1
|
Xu X, Feng J, Lin T, Liu R, Chen Z. miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway. J Funct Biomater 2024; 15:385. [PMID: 39728185 DOI: 10.3390/jfb15120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.
Collapse
Affiliation(s)
- Xiongjun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Junming Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Tianze Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
2
|
Li M, Liu J, Li Y, Chen W, Yang Z, Zou Y, Liu Y, Lu Y, Cao J. Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2790-2806. [PMID: 39155420 DOI: 10.1080/09205063.2024.2390745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, in vitro experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of Escherichia coli and Staphylococcus aureus, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.
Collapse
Affiliation(s)
- Mengjue Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yutong Li
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Wenyu Chen
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Zhou Yang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Yayu Zou
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| | - Yi Liu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Yue Lu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, People's Republic of China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Li F, Chen C, Chen X. Tremendous advances, multifaceted challenges and feasible future prospects of biodegradable medical polymer materials. RSC Adv 2024; 14:32267-32283. [PMID: 39399258 PMCID: PMC11468490 DOI: 10.1039/d4ra00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
In recent years, biodegradable medical polymer materials (BMPMs) have stood out among many biomedical materials due to their unique advantages, such as high mechanical strength, good biocompatibility, strong corrosion resistance and excellent processability. In this review, we first provide a brief introduction of biodegradable medical materials from both natural and synthetic perspectives, and then systematically categorize BMPMs based on their applications in clinical medicine and highlight the great progress they have made in recent years. Additionally, we also point out several overlooked areas in the research of BMPMs, offering guidance for comprehensive future exploration of these materials. Finally, in view of the complex challenges faced by BMPMs today, their future directions are scientifically proposed. This work contributes to the ongoing efforts of BMPMs in the biomedical field and provides a steppingstone for developing more effective BMPM-based products for clinical applications.
Collapse
Affiliation(s)
- Fulong Li
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Chao Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Xiaohong Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials Shanghai 200093 China
| |
Collapse
|
4
|
Maherani M, Eslami H, Poursamar SA, Ansari M. A modular approach to 3D-printed bilayer composite scaffolds for osteochondral tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:62. [PMID: 39370474 PMCID: PMC11456551 DOI: 10.1007/s10856-024-06824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 10/08/2024]
Abstract
Prolonged osteochondral tissue engineering damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. To overcome this problem, in this study, a bilayer scaffold for osteochondral tissue regeneration was fabricated using 3D printing technology which containing a layer of PCL/hydroxyapatite (HA) nanoparticles and another layer of PCL/gelatin with various concentrations of fibrin (10, 20 and 30 wt.%). These printed scaffolds were evaluated with SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared Spectroscopy) and mechanical properties. The results showed that the porous scaffolds fabricated with pore size of 210-255 µm. Following, the ductility increased with the further addition of fibrin in bilayer composites which showed these composites scaffolds are suitable for the cartilage part of osteochondral. Also, the contact angle results demonstrated the incorporation of fibrin in bilayer scaffolds based on PCL matrix, can lead to a decrease in contact angle and result in the improvement of hydrophilicity that confirmed by increasing the degradation rate of scaffolds containing further fibrin percentage. The bioactivity study of bilayer scaffolds indicated that both fibrin and hydroxyapatite can significantly improve the cell attachment on fabricated scaffolds. The MTT assay, DAPI and Alizarin red tests of bilayer composite scaffolds showed that samples containing 30% fibrin have the more biocompatibility than that of samples with 10 and 20% fibrin which indicated the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maryam Maherani
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
5
|
Cui D, Guo W, Chang J, Fan S, Bai X, Li L, Yang C, Wang C, Li M, Fei J. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with basic fibroblast growth factor for wound healing. Mater Today Bio 2024; 28:101190. [PMID: 39221197 PMCID: PMC11364907 DOI: 10.1016/j.mtbio.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Chang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Shuang Fan
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Xiaochen Bai
