1
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2025; 62:6655-6682. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Wang L, Ma L, Gao Z, Wang Y, Qiu J. Significance of gene therapy in neurodegenerative diseases. Front Neurosci 2025; 19:1515255. [PMID: 40406043 PMCID: PMC12095248 DOI: 10.3389/fnins.2025.1515255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
Gene therapy is an approach that employs vectors to deliver genetic material to target cells, aiming to correct genes with pathogenic mutations and modulate one or more genes responsible for disease progression. It holds significant value for clinical applications and offers broad market potential due to the large patient population affected by various conditions. For instance, in 2023, the Food and Drug Administration (FDA) approved 55 new drugs, including five specifically for gene therapy targeting hematologic and rare diseases. Recently, with advancements in understanding the pathogenesis and development of neurodegenerative diseases (NDDs), gene therapy has emerged as a promising avenue for treating Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), particularly in personalized medicine. Notably, the FDA has approved three clinical applications for combating SMA, utilizing viral vectors delivered via intravenous and intrathecal injections. However, gene therapy for other NDDs remains in clinical trials, necessitating improvements in viral vectors, exploration of new vectors, optimization of delivery routes, and further investigation into pathogenesis to identify novel targets. This review discusses recent advancements in gene therapy for NDDs, offering insights into developing new therapeutic strategies.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Lin Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao, China
| | - Zihan Gao
- Department of Internal Medicine of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Wang
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| | - Jiaoxue Qiu
- Department of Neurology, Yantai Shan Hospital, Yantai, China
| |
Collapse
|
3
|
Sabnam S, Kumar R, Pranav. Biofunctionalized nanomaterials for Parkinson's disease theranostics: potential for efficient PD biomarker detection and effective therapy. Biomater Sci 2025; 13:2201-2234. [PMID: 40036044 DOI: 10.1039/d5bm00179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
α-Synuclein (α-Syn) is a primary pathological indicator for Parkinson's disease (PD). The α-Syn oligomer is even more toxic and is responsible for PD. Hence, identifying α-Syn and its oligomers is an interesting approach to diagnosing PD. The prevention strategies for oligomer formation could be therapeutic in treating PD. Various conventional strategies have been developed for the management of PD. However, their clinical applications are limited due to toxicity, off-targeting, side effects, and poor bioavailability. Recently, nanomaterials have gained significant attention due to unique physicochemical characteristics such as nanoscale size, large surface area, flexibility of functionalization, and ability to protect and control a loaded payload. Functionalizing the surface of nanoparticles with a desired targeting agent could offer targeted delivery of the payload at the site of action due to specificity and selectivity against complementary molecules. Among various functionalization approaches, biomolecule-functionalized nanomaterials offer benefits such as enhanced bioavailability, improved internalization into target cells through receptor-mediated endocytosis, and delivery of therapeutics across the BBB (blood-brain barrier). In this review, we initially discussed the major milestones related to PD and highlighted the therapeutic strategies focused on clinical trials. The strategies of biomolecule functionalization of nanomaterials and their application in detecting and preventing α-Syn oligomer for the diagnosis and therapy of PD, respectively, have been reviewed comprehensively. Ultimately, we have outlined the conclusions, highlighted the limitations and challenges, and provided insight into future perspectives and alternative approaches that must be investigated.
Collapse
Affiliation(s)
- Saheli Sabnam
- Centre for Nanosciences, Indian Institute of Technology Kanpur, India-208016
| | - Raj Kumar
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab-140413, India.
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, India-632014.
