1
|
Jeong Y, Shim YS, Jo YK, Cha HJ. Redox-activatable inhalable mucoadhesive proteinic nanotherapeutics for targeted treatment of lung cancer. Biomaterials 2025; 316:123004. [PMID: 39689461 DOI: 10.1016/j.biomaterials.2024.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Inhalation delivery has been considered a promising choice for treating lung cancer because it can shuttle therapeutic payloads directly to cancer tissues via simple and noninvasive procedures while reducing systemic toxicity. However, its clinical application still faces challenges, especially for delivering hydrophobic chemotherapeutic drugs, due to poor absorption on mucosal tissues and limited therapeutic performance. Herein, we propose inhalable mucoadhesive proteinic nanoparticles (NPs) capable of facilitating reliable pulmonary drug delivery and redox-responsive anticancer therapeutic effects to realize noninvasive, localized treatment of lung cancer in a highly biocompatible, site-specific manner. Thiolated mussel adhesive protein (MAP)-based NPs (thMAP NPs) can be administered to target tissues via an easy and facile nebulization process due to their superior MAP-driven adhesion ability and sufficient structural integrity. Curcumin (Cur)-loaded thMAP NPs (thMAP@Cur NPs) demonstrated efficient cellular uptake through the thiol-mediated pathway and controlled the intracellular release of Cur in response to the reductive environment in cancer cells. The nebulized thMAP@Cur NPs elicited prolonged retention in lung tissue without causing any detectable adverse effects, leading to significant inhibition of metastatic lung cancer in vivo. Thus, these protein-based redox-responsive mucoadhesive NPs hold great promise as robust inhalable drug delivery platforms to achieve effective, localized treatment of pulmonary cancer and other respiratory diseases.
Collapse
Affiliation(s)
- Yeonsu Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yun Seop Shim
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yun Kee Jo
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Zhang R, Song Y, Yao J, Qin H, Ye Y, Gao J, Zhang C, Han D, Gao M, Chen H, Chen X, Zhao S, Liu K, Tu Y, Xu Z. RNA-Seq Reveals the Mechanism of Synergistic Hydrogen-Chemotherapy Based on Active Magnesium Micromotors for Inhibiting Glioblastoma Recurrence by Modulating Tumor Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408809. [PMID: 40259480 DOI: 10.1002/smll.202408809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Indexed: 04/23/2025]
Abstract
Postoperative recurrence of glioblastoma (GBM) is a key contributing factor to the unfavorable prognosis of patients. Chemotherapy has been extensively employed as a postoperative treatment for GBM; however, the produced drug resistance significantly undermines the chemotherapeutic efficacy. Herein, a multifunctional system based on magnesium micromotor (Mg-Motor-DOX) is designed and fabricated that can generate hydrogen gas in situ and actively deliver the chemotherapeutic drug doxorubicin (DOX). Utilizing a temperature-sensitive hydrogel, Mg-Motor-DOX is administrated in situ to the residual cavity of the tumor after subtotal GBM resection. The produced H2 by the Mg-water reaction not only propels the motion of motors but also functions as an antioxidant to effectively alleviate the neuroinflammation caused by GBM resection. The H2 bubbles create a pronounced vortex flow in situ, greatly enhancing the DOX penetration and the sensitivity of GBM cells to DOX. Therefore, synergistic hydrogen-chemotherapy significantly inhibits the recurrence of the in situ GBM model. RNA-Seq technology further elucidates the role of the strategy in modulating the tumor immune microenvironment via converting cold tumors into hot tumors, thereby establishing a theoretical foundation for the clinical implementation of synergistic hydrogen-chemotherapy.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanzhen Song
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Yao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cheng Zhang
- University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada
| | - Dayong Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Kun Liu
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| |
Collapse
|
4
|
Khandal J, Dohare S, Dongsar TS, Gupta G, Alsayari A, Wahab S, Kesharwani P. Gelatin nanocarriers in oncology: A biocompatible strategy for targeted drug delivery. Int J Biol Macromol 2025; 310:143244. [PMID: 40250682 DOI: 10.1016/j.ijbiomac.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Cancer persists as a formidable global health crisis, with conventional therapies often compromised by systemic toxicity, poor tumor specificity, and therapeutic resistance. Nanotechnology has emerged as a transformative approach, leveraging nanoscale materials to enhance drug bioavailability, enable targeted delivery, and mitigate off-target effects. Among these innovations, gelatin-based nanoparticles (GNPs), derived from collagen and endorsed by the FDA have garnered significant attention as biocompatible, biodegradable nanocarriers uniquely suited for oncology applications. GNPs address critical extracellular barriers such as inefficient tumor penetration, rapid clearance, and nonspecific biodistribution by capitalizing on gelatin's intrinsic advantages: low immunogenicity, tumor microenvironment responsiveness (pH, enzymes, redox gradients), and tunable surface functionalization. This review highlights the versatility of GNPs in overcoming these challenges through advanced strategies like ligand-mediated targeting, combinatorial therapies, and size-transformable systems that enhance tumor accumulation and therapeutic precision. Case studies across lung, breast, skin, liver, colorectal, brain, and head/neck cancers demonstrate GNPs' ability to reduce IC50 values by 2 to 4-fold, achieve >90 % apoptosis in malignant cells, and minimize damage to healthy tissues. Despite the challenges in translating gelatin-based nanocarriers from preclinical studies to clinical applications in cancer therapy, their promising preclinical performance highlights their potential as patient-centric platforms capable of advancing precision oncology. Further their adaptability, multifunctionality, and capacity for stimuli-responsive drug release underscore their potential to improve clinical outcomes, offering a targeted, low-toxicity paradigm for managing diverse malignancies.