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Lei Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chen Yang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chuanlin Wang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Ming Li
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Jiandong Fei
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| |
Collapse
|
6
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
7
|
Lin H, Li Z, Xie Z, Tang S, Huang M, Feng J, Wei Y, Shen Z, Zhou R, Feng Y, Chen H, Ren Y, Huang F, Wang X, Jiang Z. An anti-infection and biodegradable TFRD-loaded porous scaffold promotes bone regeneration in segmental bone defects: experimental studies. Int J Surg 2024; 110:3269-3284. [PMID: 38506734 PMCID: PMC11175727 DOI: 10.1097/js9.0000000000001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Addressing segmental bone defects remains a complex task in orthopedics, and recent advancements have led to the development of novel drugs to enhance the bone regeneration. However, long-term oral administration can lead to malnutrition and poor patient compliance. Scaffolds loaded with medication are extensively employed to facilitate the restoration of bone defects. METHODS Inspired by the local application of total flavonoids of Rhizoma Drynariae (TFRD) in the treatment of fracture, a novel 3D-printed HA/CMCS/PDA/TFRD scaffold with anti-infection, biodegradable and induced angiogenesis was designed, and to explore its preclinical value in segmental bone defect of tibia. RESULTS The scaffold exhibited good degradation and drug release performance. In vitro, the scaffold extract promoted osteogenesis by enhancing bone-related gene/protein expression and mineral deposition in BMSCs. It also stimulated endothelial cell migration and promoted angiogenesis through the upregulation of specific genes and proteins associated with cell migration and tube formation. This may be attributed to the activation of the PI3k/AKT/HIF-1α pathway, facilitating the processes of osteogenesis and angiogenesis. Furthermore, the HA/CMCS/PDA/TFRD scaffold was demonstrated to alleviate infection, enhance angiogenesis, promote bone regeneration, and increase the maximum failure force of new formed bone in a rat model of segmental bone defects. CONCLUSION Porous scaffolds loaded with TFRD can reduce infection, be biodegradable, and induce angiogenesis, presenting a novel approach for addressing tibial segmental bone defects.
Collapse
Affiliation(s)
- Haixiong Lin
- Center for Neuromusculoskeletal Restorative Medicine, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Orthopaedics, Ningxia Hui Autonomous Region Hospital and Research Institute of Traditional Chinese Medicine, Yinchuan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Zige Li
- The 2nd Department of Arthrosis, Wangjing Hospital of China Academy of Chinese Medical Sciences
| | - Zhenze Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology
| | - Shengyao Tang
- Department of Orthopaedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine
| | - Minling Huang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Junjie Feng
- Emergency Department, Dongguan People’s Hospital, Dongguan, People’s Republic of China
| | - Yuhan Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing
| | - Zhen Shen
- Department of Rehabilitation, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming
| | - Ruoyu Zhou
- Department of Orthopaedics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang
| | - Yuanlan Feng
- Fifth Department of Orthopedics (Foot and Ankle Surgery), Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan
| | - Huamei Chen
- Department of Orthopedic Surgery, Orthopedic Hospital of Guangzhou
| | - Yueyi Ren
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Feng Huang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing
| | - Ziwei Jiang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou
| |
Collapse
|
8
|
Li S, Cui Y, Liu H, Tian Y, Fan Y, Wang G, Wang J, Wu D, Wang Y. Dual-functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis. Mater Today Bio 2024; 24:100943. [PMID: 38269054 PMCID: PMC10806334 DOI: 10.1016/j.mtbio.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The treatment of bone defects is a difficult problem in orthopedics. The excessive destruction of local bone tissue at defect sites destroys blood supply and renders bone regeneration insufficient, which further leads to delayed union or even nonunion. To solve this problem, in this study, we incorporated icariin into alginate/mineralized collagen (AMC) hydrogel and then placed the drug-loaded hydrogel into the pores of a 3D-printed porous titanium alloy (AMCI/PTi) scaffold to prepare a bioactive scaffold with the dual functions of promoting angiogenesis and bone regeneration. The experimental results showed that the ACMI/PTi scaffold had suitable mechanical properties, sustained drug release function, and excellent biocompatibility. The released icariin and mineralized collagen (MC) synergistically promoted angiogenesis and osteogenic differentiation in vitro. After implantation into a rabbit radius defect, the composite scaffold showed a satisfactory effect in promoting bone repair. Therefore, this composite dual-functional scaffold could meet the requirements of bone defect treatment and provide a promising strategy for the repair of large segmental bone defects in clinic.