| |
Collapse
|
4
|
Mansour A, Eldin MH, El-Sherbiny IM. Metallic nanomaterials in Parkinson's disease: a transformative approach for early detection and targeted therapy. J Mater Chem B 2025; 13:3806-3830. [PMID: 40029109 DOI: 10.1039/d4tb02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by substantial loss of dopaminergic neurons in the substantia nigra, leading to both motor and non-motor symptoms that significantly impact quality of life. The prevalence of PD is expected to increase with the aging population, affecting millions globally. Current detection techniques, including clinical assays and neuroimaging, lack the sensitivity and specificity to sense PD in its earliest stages. Despite extensive research, there is no cure for PD, and available treatments primarily focus on symptomatic relief rather than halting disease progression. Conventional treatments, such as levodopa and dopamine agonists, provide limited and often temporary relief, with long-term use associated with significant side effects and diminished efficacy. Nanotechnology, particularly the use of metallic-based nanomaterials (MNMs), offers a promising approach to overcome these limitations. MNMs, due to their unique physicochemical properties, can be engineered to target specific cellular and molecular mechanisms involved in PD. These MNMs can improve drug delivery, enhance imaging and biosensing techniques, and provide neuroprotective effects. For example, gold and silver nanoparticles have shown potential in crossing the blood-brain barrier, providing real-time imaging for early diagnosis and delivering therapeutic agents directly to the affected neurons. This review aims to reveal the current advancements in the use of MNMs for the detection and treatment of PD. It will provide a comprehensive overview of the limitations of conventional detection techniques and therapies, followed by a detailed discussion on how nanotechnology can address these challenges. The review will also highlight recent preclinical research and examine the potential toxicity of MNMs. By emphasizing the potential of MNMs, this review article aims to underscore the transformative impact of nanotechnology in revolutionizing the detection and treatment of PD.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| |
Collapse
|
5
|
Mun JH, Jang MJ, Kim WS, Kim SS, Lee B, Moon H, Oh SJ, Ryu CH, Park KS, Cho IH, Hong GS, Choi CW, Lee C, Kim MS. Enhanced Cognitive and Memory Functions via Gold Nanoparticle-Mediated Delivery of Afzelin through Synaptic Modulation Pathways in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2025; 16:826-843. [PMID: 39976589 DOI: 10.1021/acschemneuro.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Gold nanoparticles (AuNPs) are valuable tools in pharmacological and biological research, offering unique properties for drug delivery in the treatment of neurodegenerative diseases. This study investigates the potential of gold nanoparticles loaded with afzelin, a natural chemical extracted from Ribes fasciculatum, to enhance its therapeutic effects and overcome the limitations of using natural compounds regarding low productivity. We hypothesized that the combined treatment of AuNPs with afzelin (AuNP-afzelin) would remarkably enforce neuroprotective effects compared with the single treatment of afzelin. Central administration of AuNP-afzelin (10 ng of afzelin) indicated improvements in cognition and memory-involved assessments of behavioral tests, comparing single treatments of afzelin (10 or 100 ng of afzelin) in scopolamine-induced AD mice. AuNP-afzelin also performed superior neuroprotective effects of rescuing mature neuronal cells and recovered cholinergic dysfunction compared to afzelin alone, according to further investigations of BDNF-pCREB-pAkt signaling, long-term potentiation, and doublecortin (DCX) expression in the hippocampus. This study highlights the potential of afzelin with gold nanoparticles as a promising therapeutic approach for mitigating cognitive impairments associated with neurodegenerative diseases and offers a new avenue for future research and drug development.
Collapse
Affiliation(s)
- Ju Hee Mun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Seok Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Seop Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - HyunSeon Moon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Cheol-Hui Ryu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Su Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Changhyuk Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Wilar G, Suhandi C, Wathoni N, Fukunaga K, Kawahata I. Nanoparticle-Based Drug Delivery Systems Enhance Treatment of Cognitive Defects. Int J Nanomedicine 2024; 19:11357-11378. [PMID: 39524925 PMCID: PMC11550695 DOI: 10.2147/ijn.s484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticle-based drug delivery presents a promising solution in enhancing therapies for neurological diseases, particularly cognitive impairment. These nanoparticles address challenges related to the physicochemical profiles of drugs that hinder their delivery to the central nervous system (CNS). Benefits include improved solubility due to particle size reduction, enhanced drug penetration across the blood-brain barrier (BBB), and sustained release mechanisms suitable for long-term therapy. Successful application of nanoparticle delivery systems requires careful consideration of their characteristics tailored for CNS delivery, encompassing particle size and distribution, surface charge and morphology, loading capacity, and drug release kinetics. Literature review reveals three main types of nanoparticles developed for cognitive function enhancement: polymeric nanoparticles, lipid-based nanoparticles, and metallic or inorganic nanoparticles. Each type and its production methods possess distinct advantages and limitations. Further modifications such as coating agents or ligand conjugation have been explored to enhance their brain cell uptake. Evidence supporting their development shows improved efficacy outcomes, evidenced by enhanced cognitive function assessments, modulation of pro-oxidant markers, and anti-inflammatory activities. Despite these advancements, clinical trials validating the efficacy of nanoparticle systems in treating cognitive defects are lacking. Therefore, these findings underscore the need for researchers to expedite clinical testing to provide robust evidence of the potential of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
7
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
9
|
Di Francesco V, Chua AJ, Huang D, D'Souza A, Yang A, Bleier BS, Amiji MM. RNA therapies for CNS diseases. Adv Drug Deliv Rev 2024; 208:115283. [PMID: 38494152 DOI: 10.1016/j.addr.2024.115283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.