Collapse
Affiliation(s)
- Jayesh Khandal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shubham Dohare
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
5
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Balahura (Stămat) LR, Dinu AI, Lungu A, Herman H, Balta C, Hermenean A, Șerban AI, Dinescu S. Implantable Polymer Scaffolds Loaded with Paclitaxel-Cyclodextrin Complexes for Post-Breast Cancer Tissue Reconstruction. Polymers (Basel) 2025; 17:402. [PMID: 39940603 PMCID: PMC11819909 DOI: 10.3390/polym17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The side effects associated with the chemotherapy of triple-negative breast cancer (TNBC), such as nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome activity, are responsible for the treatment failure and high mortality rates. Therefore, advanced delivery systems have been developed to improve the transport and targeted administration of anti-tumor agents at the tumor sites using tissue engineering approaches. Implantable delivery systems based on biodegradable polymers are an effective alternative due high biocompatibility, porosity, and mechanical strength. Moreover, the use of paclitaxel (PTX)-cyclodextrin complexes increases the solubility and permeability of PTX, enhancing the bioavailability and efficacy of the drug. All of these properties contribute to the efficient encapsulation and controlled release of drugs, preventing the damage of healthy tissues. In the current study, we detailed the synthesis process and evaluation of 3D scaffolds based on gelatin functionalized with methacryloyl groups (GelMA) and pectin loaded with PTX-cyclodextrin inclusion complexes on TNBC pathogenesis in vitro and in vivo. Bio-physio-chemical analysis of the proposed scaffolds revealed favorable mechanical and biological properties for the cellular component. To improve the drug solubility, a host-guest interaction was performed by the complexation of PTX with a cyclodextrin derivative prior to scaffold synthesis. The presence of PTX suppressed the growth of breast tumor cells and promoted caspase-1 activity, the release of interleukin (IL)-1β, and the production of reactive oxygen species (ROS), conditioning the expression levels of the genes and proteins associated with breast tumorigenesis and NLRP3 inflammasome. The in vivo experiments suggested the activation of pyroptosis tumor cell death, confirming the in vitro experiments. In conclusion, the bio-mechanical properties of the GelMA and pectin-based scaffolds as well as the addition of the PTX-cyclodextrin complexes allow for the targeted and efficient delivery of PTX, suppressing the viability of the breast tumor cells via pyroptosis cell death initiation.
Collapse
Affiliation(s)
| | - Andreea Ioana Dinu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Andreea Iren Șerban
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
7
|
Sukumar K, Bharathi M, Hirad AH, Alarfaj AA, Hussein-Al-Ali SH, Surya P. Development of Chitosan-Coated Graphene Oxide and Iron Oxide Nanocomposites for Targeted Delivery of Camptothecin to Liver Cancer Cells. Chem Biodivers 2025; 22:e202401817. [PMID: 39394807 DOI: 10.1002/cbdv.202401817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Innovative drug delivery platforms for selective, regulated, and sustained release of anticancer drugs are crucial in cancer treatment. This study presents nanoparticles developed from chitosan (CS), graphene oxide (GO), and magnetite (Fe3O4), and their nanocomposites to enhance the loading and release efficiency of camptothecin (CPT). Nanostructures were characterized using imaging microscopy, FT-IR, and X-ray diffraction, with an average crystallite size of 5.5 nm. Camptothecin binding proportions were 70 % for CS, 81 % for CS@Fe3O4, 58 % for CS@GO, and 74 % for CS@GO/Fe3O4. At pH 5.0, CPT release ratios were 87 %, 80 %, 88 %, and 90 %, respectively, and at pH 7.4, 84 %, 72 %, 89 %, and 87 %. Cytotoxicity was assessed using the MTT assay against HepG2 and SMMC-7721 cancer cells. CPT-CS@GO/Fe3O4 exhibited the highest survival at 5 μM and 12.5 μM concentrations, indicating it as the most effective nanocarrier for camptothecin delivery. The study demonstrates CS@GO/Fe3O4's potential as a superior drug delivery system.