Collapse
Affiliation(s)
| | | | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
9
|
Mi L, Li F, Xu D, Liu J, Li J, Zhong L, Liu Y, Bai N. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation. Front Bioeng Biotechnol 2024; 12:1343294. [PMID: 38333080 PMCID: PMC10850574 DOI: 10.3389/fbioe.2024.1343294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lian Mi
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Dian Xu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jian Liu
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jian Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Na Bai
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng 2023; 9:4020-4044. [PMID: 37339247 PMCID: PMC10336748 DOI: 10.1021/acsbiomaterials.3c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
In bone tissue engineering, the performance of scaffolds underpins the success of the healing of bone. Microbial infection is the most challenging issue for orthopedists. The application of scaffolds for healing bone defects is prone to microbial infection. To address this challenge, scaffolds with a desirable shape and significant mechanical, physical, and biological characteristics are crucial. 3D printing of antibacterial scaffolds with suitable mechanical strength and excellent biocompatibility is an appealing strategy to surmount issues of microbial infection. The spectacular progress in developing antimicrobial scaffolds, along with beneficial mechanical and biological properties, has sparked further research for possible clinical applications. Herein, the significance of antibacterial scaffolds designed by 3D, 4D, and 5D printing technologies for bone tissue engineering is critically investigated. Materials such as antibiotics, polymers, peptides, graphene, metals/ceramics/glass, and antibacterial coatings are used to impart the antimicrobial features for the 3D scaffolds. Polymeric or metallic biodegradable and antibacterial 3D-printed scaffolds in orthopedics disclose exceptional mechanical and degradation behavior, biocompatibility, osteogenesis, and long-term antibacterial efficiency. The commercialization aspect of antibacterial 3D-printed scaffolds and technical challenges are also discussed briefly. Finally, the discussion on the unmet demands and prevailing challenges for ideal scaffold materials for fighting against bone infections is included along with a highlight of emerging strategies in this field.
Collapse
Affiliation(s)
- Anshu Dubey
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| | - Henri Vahabi
- Université
de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vignesh Kumaravel
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
11
|
Qi J, Wang Y, Chen L, Chen L, Wen F, Huang L, Rueben P, Zhang C, Li H. 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration. Regen Biomater 2023; 10:rbad062. [PMID: 37520855 PMCID: PMC10374492 DOI: 10.1093/rb/rbad062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/30/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023] Open
Abstract
Large size bone defects affect human health and remain a worldwide health problem that needs to be solved immediately. 3D printing technology has attracted substantial attention for preparing penetrable multifunctional scaffolds to promote bone reconditioning and regeneration. Inspired by the spongy structure of natural bone, novel porous degradable scaffolds have been printed using polymerization of lactide and caprolactone (PLCL) and bioactive glass 45S5 (BG), and polydopamine (PDA) was used to decorate the PLCL/BG scaffolds. The physicochemical properties of the PLCL/BG and PLCL/BG/PDA scaffolds were measured, and their osteogenic and angiogenic effects were characterized through a series of experiments both in vitro and in vivo. The results show that the PLCL/BG2/PDA scaffold possessed a good compression modulus and brilliant hydrophilicity. The proliferation, adhesion and osteogenesis of hBMSCs were improved in the PDA coating groups, which exhibited the best performance. The results of the SD rat cranium defect model indicate that PLCL/BG2/PDA obviously promoted osteointegration, which was further confirmed through immunohistochemical staining. Therefore, PDA decoration and the sustained release of bioactive ions (Ca, Si, P) from BG in the 3D-printed PLCL/BG2/PDA scaffold could improve surface bioactivity and promote better osteogenesis and angiogenesis, which may provide a valuable basis for customized implants in extensive bone defect repair applications.
