in rats for 4 or 8 weeks, better cell infiltration was observed in these scaffolds than in unwashed ones. The result demonstrated that washed PCL/PEG/ATP scaffold facilitated the differentiation of MSCs into osteoblasts compared with PCL scaffold, as proved by the increased expression of osteogenic key genes as well as Smad1, Smad4, and Smad5. Furthermore, in vivo studies demonstrated that using the ATP-doped electrospun PCL scaffold can improve the bone regeneration of rat cranium defects. Particularly, the PCL/ATP-30% scaffold has the best effect compared to the other scaffolds. The enhanced osteogenesis and bone repair were related to the PCL/ATP activated BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Ting Dai
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Jiayi Ma
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Yan Wang
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Siyu Wu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Jun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Yiping Weng
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Dong Zhou
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Ana Jimenez-Franco
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
19
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
20
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
21
|
Ul Hassan S, Bilal B, Nazir MS, Naqvi SAR, Ali Z, Nadeem S, Muhammad N, Palvasha BA, Mohyuddin A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem Biol Drug Des 2021; 98:1007-1024. [PMID: 34581497 DOI: 10.1111/cbdd.13959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different non-polymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.
Collapse
Affiliation(s)
- Sadaf Ul Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan.,Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zufiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aysha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
22
|
Sun M, Shao H, Xu H, Yang X, Dong M, Gong J, Yu M, Gou Z, He Y, Liu A, Wang H. Biodegradable intramedullary nail (BIN) with high-strength bioceramics for bone fracture. J Mater Chem B 2021; 9:969-982. [PMID: 33406205 DOI: 10.1039/d0tb02423f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
About 10 million fractures occur worldwide each year, of which more than 60% are long bone fractures. It is generally agreed that intramedullary nails have significant advantages in rigid fracture fixation. Metal intramedullary nails (INs) can provide strong support but a stress shielding effect can occur that results in nonunion healing in clinic. Nondegradable metals also need to be removed by a second operation. Could INs be biodegradable and used to overcome this issue? As current degradable biomaterials always suffer from low strength and cannot be used in Ins, herein, we report a novel device consisting of biodegradable IN (BIN) made for the first time with bioceramics. These BINs have an extremely high bending strength and stable internal and external structure. Experiments show that the BINs could not only fix and support the tibial fracture model, but also promote osteogenesis and affect the microenvironment of the bone marrow cavity. Therefore, they could be expected to replace traditional metal IN and become a more effective treatment option for tibial fractures.
Collapse
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ahmadi M, Mehdikhani M, Varshosaz J, Farsaei S, Torabi H. Pharmaceutical evaluation of atorvastatin-loaded nanostructured lipid carriers incorporated into the gelatin/hyaluronic acid/polycaprolactone scaffold for the skin tissue engineering. J Biomater Appl 2020; 35:958-977. [PMID: 33148109 DOI: 10.1177/0885328220970760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, gelatin/hyaluronic acid (HA) scaffolds containing different amounts of atorvastatin-loaded nanostructured lipid carriers (NLCs) coated entirely with polycaprolactone (PCL) film were fabricated for skin regeneration. 12 atorvastatin-loaded NLCs formulations were synthesized, and particle size, zeta potential, drug entrapment efficiency (EE), and drug release of the formulations were determined. The optimum freeze-dried atorvastatin-loaded NLCs were added in 3 different weight percentages to the gelatin and HA membranous scaffolds. Thereafter, the membranes were coated entirely by a thin layer of the PCL. They were characterized, and then mechanical properties, in vitro degradation and in vitro drug release were assessed. Moreover, human dermal fibroblasts (HDF) were cultured on the prepared nanocomposite scaffolds in order to investigate the cytotoxicity by the MTT assay after the first day, third day, and fifth day. Results revealed that the most favorable atorvastatin-loaded NLCs had 99.54 nm average particle size, -24.30 mV zeta potential, 97.98% EE, and 75.24% drug release within 237 hrs. Mechanical tests indicated that all the three scaffolds had approximately a 90 MPa elastic modulus which was more than two-fold of tensile modulus of normal human skin. The in vitro degradation test demonstrated that the membranes were degraded up to 98% after 5 days, and the scaffolds drug release efficiency (DRE) was in a range of 75-79% during those 5 days. The MTT assay results confirmed the cytocompatibility of the scaffolds. The scaffold containing 54.1 wt% NCLs was the optimum sample (S3). Scanning Electron Microscopy (SEM) images of the latter one showed the uniform distribution of the NLCs with an average size of 150 nm, and the images of cultured HDF illustrated the good cell attachment. In conclusion, suitable physicochemical and biological properties of the novel gelatin/HA/PCL nanocomposite scaffold containing 54.1 wt% atorvastatin-loaded NLCs (S3) can be a good candidate for skin regeneration.