Collapse
Affiliation(s)
- Kalpana Sukumar
- Department of Physics, Saveetha Engineering College, Saveetha Nagar, Thandalam, Chennai, 602105, India
| | - Muruganantham Bharathi
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Parthasarathy Surya
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
8
|
Muhammad FA, Altalbawy FMA, Mandaliya V, Saraswat SK, Rekha MM, Aulakh D, Chahar M, Mahdi MS, Jaber MA, Alhadrawi M. Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles. Clin Transl Oncol 2024:10.1007/s12094-024-03793-x. [PMID: 39692807 DOI: 10.1007/s12094-024-03793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors. ECM can block different drugs such as chemotherapy and immunotherapy drugs from entering the tumor stroma. Furthermore, the stromal elements, such as cancer-associated fibroblasts (CAFs), immune cells, and blood vessels, have crucial impacts on tumor development and therapeutic resistance. Recently, promising outcomes have been achieved in using nanotechnology for delivering drugs to tumor stroma and crossing ECM in breast malignancies. Nanoparticles have various benefits for targeting the breast tumor stroma, such as improved permeability and retention, extended circulation time, and the ability to actively target the area. This review covers the latest developments in nanoparticle therapies that focus on breast tumor ECM and stroma. We will explore different approaches using nanoparticles to target the delivery of anticancer drugs like chemotherapy, small molecule drugs, various antitumor products, and other specific synthetic therapeutic agents to the breast tumor stroma. Furthermore, we will investigate the utilization of nanoparticles in altering the stromal elements, such as reprogramming CAFs and immune cells, and also remodeling ECM.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Viralkumar Mandaliya
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Damanjeet Aulakh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology Chitkara University, Rajpura, Punjab, 140401, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering and Technology, NIMS University Rajasthan, Jaipur, India
| | | | | | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Xu T, Na J, Liu Q, Kuang G, Zhang Q, Zhao Y. The function of albumin and its application in tumor therapy. MATERIALS TODAY COMMUNICATIONS 2024; 41:110575. [DOI: 10.1016/j.mtcomm.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Zhang J, Ren X, Nie Z, You Y, Zhu Y, Chen H, Yu H, Mo GP, Su L, Peng Z, Tang MC. Dual-responsive renal injury cells targeting nanoparticles for vitamin E delivery to treat ischemia reperfusion-induced acute kidney injury. J Nanobiotechnology 2024; 22:626. [PMID: 39407248 PMCID: PMC11481814 DOI: 10.1186/s12951-024-02894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemia/reperfusion (I/R) is an important inducer of acute kidney injury (AKI), and triggers the generation of reactive oxygen species (ROS) and the expression of matrix metalloproteinase 2 (MMP2), exacerbating kidney damage. Given the immense potential of vitamin E (VitE) as a natural fat-soluble antioxidant in kidney protection, we designed the nanoparticles (NPs) that could dual respond to ROS and MMP2, aiming to accurately deliver VitE to renal injury cells. The NPs utilized Gel-SH as a sensitive receptor for MMP2 and diselenide as a sensitive receptor for ROS, while PEG2k modification enhanced biocompatibility and prevented phagocytosis mediated by the mononuclear phagocyte system. The amphiphilic Gel-SH and diselenide encapsulate the liposoluble VitE and self-assemble into the NPs with a hydrodynamic size of 69.92 nm. Both in vivo and in vitro experiments based on these NPs show good biocompatibility and the ability of target renal injury cells. In vivo kidney I/R injury models and in vitro cell hypoxia/reoxygenation models, the NPs have demonstrated effects in reducing oxidative stress and alleviating AKI. Notably, VitE can preferentially react with peroxyl radical (LOO•) than polyunsaturated fatty acid (PUFA), inhibiting the formation of carbon centered radical (L•), thereby blocking the chain reaction between PUFA and LOO• in ferroptosis. The NPs also inhibit the transition from AKI to chronic kidney disease, with few side effects. Thus, the NPs with dual-responsiveness to MMP2 and ROS for targeted delivery of VitE to renal injury cells exhibit remarkable effects in inhibiting ROS and the chain reactions of ferroptosis, making it a promising therapeutic agent against AKI caused by I/R.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xi Ren
- Dyson School of Design Engineering, Imperial College London, London, SW7 2BX, UK
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Zhaoyang Nie
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Yue You
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Yao Zhu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Hui Chen
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Haichuan Yu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Gaozhi P Mo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430000, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA.