Collapse
Affiliation(s)
- Jin Qi
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
- Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yili Wang
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
- Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, P. R. China
| | - Liping Chen
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
- Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, P. R. China
| | - Linjie Chen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Feng Wen
- Department of Orthopaedics, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
- Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, P. R. China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P. R. China
| | - Pfukwa Rueben
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa
| | | | - Huaqiong Li
- Correspondence address. E-mail: (H.L.); (C.Z.)
| |
Collapse
|
12
|
Hamat S, Ishak MR, Salit MS, Yidris N, Showkat Ali SA, Hussin MS, Abdul Manan MS, Ahamad Suffin MQZ, Ibrahim M, Mohd Khalil AN. The Effects of Self-Polymerized Polydopamine Coating on Mechanical Properties of Polylactic Acid (PLA)-Kenaf Fiber (KF) in Fused Deposition Modeling (FDM). Polymers (Basel) 2023; 15:polym15112525. [PMID: 37299325 DOI: 10.3390/polym15112525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
This research examines the impact of self-polymerized polydopamine (PDA) coating on the mechanical properties and microstructural behavior of polylactic acid (PLA)/kenaf fiber (KF) composites in fused deposition modeling (FDM). A biodegradable FDM model of natural fiber-reinforced composite (NFRC) filaments, coated with dopamine and reinforced with 5 to 20 wt.% bast kenaf fibers, was developed for 3D printing applications. Tensile, compression, and flexural test specimens were 3D printed, and the influence of kenaf fiber content on their mechanical properties was assessed. A comprehensive characterization of the blended pellets and printed composite materials was performed, encompassing chemical, physical, and microscopic analyses. The results demonstrate that the self-polymerized polydopamine coating acted as a coupling agent, enhancing the interfacial adhesion between kenaf fibers and the PLA matrix and leading to improved mechanical properties. An increase in density and porosity was observed in the FDM specimens of the PLA-PDA-KF composites, proportional to their kenaf fiber content. The enhanced bonding between kenaf fiber particles and the PLA matrix contributed to an increase of up to 13.4% for tensile and 15.3% for flexural in the Young's modulus of PLA-PDA-KF composites and an increase of up to 30% in compressive stress. The incorporation of polydopamine as a coupling agent in the FDM filament composite led to an improvement in tensile, compressive, and flexural stresses and strain at break, surpassing that of pure PLA, while the reinforcement provided by kenaf fibers was enhanced more by delayed crack growth, resulting in a higher strain at break. The self-polymerized polydopamine coatings exhibit remarkable mechanical properties, suggesting their potential as a sustainable material for diverse applications in FDM.
Collapse
Affiliation(s)
- Sanusi Hamat
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Ulu Pauh 02600, Perlis, Malaysia
| | - Mohamad Ridzwan Ishak
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aerospace Malaysia Research Centre (AMRC), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Sapuan Salit
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorfaizal Yidris
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Syamir Alihan Showkat Ali
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Ulu Pauh 02600, Perlis, Malaysia
| | - Mohd Sabri Hussin
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Ulu Pauh 02600, Perlis, Malaysia
| | | | | | - Maliki Ibrahim
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Ulu Pauh 02600, Perlis, Malaysia
| | - Ahmad Nabil Mohd Khalil
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Ulu Pauh 02600, Perlis, Malaysia
| |
Collapse
|
13
|
Huang Z, Li J, Chen X, Yang Q, Zeng X, Bai R, Wang L. Photothermal Sensitive 3D Printed Biodegradable Polyester Scaffolds with Polydopamine Coating for Bone Tissue Engineering. Polymers (Basel) 2023; 15:polym15020381. [PMID: 36679260 PMCID: PMC9861029 DOI: 10.3390/polym15020381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Biodegradable scaffolds with photothermal effects and customizable pore structures are a hot topic of research in the field of bone repair. In this study, we prepared porous scaffolds using poly(lactic acid) (PLA) as the raw material and customized the pore structure with 3D printing technology. First, we investigated the effect of pore structure on the mechanical properties of this 3D PLA scaffold. Subsequently, the optimally designed PLA scaffolds were coated with PDA to enhance their hydrophilicity and bioactivity. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and EDS (Energy dispersive spectroscopy) results indicated that PDA was successfully coated on the surface of PLA scaffolds. SEM (Scanning electron microscopy) micrographs showed that the surface of the PDA/PLA scaffolds became rough. WCA (water contact angle) confirmed that the material has enhanced hydrophilic properties. PDA/PLA scaffolds exhibit a tunable photothermal effect under NIR (near infrared) irradiation. The 3D-printed PLA/PDA scaffolds have remarkable potential as an alternative material for repairing bone defects.