Collapse
Affiliation(s)
- Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Hashemzadeh V, Hashemzadeh A, Mohebbati R, Arefi RG, Yazdi MET. Fabrication and characterization of gold nanoparticles using alginate: In vitro and in vivo assessment of its administration effects with swimming exercise on diabetic rats. Open Life Sci 2024; 19:20220869. [PMID: 38645750 PMCID: PMC11032099 DOI: 10.1515/biol-2022-0869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Gold nanoparticles (AuNPs) have unique features that might lead to the development of a new class of diabetic medicines. AuNPs were biosynthesized utilizing sodium-alginate. UV-Vis-spectroscopy, Fourier transforms infrared, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray were used to examine the particles. The potential of AuNPs for improving the diabetes condition was examined along with swimming in rats. FESEM image revealed the spherical morphology with an average particle size of 106.6 ± 20.8 nm. In the diabetic group, serum glucose, blood urea nitrogen (BUN), creatinine, cholesterol, and triglyceride (TG) levels were significantly higher than the control group. Low-density lipoprotein (LDL) was significantly higher and high-density lipoprotein (HDL) was significantly lower in the diabetic group compared to the control group. Malondialdehyde (MDA) levels were also significantly higher in the D group. However, in the groups treated with swimming and gold, these parameters were significantly improved. Specifically, serum-glucose, BUN, creatinine, cholesterol, and TG levels were significantly reduced, while LDL was significantly decreased in the diabetic + swimming + AuNPs group and HDL was significantly increased in the diabetic + AuNPs group. MDA levels were significantly decreased in the treated groups, and other antioxidants were significantly improved in the diabetic + swimming + AuNPs group. Catalase levels were also significantly improved in the D + gold group. It can be concluded that both AuNPs and swimming can decrease diabetic complications.
Collapse
Affiliation(s)
- Vahideh Hashemzadeh
- Department of Sport Science, Binaloud Institute of Higher Education, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Pharmacology, Medicinal Plants, Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Gharari Arefi
- Department of Sport Science, Binaloud Institute of Higher Education, Mashhad, Iran
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants, Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
12
|
Kong J, Zou R, Chu R, Hu N, Liu J, Sun Y, Ge X, Mao M, Yu H, Wang Y. An Ultrasmall Cu/Cu 2O Nanoparticle-Based Diselenide-Bridged Nanoplatform Mediating Reactive Oxygen Species Scavenging and Neuronal Membrane Enhancement for Targeted Therapy of Ischemic Stroke. ACS NANO 2024; 18:4140-4158. [PMID: 38134247 DOI: 10.1021/acsnano.3c08734] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Ischemic stroke is one of the major causes of death and disability worldwide, and an effective and timely treatment of ischemic stroke has been a challenge because of the narrow therapeutic window and the poor affinity with thrombus of the thrombolytic agent. In this study, rPZDCu, a multifunctional nanoparticle (NP) with the effects of thrombolysis, reactive oxygen species (ROS) scavenging, and neuroprotection, was synthesized based on an ultrasmall Cu4.6O NP, the thrombolytic agent rt-PA, and docosahexaenoic acid (DHA), which is a major component of the neuronal membrane. rPZDCu showed strong thrombus-targeting ability, which was achieved by the platelet cell membrane coating on the NP surface, and a good thrombolytic effect in both the common carotid artery clot model and embolic middle cerebral artery occlusion (MCAO) model of rats. Furthermore, rPZDCu exhibited a good escape from the phagocytosis of macrophages, effective promotion of the polarization of microglia, and efficient recovery of neurobiological and behavioral functions in the embolic MCAO model of rats. This is a heuristic report of (1) the Cu0/Cu+ NP for the treatments of brain diseases, (2) the integration of DHA and ROS scavengers for central nervous system therapies, and (3) diselenide-based ROS-responsive NPs for ischemic stroke treatments. This study also offers an example of cell membrane-camouflaged stimuli-responsive nanomedicine for brain-targeting drug delivery.