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Liu Y, Sun X, Wang L, Dou Y, Tian Y, Yu T, Zhang Y, Zhao Q, Lu J, Feng Y, Wang J, Liu X, Shang Y, Li C, Yang Q. Sequential Targeted Enzyme-Instructed Self-Assembly Supramolecular Nanofibers to Attenuate Intervertebral Disc Degeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408678. [PMID: 39221659 DOI: 10.1002/adma.202408678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As an age-related disease, intervertebral disc degeneration is closely related to inflammation and aging. Inflammatory cytokines and cellular senescence collectively contribute to the degradation of intervertebral disc. Blocking this synergy reduces disc extracellular matrix damage caused by inflammation and aging. In this study, drug-loaded nanofibers with sequential targeting functions are constructed through intelligent response, hydrophilicity, and in situ self-assembly empowerment of flurbiprofen. The peptide precursor responds to the cleavage of overexpressed MMP-2 in the degenerative intervertebral disc microenvironment (intracellular and extracellular), resulting in the formation of self-assembled nanofibers that enable the on-demand release of flurbiprofen and COX-2 response. In vitro, Comp. 1 (Flurbiprofen-GFFYPLGLAGEEEERGD) reduces the expression of inflammation-related genes and proteins and the polarization of M1 macrophages by competitively inhibiting COX-2 and increases the expression of extracellular matrix proteins COL-2 and aggrecan. Additionally, it can reduce the expression of Senescence-Associated Secretory Phenotype and DNA damage in aged nucleus pulposus cells and promote the recovery of proliferation and cell cycle. In vivo, drug-loaded nanofibers delay intervertebral disc degeneration by inhibiting inflammation and preventing the accumulation of senescent cells. Therefore, the sequentially targeted self-assembled drug-loaded nanofibers can delay intervertebral disc degeneration by blocking the synergistic effect of inflammatory cytokines and cellular senescence.
Collapse
Affiliation(s)
- Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Lianlei Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Ye Tian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Tianyu Yu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Qingqian Zhao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, P. R. China
| |
Collapse
|
12
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
13
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
14
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
15
|
Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z. A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. BIOMATERIALS ADVANCES 2024; 159:213797. [PMID: 38368693 DOI: 10.1016/j.bioadv.2024.213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Reza Akbarizadeh
- Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sobhani
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhang Y, Liang Y. Fabrication of folic acid-modified bovine serum albumin cloaked dual-drug loaded hollow mesoporous silica nanoparticles for pH-responsive and targeted delivery of gastric cancer therapy. Heliyon 2024; 10:e29274. [PMID: 38699737 PMCID: PMC11063411 DOI: 10.1016/j.heliyon.2024.e29274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Combination therapy is a highly successful way to address the limitations of using a single treatment method and improve therapy's overall efficacy. In this study, we developed a unique hollow mesoporous silica nanoparticle (HMSN) coated with folic acid (FA)-modified bovine serum albumin (FA-BSA). This nanoparticle, referred to as HFB, was designed to target cancer cells and release dual therapeutic drugs, Indocyanine green (ICG) and Paclitaxel (PTX), in response to specific stimuli termed as HFB@IP. The BSA protein acts as a "gatekeeper" to prevent early drug releases and cargo leakage by detaching from BSA in reaction to GSH. The FA facilitates the targeted transport of the drug into cancer cells that express folate receptors (FR), enhancing the effectiveness of chemo-photodynamic treatment (PDT). The drug nanocarrier demonstrated in vitro pH/redox-triggered drug release from HFB@IP due to breaking the imine bonds between aldehyde-functionalized HMSN (CHO-HMSN) and FA-BSA with the disulfide bond inside BSA. In addition, various biological assessments, including cell uptake experiments, demonstrated that HFB@IP effectively targets SGC-7901 cells and induces apoptosis in vitro. Further, it exhibits remarkable efficiency in synergistically killing cancer cells through chemo-photodynamic therapy, as indicated by a combination index (CI) of 0.328. The results showed that combining HMSN with biodegradable stimuli-responsive BSA molecules could offer a promising approach for precise chemo-photodynamic therapy in treating gastric cancer, allowing for the controlled release of drugs as necessary.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Shengzhou Branch of Zhejiang University First Hospital, Shengzhou People's Hospital, Shengzhou, 312400, China
| | - Yuanxiao Liang
- Xinchang County People's Hospital, Xinchang, 312500, China
| |
Collapse
|
17
|
Zong L, Xu H, Zhang H, Tu Z, Zhang X, Wang S, Li M, Feng Y, Wang B, Li L, Xie X, He Z, Pu X. A review of matrix metalloproteinase-2-sensitive nanoparticles as a novel drug delivery for tumor therapy. Int J Biol Macromol 2024; 262:130043. [PMID: 38340921 DOI: 10.1016/j.ijbiomac.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hongliang Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ziwei Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Zhang
- Department of Pharmacy, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai City, Hebei Province 054001, China
| | - Shumin Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Meigui Li
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Yu Feng
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Binke Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Luhui Li
- Medical School, Henan Technical Institute, Kaifeng, Henan 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China.