Collapse
Affiliation(s)
- Zuoxun Huang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Junfeng Li
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
- Correspondence: (J.L.); (R.B.); (L.W.)
| | - Xiaohu Chen
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Qing Yang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ruqing Bai
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
- Correspondence: (J.L.); (R.B.); (L.W.)
| | - Li Wang
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (J.L.); (R.B.); (L.W.)
| |
Collapse
|
14
|
Avanzi IR, Parisi JR, Souza A, Cruz MA, Martignago CCS, Ribeiro DA, Braga ARC, Renno AC. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies. J Biomed Mater Res B Appl Biomater 2023; 111:203-219. [PMID: 35906778 DOI: 10.1002/jbm.b.35134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
Collapse
Affiliation(s)
- Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,São Paulo State Faculty of Technology (FATEC), Santos, Brazil
| | | | - Amanda Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,Department of Chemical Engineering, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
15
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
16
|
Liu Y, He L, Li J, Luo J, Liang K, Yin D, Tao S, Yang J, Li J. Mussel-Inspired Organic–Inorganic Implant Coating Based on a Layer-by-Layer Method for Anti-infection and Osteogenesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Stomatology, Shandong First Medical University, Jinan 250021, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Ren H, Pan C, Liu Y, Liu D, He X, Li X, Sun X. Fabrication, in vitro and in vivo properties of porous Zn–Cu alloy scaffolds for bone tissue engineering. MATERIALS CHEMISTRY AND PHYSICS 2022; 289:126458. [DOI: 10.1016/j.matchemphys.2022.126458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
18
|
He Y, Liu K, Zhang C, Guo S, Chang R, Guan F, Yao M. Facile preparation of PVA hydrogels with adhesive, self-healing, antimicrobial, and on-demand removable capabilities for rapid hemostasis. Biomater Sci 2022; 10:5620-5633. [PMID: 35989642 DOI: 10.1039/d2bm00891b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional and smart hydrogel-based hemostatic materials are of great significance in the field of medical care. In this paper, a facile method for the preparation of self-healing, adhesive and on-demand removable PBO hydrogels was established with a simple mixture of polyvinyl alcohol (PVA), borax and oligomeric procyanidin (OPC). In this hydrogel system, borax and OPC were used as dynamic crosslinkers to connect the PVA macromolecules through reversible borate ester bonds and hydrogen bonds, resulting in hydrogels that possess good self-healing and adhesive abilities. Furthermore, the PBO hydrogel displayed excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, thanks to the adhesive property of the hydrogel and the inherent hemostatic activity of OPC, this hydrogel showed rapid hemostasis performance as concluded from the in vivo experiments of mouse liver incision, tail amputation and femoral artery models. Benefitting from the fast degradation in water, this hydrogel could be easily removed on-demand within 10 min. Therefore, this well-designed PBO hydrogel offers an important prospect as a rapid hemostatic dressing.
Collapse
Affiliation(s)
- Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| |
Collapse
|
19
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
20
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
21
|
Chen CY, Shie MY, Lee AKX, Chou YT, Chiang C, Lin CP. 3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration. Biomedicines 2021; 9:biomedicines9080907. [PMID: 34440111 PMCID: PMC8389633 DOI: 10.3390/biomedicines9080907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Bone defects are commonly found in the elderly and athletic population due to systemic diseases such as osteoporosis and trauma. Bone scaffolds have since been developed to enhance bone regeneration by acting as a biological extracellular scaffold for cells. The main advantage of a bone scaffold lies in its ability to provide various degrees of structural support and growth factors for cellular activities. Therefore, we designed a 3D porous scaffold that can not only provide sufficient mechanical properties but also carry drugs and promote cell viability. Ginsenoside Rb1 (GR) is an extract from panax ginseng, which has been used for bone regeneration and repair since ancient Chinese history. In this study, we fabricated scaffolds using various concentrations of GR with mesoporous calcium silicate/calcium sulfate (MSCS) and investigated the scaffold’s physical and chemical characteristic properties. PrestoBlue, F-actin staining, and ELISA were used to demonstrate the effect of the GR-contained MSCS scaffold on cell proliferation, morphology, and expression of the specific osteogenic-related protein of human dental pulp stem cells (hDPSCs). According to our data, hDPSCs cultivated in GR-contained MSCS scaffold had preferable abilities of proliferation and higher expression of the osteogenic-related protein and could effectively inhibit inflammation. Finally, in vivo performance was assessed using histological results that revealed the GR-contained MSCS scaffolds were able to further achieve more effective hard tissue regeneration than has been the case in the past. Taken together, this study demonstrated that a GR-containing MSCS 3D scaffold could be used as a potential alternative for future bone tissue engineering studies and has good potential for clinical use.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Yun-Ting Chou