Collapse
Affiliation(s)
- Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Zou
- Department of Nuclear Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Runxuan Chu
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China
| | - Nan Hu
- Changchun Institute of Technology, Changchun 130012, People's Republic of China
| | - Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| |
Collapse
|
13
|
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
14
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
15
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
16
|
Huang SY, Su ZY, Han YY, Liu L, Shang YJ, Mai ZF, Zeng ZW, Li CH. Cordycepin improved the cognitive function through regulating adenosine A 2A receptors in MPTP induced Parkinson's disease mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154649. [PMID: 36634379 DOI: 10.1016/j.phymed.2023.154649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD), the most common neurodegenerative disorder, primarily affects dopaminergic neurons in the substantia nigra (SN). In addition to severe motor dysfunction, PD patients appear apparent cognitive impairments in the late stage. Cognitive dysfunction is accompanied by synaptic transmission damage in the hippocampus. Cordycepin has been reported to alleviate cognitive impairments in neurodegenerative diseases. PURPOSE The study aimed to estimate the protection roles of cordycepin on cognitive dysfunction in PD model and explore the potential mechanisms. METHODS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the PD model in vivo and in vitro experiments. In the in vivo experiments, the C57BL / 6 mice were intraperitoneally injected with MPTP and intragastric administration with cordycepin. Open field test (OFT) was used to estimate the exercise ability. Spontaneous alternation behavioral (SAB) and morris water maze (MWM) tests were used to evaluate the learning and memory abilities. The hippocampal slices from C57BL / 6 and Kunming mice in the in vitro experiments were used to record field excitatory postsynaptic potential (fEPSP) by electrophysiological methods. Western blotting was used to examine the level of tyrosine hydroxylase (TH) in the in vivo experiments and the levels of adenosine A1 and A2A receptors (A1R and A2AR) in the in vitro experiments, respectively. The drugs of MPTP, cordycepin, DPCPX and SCH58261 were perfused through dissolving in artificial cerebrospinal fluid. RESULTS Cordycepin could significantly reduce the impairments on motor, exploration, spatial learning and memory induce by MPTP. MPTP reduced the amplitude of LTP in hippocampal CA1 area but cordycepin could improve LTP amplitudes. Cordycepin at dosage of 20 mg/kg also increased the TH level in SN. In the in vitro experiments, MPTP inhibited synaptic transmission in hippocampal Schaffer-CA1 pathway with a dose-dependent relationship, while cordycepin could reverse the inhibition of synaptic transmission. Furthermore, the roles of cordycepin on synaptic transmission could been attenuated in the presence of the antagonists of A1R and A2AR, DPCPX and SCH58261, respectively. Interestingly, the level of A2AR rather than A1R in hippocampus was significantly decreased in the cordycepin group as compared to the control. CONCLUSION The present study has showed that cordycepin could improve cognitive function in the PD model induced by MPTP through regulating the adenosine A2A receptors. These findings were helpful to provide a new strategy for the dementia caused by Parkinson's disease.
Collapse
Affiliation(s)
- Shu-Yi Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zong-Ying Su
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zi-Fan Mai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhi-Wei Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
17
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
18
|
Akter Z, Khan FZ, Khan MA. Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics. Curr Med Chem 2023; 30:316-334. [PMID: 34477507 DOI: 10.2174/0929867328666210902141257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
Collapse
Affiliation(s)
- Zakia Akter
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas, USA
| | - Fabiha Zaheen Khan
- Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Md Asaduzzaman Khan
- Key laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
19
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022; 14:2425. [PMID: 36365243 PMCID: PMC9698227 DOI: 10.3390/pharmaceutics14112425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2023] Open
Abstract
It has been estimated that every year, millions of people are affected by neurodegenerative disorders, which complicate their lives and their caregivers' lives. To date, there has not been an approved pharmacological approach to provide the complete treatment of neurodegenerative disorders. The only available drugs may only relieve the symptoms or slow down the progression of the disease. The absence of any treatment is quite rational given that neurodegeneration occurs by the progressive loss of the function or structure of the nerve cells of the brain or the peripheral nervous system, which eventually leads to their death either by apoptosis or necrotic cell death. According to a recent study, even though adult brain cells are injured, they can revert to an embryonic state, which may help to restore their function. These interesting findings might open a new path for the development of more efficient therapeutic strategies to combat devastating neurodegenerative disorders. Gene and protein therapies have emerged as a rapidly growing field for various disorders, especially neurodegenerative diseases. Despite these promising therapies, the complete treatment of neurodegenerative disorders has not yet been achieved. Therefore, the aim of this review is to address the most up-to-date data for neurodegenerative diseases, but most importantly, to summarize the available delivery systems incorporating proteins, peptides, and genes that can potentially target such diseases and pass into the blood-brain barrier. The authors highlight the advancements, at present, on delivery based on the carrier, i.e., lipid, polymeric, and inorganic, as well as the recent studies on radiopharmaceutical theranostics.