| | - Zhonggui He
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China; Huaihe Hospital of Henan University, N. Jinming Ave., Kaifeng 475004, China.
| |
Collapse
|
18
|
Cai J, Yang Y, Zhang J, Bai Z, Zhang X, Li K, Shi M, Liu Z, Gao L, Wang J, Li J. Multilayer nanodrug delivery system with spatiotemporal drug release improves tumor microenvironment for synergistic anticancer therapy. Biofabrication 2024; 16:025012. [PMID: 38277678 DOI: 10.1088/1758-5090/ad22ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The inflammatory response is one of the general symptoms that accompany tumorigenesis, the pro-inflammatory factors cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandin-2 (PGE-2) in the inflammatory environment surrounding tumors possess promoting tumor development, metastasis and angiogenesis effects. In addition, the hypoxic environment of tumors severely limits the effectiveness of photodynamic therapy (PDT). In this study, a universal extracellular-intracellular 'on-demand' release nanomedicine DOX@PDA-ICG@MnO2@GN-CEL was developed for the combined fight against malignant tumors using a spatiotemporal controlled gelatin coated polydopamine (PDA@GN) as the carrier and loaded with the chemotherapeutic drug doxorubicin (DOX), the photosensitizer indocyanine green (ICG), the PDT enhancer MnO2and the anti-inflammatory drug celecoxib (CEL) individually. Our results showed that DOX@PDA-ICG@MnO2@GN-CEL could release CEL extracellularly by matrix metalloproteinase-2 response and inhibit the COX-2/PGE-2 pathway, reduce chemotherapy resistance and attenuate the concurrent inflammation. After entering the tumor cells, the remaining DOX@PDA-ICG@MnO2released DOX, ICG and MnO2intracellularly through PDA acid response. MnO2promoted the degradation of endogenous H2O2to generate oxygen under acidic conditions to alleviate the tumor hypoxic environment, enhance PDT triggered by ICG. PDA and ICG exhibited photothermal therapy synergistically, and DOX exerted chemotherapy with reduced chemotherapy resistance. The dual responsive drug release switch enabled the chemotherapeutic, photothermal, photodynamic and anti-inflammatory drugs precisely acted on different sites of tumor tissues and realized a promising multimodal combination therapy.
Collapse
Affiliation(s)
- Jiahui Cai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Yibo Yang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jia Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhimin Bai
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Xin Zhang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Kun Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Ming Shi
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhiwei Liu
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Liming Gao
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jian Li
- Nano-biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province 066000, People's Republic of China
| |
Collapse
|
19
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
20
|
Chen C, Wang S, Wang J, Yao F, Tang X, Guo W. Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 2023; 7:011501. [PMID: 36845905 PMCID: PMC9957606 DOI: 10.1063/5.0137026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments worldwide in the therapeutic care of osteosarcoma (OS), the ongoing challenges in overcoming limitations and side effects of chemotherapy drugs warrant new strategies to improve overall patient survival. Spurred by rapid progress in biomedicine, nanobiotechnology, and materials chemistry, chemotherapeutic drug delivery in treatment of OS has become possible in recent years. Here, we review recent advances in the design of drug delivery system, especially for chemotherapeutic drugs in OS, and discuss the relative merits in trials along with future therapeutic options. These advances may pave the way for novel therapies requisite for patients with OS.