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung 406040, Taiwan;
| | - Chun Chiang
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: ; Tel.: +886-2-23831346
| |
Collapse
|
22
|
Therapeutic Effects of the Addition of Fibroblast Growth Factor-2 to Biodegradable Gelatin/Magnesium-Doped Calcium Silicate Hybrid 3D-Printed Scaffold with Enhanced Osteogenic Capabilities for Critical Bone Defect Restoration. Biomedicines 2021; 9:biomedicines9070712. [PMID: 34201589 PMCID: PMC8301337 DOI: 10.3390/biomedicines9070712] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Worldwide, the number of bone fractures due to traumatic and accidental injuries is increasing exponentially. In fact, repairing critical large bone defects remains challenging due to a high risk of delayed union or even nonunion. Among the many bioceramics available for clinical use, calcium silicate-based (CS) bioceramics have gained popularity due to their good bioactivity and ability to stimulate cell behavior. In order to improve the shortcomings of 3D-printed ceramic scaffolds, which do not easily carry growth factors and do not provide good tissue regeneration effects, the aim of this study was to use a gelatin-coated 3D-printed magnesium-doped calcium silicate (MgCS) scaffold with genipin cross-linking for regulating degradation, improving mechanical properties, and enhancing osteogenesis behavior. In addition, we consider the effects of fibroblast growth factor-2 (FGF-2) loaded into an MgCS scaffold with and without gelatin coating. Furthermore, we cultured the human Wharton jelly-derived mesenchymal stem cells (WJMSC) on the scaffolds and observed the biocompatibility, alkaline phosphatase activity, and osteogenic-related markers. Finally, the in vivo performance was assessed using micro-CT and histological data that revealed that the hybrid bioscaffolds were able to further achieve more effective bone tissue regeneration than has been the case in the past. The above results demonstrated that this type of processing had great potential for future clinical applications and studies and can be used as a potential alternative for future bone tissue engineering research, as well as having good potential for clinical applications.
Collapse
|
23
|
Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol 2021; 183:1925-1938. [PMID: 34097956 DOI: 10.1016/j.ijbiomac.2021.05.215] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Despite the spontaneous regenerative properties of autologous bone grafts, this technique remains dilatory and restricted to fractures and injuries. Conventional grafting strategies used to treat bone tissue damage have several limitations. This highlights the need for novel approaches to overcome the persisting challenges. Tissue-like constructs that can mimic natural bone structurally and functionally represent a promising strategy. Bone tissue engineering (BTE) is an approach used to develop bioengineered bone with subtle architecture. BTE utilizes biomaterials to accommodate cells and deliver signaling molecules required for bone rejuvenation. Among the various techniques available for scaffold creation, 3D-printing technology is considered to be a superior technique as it enables the design of functional scaffolds with well-defined customizable properties. Among the biomaterials obtained from natural, synthetic, or ceramic origins, naturally derived chitosan (CS) polymers are promising candidates for fabricating reliable tissue constructs. In this review, the physicochemical-biological properties and applications of CS-based 3D-printed scaffolds and their future perspectives in BTE are summarized.
Collapse
|
24
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
25
|
Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: A one-step strategy. Bioact Mater 2021; 6:2613-2628. [PMID: 33615046 PMCID: PMC7881170 DOI: 10.1016/j.bioactmat.2021.01.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Although employed to release growth factors (GFs) for regenerative medicine, platelet-rich plasma (PRP) has been hindered by issues like burst effect. Based on collagen sponge scaffolds (CSSs) modified with polydopamine (pDA), a novel dermal regeneration template (DRT) was designed. However, whether it could efficiently deliver PRP and even foster wound healing remained unclear. In this work, after PRP was prepared and pDA-modified CSSs (pDA-CSSs) were fabricated, microscopic observation, GFs release assay and in-vitro biological evaluations of pDA-CSSs with PRP (pDA-CSS@PRP) were performed, followed by BALA-C/nu mice full-thickness skin defects implanted with pDA-CSS@PRP covered by grafted skins (termed as a One-step strategy). As a result, scanning electron microscope demonstrated more immobilized platelets on pDA-CSS' surface with GFs' controlled release via enzyme-linked immunosorbent assay, compared with CSSs. In line with enhanced in-vitro proliferation, adhesion and migration of keratinocytes & endothelial cells, pDA-CSS@PRP were histologically revealed to accelerate wound healing with less scar via rapid angiogenesis, arrangement of more mature collagen, guiding cells to spread, etc. In conclusion, pDA-CSSs have potential to serve as a novel DRT capable of delivering PRP, which may foster full-thickness skin defect healing by means of a One-step strategy.