Collapse
Affiliation(s)
- Mahsa Ahmadi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Shadi Farsaei
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Hadis Torabi
- University of Isfahan, Isfahan, Islamic Republic of Iran
| |
Collapse
|
24
|
Golafshan N, Alehosseini M, Ahmadi T, Talebi A, Fathi M, Kharaziha M, Orive G, Castilho M, Dolatshahi-Pirouz A. Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111611. [PMID: 33545811 DOI: 10.1016/j.msec.2020.111611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
In bone tissue engineering, ionic doping using bone-related minerals such as magnesium (Mg) or strontium (Sr) is a promising strategy to make up for the inherent disadvantages (low solubility) of various apatite-based materials (such as fluorapatite (FAp) and hydroxyapatite (HA)). Therefore, some studies in recent years have tried to address the lack-of-methodology to improve the properties of bioceramics in the field. Even though the outcome of the studies has shown some promises, the influence of doped elements on the structures and properties of in-vitro and in-vivo mineralized FAp has not been investigated in detail so far. Thus, it is still an open question mark in the field. In this work, strontium modified fluorapatite (Sr-FAp), magnesium and silicon modified fluorapatite (Mg-SiFAp) bioceramics were synthesized using a mechanical alloying methodology. Results showed that the doped elements could decrease the crystallinity of FAp (56%) to less than 45% and 39% for Sr-FAp and Mg-SiFAp, respectively. Moreover, in-vitro studies revealed that Sr-FAp significantly enhanced osteogenic differentiation of hMSCs, after 21 days of culture, compared to Mg-SiFAp at both osteogenic and normal media. Then, in vivo bone formation in a defect of rat femur filled with a Sr-FAp and Mg-SiFAp compared to empty defect was investigated. Histological analysis revealed an increase in bone formation three weeks after implanting Sr-FAp compared to Mg-SiFAp and the empty defect. These results suggest that compared to magnesium and silicon, strontium ion significantly promotes bone formation in fluorapatite, making it appropriate for filling bone defects.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Orthopaedics, University Medical Center Utrecht, GA Utrecht, the Netherlands
| | - Morteza Alehosseini
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Technical University of Denmark, DTU Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Tahmineh Ahmadi
- Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| | - Ardeshir Talebi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadhossein Fathi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, GA Utrecht, the Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| |
Collapse
|
25
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
26
|
Borkowski L, Przekora A, Belcarz A, Palka K, Jozefaciuk G, Lübek T, Jojczuk M, Nogalski A, Ginalska G. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111211. [PMID: 32806239 DOI: 10.1016/j.msec.2020.111211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Calcium phosphates, due to their similarity to the inorganic fraction of mineralized tissues, are of great importance in treatment of bone defects. In order to improve the biological activity of hydroxyapatite (HAP), its fluoride-substituted modification (FAP) was synthesized using the sol-gel method and calcined at three different temperatures in the range of 800-1200 °C. Physicochemical and biological properties were evaluated to indicate which material would support bone regeneration the best. X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR) revealed that fluoride ions were incorporated into the apatite lattice structure. In studies it was found that fluorapatite sintered at the highest temperature had the lowest porosity, no internal pores and the highest density. In vitro ion reactivity assessments showed that during the 28-day immersion of the samples in the simulated body fluid, the uptake of calcium and phosphorus ions was inversely correlated to the calcination temperature. All tested materials were non-toxic since the cytotoxicity MTT assay demonstrated that the viability of preosteoblast cells incubated with sample extracts was high. Fluorapatite sintered at 800 °C was determined to be of optimal porosity and fluoride release capacity and then used in cell proliferation studies. The results showed that it significantly shortened the doubling time and thus enhanced the proliferation of osteogenic cells, as compared to the fluoride solutions and control group. Therefore, this material is proposed for the use in orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Krzysztof Palka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Grzegorz Jozefaciuk
- Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
| | - Tomasz Lübek
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Mariusz Jojczuk
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Adam Nogalski
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
27
|
Prado-Prone G, Silva-Bermudez P, Bazzar M, Focarete ML, Rodil SE, Vidal-Gutiérrez X, García-Macedo JA, García-Pérez VI, Velasquillo C, Almaguer-Flores A. Antibacterial composite membranes of polycaprolactone/gelatin loaded with zinc oxide nanoparticles for guided tissue regeneration. ACTA ACUST UNITED AC 2020; 15:035006. [PMID: 31995538 DOI: 10.1088/1748-605x/ab70ef] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bacterial colonization of absorbable membranes used for guided tissue regeneration (GTR), as well as their rapid degradation that can cause their rupture, are considered the major reasons for clinical failure. To address this, composite membranes of polycaprolactone (PCL) and gelatin (Gel) loaded with zinc oxide nanoparticles (ZnO-NPs; 1, 3 and 6 wt% relative to PCL content) were fabricated by electrospinning. To fabricate homogeneous fibrillar membranes, acetic acid was used as a sole common solvent to enhance the miscibility of PCL and Gel in the electrospinning solutions. The effects of ZnO-NPs in the physico-chemical, mechanical and in vitro biological properties of composite membranes were studied. The composite membranes showed adequate mechanical properties to offer a satisfactory clinical manipulation and an excellent conformability to the defect site while their degradation rate seemed to be appropriate to allow successful regeneration of periodontal defects. The presence of ZnO-NPs in the composite membranes significantly decreased the planktonic and the biofilm growth of the Staphylococcus aureus over time. Finally, the viability of human osteoblasts and human gingival fibroblasts exposed to the composite membranes with 1 and 3 wt% of ZnO-NPs indicated that those membranes are not expected to negatively influence the ability of periodontal cells to repopulate the defect site during GTR treatments. The results here obtained suggest that composite membranes of PCL and Gel loaded with ZnO-NPs have the potential to be used as structurally stable GTR membranes with local antibacterial properties intended for enhancing clinical treatments.
Collapse
Affiliation(s)
- Gina Prado-Prone
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito Exterior s/n, Ciudad Universitaria, 04510, CDMX, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Elaboration and Biocompatibility of an Eggshell-Derived Hydroxyapatite Material Modified with Si/PLGA for Bone Regeneration in Dentistry. Int J Dent 2019; 2019:5949232. [PMID: 31885588 PMCID: PMC6915137 DOI: 10.1155/2019/5949232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022] Open
Abstract
Hydroxyapatite (HAp) is the most commonly used biomaterial in modern bone regeneration studies because of its chemical similarity to bone, biocompatibility with different polymers, osteoconductivity, low cost, and lack of immune response. However, to overcome the disadvantages of HAp, which include fragility and low mechanical strength, current studies typically focus on property modification through the addition of other materials. Objective. To develop and evaluate the biocompatibility of a HAp material extracted from eggshells and modified with silicon (Si) and poly(lactic-co-glycolic) acid (PLGA). Materials and Methods. An in vitro experimental study in which a HAp material prepared from eggshells was synthesized by wet chemical and conventional chemical precipitation. Subsequently, this material was reinforced with Si/PLGA using the freezing/lyophilization method, and then osteoblast cells were seeded on the experimental material (HAp/Si/PLGA). To analyse the biocompatibility of this composite material, scanning electron microscopy (SEM) and fluorescence confocal microscopy (FCM) techniques were used. PLGA, bovine bone/PLGA (BB/PLGA), and HAp/PLGA were used as controls. Results. A cellular viability of 96% was observed for the experimental HAp/Si/PLGA material as well as for the PLGA. The viability for the BB/PLGA material was 90%, and the viability for the HAp/PLGA was 86%. Cell adhesion was observed on the exterior surface of all materials. However, a continuous monolayer and the presence of filopodia were observed over both external and internal surface of the experimental materials. Conclusions. The HAp/Si/PLGA material is highly biocompatible with osteoblastic cells and can be considered promising for the construction of three-dimensional scaffolds for bone regeneration in dentistry.
Collapse
|