Collapse
Affiliation(s)
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Juan Wang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Fangzhou Yao
- Wuzhen Laboratory, Jiaxing, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China,Author to whom correspondence should be addressed:. Tel.: ±86 18406559069
| |
Collapse
|
21
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
22
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
23
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Protein nanoparticles as natural drugs carriers for cancer therapy. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:2851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
26
|
Xiao S, Shi H, Zhang Y, Fan Y, Wang L, Xiang L, Liu Y, Zhao L, Fu S. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer. J Nanobiotechnology 2022; 20:178. [PMID: 35366890 PMCID: PMC8976953 DOI: 10.1186/s12951-022-01373-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022] Open
Abstract
Local hypoxia is a common feature of many solid tumors and may lead to unsatisfactory chemotherapy outcomes. Anaerobic bacteria that have an affinity to hypoxic areas can be used to achieve targeted drug delivery in tumor tissues. In this study, we developed a biocompatible bacteria/nanoparticles biohybrid (Bif@DOX-NPs) platform that employs the anaerobic Bifidobacterium infantis (Bif) to deliver adriamycin-loaded bovine serum albumin nanoparticles (DOX-NPs) into breast tumors. The Bif@DOX-NPs retained the targeting ability of B. infantis to hypoxic regions, as well as the cytotoxicity of DOX. The biohybrids were able to actively colonize the hypoxic tumors and significantly increased drug accumulation at the tumor site. The DOX concentration in the tumor masses colonized by Bif@DOX-NPs was 4 times higher than that in the free DOX-treated tumors, which significantly prolonged the median survival of the tumor-bearing mice to 69 days and reduced the toxic side-effects of DOX. Thus, anaerobic bacteria-based biohybrids are a highly promising tool for the targeted treatment of solid tumors with inaccessible hypoxic regions.
Collapse
|
27
|
A Feasible Strategy of Fabricating Redox-Responsive Polymeric Salinomycin Small Molecule Prodrug Delivery for Liver Cancer Therapy. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Giordo R, Wehbe Z, Paliogiannis P, Eid AH, Mangoni AA, Pintus G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin Cancer Biol 2022; 86:784-804. [DOI: 10.1016/j.semcancer.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
29
|
Yu Q, Jiang X, Liu X, Shen W, Mei X, Tian H, Wu C. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112668. [DOI: 10.1016/j.msec.2022.112668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
|
30
|
Zhao J, Song W, Tang Z, Chen X. Macromolecular Effects in Medicinal Chemistry ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Raza F, Siyu L, Zafar H, Kamal Z, Zheng B, Su J, Qiu M. Recent Advances in Gelatin-Based Nanomedicine for Targeted Delivery of Anti-Cancer Drugs. Curr Pharm Des 2021; 28:380-394. [PMID: 34727851 DOI: 10.2174/1381612827666211102100118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles based on natural polymers are utilized for the development of a wide range of drug delivery systems (DDS) in the current era. Gelatin-based nanoparticles, for example, are a remarkable cancer therapy with high efficacy and specificity. This paper reviews the recent advancements in gelatin-based nanomedicine for use in cancer therapeutics. Due to the characteristics features of gelatin, such as biocompatibility, biodegradability, stability, and good surface properties, these nanoparticles provide high therapeutic potency in cancer nanomedicine. The surface of gelatin can be modified in a number of ways using various ligands to explore the platform for the development of a more novel DDS. Various methods are available for the preparation of gelatin nanomedicine discussed in this review. In addition, various cross-linkers to stabilized nanocarriers and stimuli base gelatin nanoparticles are reviewed. Furthermore, recent advances and research in gelatin-based nanomedicine are discussed. Also, some drawbacks and challenges are evaluated. In general, this paper paves the pathway to identify the details about the gelatin-based DDS for cancer therapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Liu Siyu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Zul Kamal
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240. China
| |
Collapse
|
32
|
Chen TT, Yuan MM, Tao YM, Ren XY, Li S. Engineering of Self-assembly Polymers Encapsulated with Dual Anticancer Drugs for the Treatment of Endometrial Cancer. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Morsink M, Parente L, Silva F, Abrantes A, Ramos A, Primo I, Willemen N, Sanchez-Lopez E, Severino P, Souto EB. Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Curr Pharm Des 2021; 28:104-115. [PMID: 34348617 DOI: 10.2174/1381612827666210804102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
With the worldwide increasing rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market it is important to achieve high quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.