Collapse
|
26
|
Yao M, Zou Q, Zou W, Xie Z, Li Z, Zhao X, Du C. Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti-osteosarcoma effect. Biomater Sci 2021; 9:3319-3333. [DOI: 10.1039/d0bm01785j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctional scaffolds prepared by hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with good osteogenesis and anti-osteosarcoma effect is promising for bone tumor therapy.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| | - Qingxia Zou
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| | - Wenwu Zou
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| | - Zhenze Xie
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| | - Zhihao Li
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| | - Xiujuan Zhao
- Key Laboratory of Biomedical Engineering of Guangdong Province
- South China University of Technology
- Guangzhou 510006
- PR China
- Key Laboratory of Biomedical Materials Science and Engineering
| | - Chang Du
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- PR China
| |
Collapse
|
27
|
Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:536-561. [PMID: 33175667 DOI: 10.1080/09205063.2020.1849922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue damage related to bone and cartilage is a common clinical disease. Cartilage tissue has no blood vessels and nerves. The limited cell migration ability results in low endogenous healing ability. Due to the complexity of the osteochondral interface, the clinical treatment of osteochondral injury is limited. Tissue engineering provides new ideas for solving this problem. The ideal tissue engineering scaffold must have appropriate porosity, biodegradability and specific functions related to tissue regeneration, especially bioactive polymer nanofiber composite materials with controllable biodegradation rate and appropriate mechanical properties have been getting more and more research. The nanofibers produced by electrospinning have high specific surface area and suitable mechanical properties, which can effectively simulate the natural extracellular matrix (ECM) of bone or cartilage tissue. The composition of materials can affect mechanical properties, plasticity, biocompatibility and degradability of the scaffold, thereby further affect the repair efficiency. This article reviews the characteristics of polymer materials and the application of its electrospun nanofibers in bone, cartilage and osteochondral tissue engineering.
Collapse
Affiliation(s)
- Huixiu Ding
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Xiaolian Niu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
28
|
Assessment of the Release Profile of Fibroblast Growth Factor-2-Load Mesoporous Calcium Silicate/Poly-ε-caprolactone 3D Scaffold for Regulate Bone Regeneration. Processes (Basel) 2020. [DOI: 10.3390/pr8101249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in three-dimensional printing technology enable facile and on-demand fabrication of patient-specific bone scaffolds. However, there is still an urgent need for printable biomaterials with osteoinductivity. In the present study, we propose an approach to synthesize fibroblast growth factor-2 loaded-mesoporous calcium silicate nanoparticles. The growth factor loaded-nanoparticles served as fillers of polycaprolactone and then the composite scaffolds with a controlled pore structure were obtained through a fused deposition modeling technique. To evaluate the feasibility of the composite scaffolds in bone tissue engineering, drug release kinetic, bioactivity, cell proliferation, differentiation, and animal study were conducted. Our findings illustrate that utilization of mesoporous calcium silicate allowed the introduction of fibroblast growth factor-2 into the composite scaffolds through a simple soaking process and then gradually released from the scaffold to facilitate proliferation and osteogenesis differentiation of human Wharton’s jelly mesenchymal stem cells. Additionally, the in vivo femur defect experiments also indicate that the co-existence of calcium silicate and fibrous growth factor-2 synergistically accelerated new bone formation. These results demonstrate that the fibroblast growth factor-2-loaded mesoporous calcium silicate nanoparticles/polycaprolactone composite scaffolds may serve as potential bone grafts for facilitating repair of defected bone tissues.
Collapse
|