Collapse
Affiliation(s)
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Pelin Dilsiz Erim
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey
- Faculty of Pharmacy, Altınbaş University, Istanbul 34217, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Emre Özgenç
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Evren Gündoğdu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Institute of Health Sciences, İstanbul Medipol University, Istanbul 34810, Turkey
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| |
Collapse
|
21
|
Paul A, Collins MG, Lee HY. Gene Therapy: The Next-Generation Therapeutics and Their Delivery Approaches for Neurological Disorders. Front Genome Ed 2022; 4:899209. [PMID: 35832929 PMCID: PMC9272754 DOI: 10.3389/fgeed.2022.899209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neurological conditions like neurodevelopmental disorders and neurodegenerative diseases are quite complex and often exceedingly difficult for patients. Most of these conditions are due to a mutation in a critical gene. There is no cure for the majority of these neurological conditions and the availability of disease-modifying therapeutics is quite rare. The lion's share of the treatments that are available only provide symptomatic relief, as such, we are in desperate need of an effective therapeutic strategy for these conditions. Considering the current drug development landscape, gene therapy is giving us hope as one such effective therapeutic strategy. Consistent efforts have been made to develop gene therapy strategies using viral and non-viral vectors of gene delivery. Here, we have discussed both of these delivery methods and their properties. We have summarized the relative advantages and drawbacks of viral and non-viral vectors from the perspectives of safety, efficiency, and productivity. Recent developments such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and its use in vivo have been described here as well. Given recent advancements, gene therapy shows great promise to emerge as a next-generation therapeutic for many of the neurodevelopmental and neurodegenerative conditions.
Collapse
|
22
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. NANO-MICRO LETTERS 2022; 14:105. [PMID: 35426525 PMCID: PMC9012800 DOI: 10.1007/s40820-022-00847-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood-brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People's Republic of China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
24
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
25
|
Nano-MgO composites containing plasmid DNA to silence SNCA gene displays neuroprotective effects in Parkinson's rats induced by 6-hydroxydopamine. Eur J Pharmacol 2022; 922:174904. [DOI: 10.1016/j.ejphar.2022.174904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
26
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Singh A, Maharana SK, Shukla R, Kesharwani P. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Zhou X, Guo Q, Guo M, Li B, Peng W, Wang D, Ming D, Zheng B. Nanoarmour-shielded single-cell factory for bacteriotherapy of Parkinson's disease. J Control Release 2021; 338:742-753. [PMID: 34517041 DOI: 10.1016/j.jconrel.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/15/2023]
Abstract
Cell-based therapy for Parkinson's disease (PD) is a novel and promising approach in recent years. However, exogenous cells are easy to be captured and destroyed by the harsh environment in vivo, so their application prospects have been severely limited. Here, a facile yet versatile approach for decorating individual living cells with nano-armor coatings is reported. By simply self-assembly with liposome under a cyto-compatible condition, the lipid bimolecular coating on the surface of each cell acts as armor to effectively protect it from the attack and destruction of strong acids and digestive enzymes during the oral treatment of PD. Our results demonstrated that the liposome coated B. adolescentis (LCB) could significantly improve the colonization rate in the intestinal tract. LCB, as a living cell factory, can self-regulate to produce a constant concentration of γ-aminobutyric acid and maintain a longer half-life for the treatment of PD. Then, we also explored the specific mechanism of LCB to improve the behavior of murine models of PD, including abating inflammatory effects, reducing neuronal apoptosis, regulating the activity of dopaminergic neurons and microglia. The simple nano-armor shielded single-cell factory can produce neurotransmitters-like drugs on demand in vivo, introducing novel strategies of integration of producing and using to the research of drug delivery field.
Collapse
Affiliation(s)
- Xin Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; College of Medical Imaging, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Qinglu Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Wenchang Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Deping Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; College of Medical Imaging, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair, Beijing Tangyi Huikang Biomedical Technology Co., Ltd, Beijing 100010, China.
| |
Collapse
|
29
|
Zu H, Gao D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS JOURNAL 2021; 23:78. [PMID: 34076797 PMCID: PMC8171234 DOI: 10.1208/s12248-021-00608-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Gene therapy has been experiencing a breakthrough in recent years, targeting various specific cell groups in numerous therapeutic areas. However, most recent clinical studies maintain the use of traditional viral vector systems, which are challenging to manufacture cost-effectively at a commercial scale. Non-viral vectors have been a fast-paced research topic in gene delivery, such as polymers, lipids, inorganic particles, and combinations of different types. Although non-viral vectors are low in their cytotoxicity, immunogenicity, and mutagenesis, attracting more and more researchers to explore the promising delivery system, they do not carry ideal characteristics and have faced critical challenges, including gene transfer efficiency, specificity, gene expression duration, and safety. This review covers the recent advancement in non-viral vectors research and formulation aspects, the challenges, and future perspectives.
Collapse
Affiliation(s)
- Hui Zu
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA
| | - Danchen Gao
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA.
| |
Collapse
|
30
|
Duwa R, Jeong JH, Yook S. Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|