Collapse
Affiliation(s)
- Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Lucia Parente
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Fernanda Silva
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Alexandra Abrantes
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Ana Ramos
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Inês Primo
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Elena Sanchez-Lopez
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| |
Collapse
|
34
|
Liu D, Zhang W, Liu X, Qiu R. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells. Drug Deliv 2021; 28:776-786. [PMID: 33866910 PMCID: PMC8079022 DOI: 10.1080/10717544.2021.1902022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cancers continue to be the second leading cause of death worldwide. Despite the development and improvement of surgery, chemotherapy, and radiotherapy in cancer management, effective tumor ablation strategies are still in need due to high cancer patient mortality. Hence, we have established a new approach to achieve treatment-actuated modifications in a tumor microenvironment by using synergistic activity between two potential anticancer drugs. Dual drug delivery of gemcitabine (GEM) and cisplatin (PT) exhibits a great anticancer potential, as GEM enhances the effect of PT treatment of human cells by providing stability of the microenvironment. However, encapsulation of GEM and PT fanatical by methoxypoly(ethylene glycol)-block-poly(D, L-lactic acid) (PEG-PLA in termed as NPs) is incompetent owing to unsuitability between the binary Free GEM and PT core and the macromolecular system. Now, we display that PT can be prepared by hydrophobic coating of the dual drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered PT can be co-encapsulated in PLGA NPs alongside GEM to stimulate excellent anticancer property. The occurrence of the PT suggestively enhanced the encapsulations of GEM into PLGA NPs (GEM-PT NPs). Further, the morphology of GEM NPs, PT NPs, and GEM-PT NPs and nanoparticle size was examined by transmission microscopy (TEM), respectively. Furthermore GEM-PT NPs induced significant apoptosis in human nasopharyngeal carcinoma CNE2 and SUNE1 cancer cells by in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assays (AO-EB, nuclear staining, and annexin V-FITC). In a xenograft model of nasopharyngeal cancer, this nanotherapy shows a durable inhibition of tumor progression upon the administration of a tolerable dose. Our results suggest that a macromolecular hydrophobic and highly toxic drug can be rationally converted into a pharmacologically efficient and self-deliverable of nanotherapy.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenguang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinju Liu
- Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongliang Qiu
- Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Li Y, Yang M, Zhao Y, Li L, Xu W. Preparation and in vitro evaluation of amphiphilic paclitaxel small molecule prodrugs and enhancement of oral absorption. Eur J Med Chem 2021; 215:113276. [PMID: 33611186 DOI: 10.1016/j.ejmech.2021.113276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
A series of novel amphiphilic paclitaxel (PTX) small molecule prodrugs, PTX-succinic anhydride-cystamine (PTX-Cys), PTX-dithiodipropionic anhydride (PTX-SS-COOH) and PTX-succinic anhydride-cystamine-valine (PTX-SS-Val) were designed, synthesized and evaluated against cancer cell lines. Compared with paclitaxel, these prodrugs contained water-soluble groups such as amino, carboxyl and amino acid, which improved the aqueous solubility of the prodrugs. More importantly, the valine was introduced in PTX-SS-Val molecule and made the molecule conform to the structural characteristics of intestinal oligopeptide transporter PEPT1 substrate. Thus the oral bioavailability of prodrug could be improved because of the mediation of PEPT1 transporter. These small molecule paclitaxel prodrugs could self-assemble into nanoparticles in aqueous solution, which effectively improved the solubility of paclitaxel, and had certain stability in pH 6.5, pH 7.4 buffer solutions and simulated gastrointestinal fluids. Some of these prodrugs, especially for PTX-Cys and PTX-SS-Val, exhibited nearly equal or slightly better anticancer activity when compared to paclitaxel. Further studies on PTX-Cys and PTX-SS-Val showed that both had good intestinal absorption in the rat single-pass intestinal perfusion (SPIP) experiments. Oral pharmacokinetic experiments showed that PTX-SS-Val could effectively improve the oral bioavailability of PTX.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Min Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Yanli Zhao
- Shandong Mental Health Center, Jinan, Shandong Province, China
| | - Lingbing Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| | - Wei Xu
- Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, China; Shandong Provincial Qianfoshan Hospital, Shandong University, China.
| |
Collapse
|
36
|
Wu B, Li M, Wang L, Iqbal Z, Zhu K, Yang Y, Li Y. Size-transformable nanohybrids with pH/redox/enzymatic sensitivity for anticancer therapy. J Mater Chem B 2021; 9:4319-4328. [PMID: 34013937 DOI: 10.1039/d1tb00396h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lack of sufficient tumor penetration and low delivery efficiency are the main reasons for the limited clinical applications of nanocarriers in cancer treatment. Tumor microenvironment responsive drug delivery systems have been attracting great interest in cancer therapy as the desired drug release can be achieved in the disease sites for optimal treatment efficiency. In this work, we developed a biodegradable nanohybrid drug delivery system with pH/redox/enzymatic sensitivity by the simple assembly of bovine serum albumin nano-units (about 5 nm) onto graphene oxide nanosheets in the presence of a naturally originating protein (gelatin). The nanoparticles can maintain a constant size under physiological conditions, while releasing 5 nm nano-units containing the drug upon triggering by the environment-mimicking protease highly expressed in the tumor microenvironment. Furthermore, after reaching the tumor tissue, the acidic, reductive, and enzymatic microenvironments turned on the switch for DOX release, and the combination of chemotherapy and photothermal therapy was achieved under the trigger of near-infrared light. The nanosystems have the potential to improve the penetration ability through the depth of the tumor tissue to enhance drug intracellular delivery and antitumor bioactivity.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingpei Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liudi Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Zoya Iqbal
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiqi Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuhao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulin Li
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
Xiao Y, Gao Y, Li F, Deng Z. Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients. Drug Deliv 2020; 27:1491-1500. [PMID: 33100060 PMCID: PMC7594745 DOI: 10.1080/10717544.2020.1822460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is a frequently occurring cancer with high mortality each year worldwide. Finding new and effective therapeutic strategy against human gastric cancer is still urgently required. Hence, we have established a new method to achieve treatment-actuated modifications in a tumor microenvironment by utilizing synergistic activity between two potential anticancer drugs. Dual drug delivery of gemcitabine (GEM) and Camptothecin-11 (CPT-11) exhibits a great anti-cancer potential, as GEM enhances the effect of CPT-11 treatment of human gastric cells by providing microenvironment stability. However, encapsulation of GEM and CPT-11 obsessed by poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) is incompetent owing to unsuitability between the binary free GEM and CPT-11 moieties and the polymeric system. Now, we display that CPT-11 can be prepared by hydrophobic covering of the drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered CPT-11 can be co-encapsulated in PLGA NPs alongside GEM to stimulate excellent anticancer property. The occurrence of the CPT-11 suggestively enhanced the encapsulations of GEM into PLGA NPs (GEM-CPT-11 NPs). Formation of the nanocomposite (GEM-CPT-11 NPs) was confirmed by FTIR and X-ray spectroscopic techniques. Further, the morphology of GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs and NP size was examined by transmission electron microscopy (TEM), respectively. Furthermore, GEM-CPT-11 NPs induced significant apoptosis in human gastric NCI-N87 and SGC-791 cancer cells in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assays (AO-EB, nuclear staining, and annexin V-FITC). In addition, evaluation of the hemolysis assay with erythrocytes of human shows excellent biocompatibility of free GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs. The results suggest that GEM-CPT-11 NPs are one of the promising nursing cares for human gastric cancer therapeutic candidates worthy of further investigations.
Collapse
Affiliation(s)
- Ying Xiao
- Second Department of General Surgery, Xinxiang Central Hospital, Xinxiang, PR China
| | - Yuewen Gao
- Department of General Surgery, Rizhao People's Hospital, Rizhao, PR China
| | - Fajuan Li
- Department of General Surgery, Rizhao People's Hospital, Rizhao, PR China
| | - Zhihe Deng
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
38
|
Li Y, Chen X, Ji J, Li L, Zhai G. Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel. Carbohydr Polym 2020; 255:117393. [PMID: 33436222 DOI: 10.1016/j.carbpol.2020.117393] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
In this paper, a novel redox-responsive nanoparticles has been designed for targeted delivery of docetaxel (DTX). Chondroitin sulfate (CS) was used to construct the nanoparticles due to the ability of tumor targeting through binding with CD44 receptor that overexpresses on the surfaces of various tumor cells. A redox-responsive small-molecular DTX prodrug was prepared through modifying with cystamine containing disulfide bonds (Cys-DTX). Then the DTX prodrug was grafted to the CS to construct the amphiphilic polymer (CS-ss-DTX). Further, Cys-DTX/CS-ss-DTX nanoparticles were formed by self-assembly of amphiphilic polymer and incorporation of free Cys-DTX prodrug. This category of nanosized DTX delivery system was expected for not only exhibiting high permeability and cytotoxicity of Cys-DTX prodrug, but also targeting transportation of encapsulated redox-responsive Cys-DTX prodrug. According to results of related researches on physicochemical properties and biological evaluation, the novel redox-responsive Cys-DTX/CS-ss-DTX nanoparticles increased amount of DTX released from the nanoparticles in reductive environment, improved permeability in tumor tissues, enhanced cytotoxicity and decreased side effects compared with free DTX. All of these results showed that this kind of Cys-DTX/CS-ss-DTX nanoparticles were worthy of being expectation in tumor chemotherapy in future.
Collapse
Affiliation(s)
- Yimu Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China; Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, 201203, Shanghai, China
| | - Xuling Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Lingbing Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|