1
|
Zhang X, Zhao B, Fu S, Liu Y, Petrisor AA, Yang Z, Fanos HE, Seruya RS, Zhang F. Redox-Responsive Cross-Linking of Polycarbonate Nanomedicines for Enhanced Stability and Controlled Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23135-23145. [PMID: 40173362 DOI: 10.1021/acsami.4c22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Self-assembled polymeric micelles formed from amphiphilic block copolymers offer a promising strategy for enhanced drug delivery due to their biocompatibility and controlled release. However, challenges such as their poor colloidal stability under diluted conditions and degradation during storage and circulation limit their further applications. To address these issues, we developed a straightforward method for constructing cross-linked polycarbonate micelles that enhance stability while allowing for controlled stimuli-responsive drug delivery. By utilizing disulfide-based cross-linking and covalent conjugation of the anticancer drug, our approach maintains micelle integrity and extremely high drug loading over extended periods as well as the superior control of triggered drug release compared to non-cross-linked versions, demonstrating enhanced stability in complex biological environments and improved anticancer efficacy, presenting a novel platform for stable polymer-drug conjugate nanocarriers, holding significant therapeutic potential for targeted cancer treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yilin Liu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Ashley A Petrisor
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zixin Yang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Hannah E Fanos
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Ronald S Seruya
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, 1951 NW seventh Ave, Miami, Florida 33136, United States
| |
Collapse
|
2
|
Shi Y, Yu Q, Tan L, Wang Q, Zhu WH. Tumor Microenvironment-Responsive Polymer Delivery Platforms for Cancer Therapy. Angew Chem Int Ed Engl 2025:e202503776. [PMID: 40214115 DOI: 10.1002/anie.202503776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Most chemotherapeutic and bioimaging agents struggle with inadequate bioavailability, primarily due to their limited biocompatibility and lack of specificity in targeting, leading to low or decreased anticancer efficacy and inaccurate imaging. To surmount these obstacles, the development of stimuli-responsive polymer delivery platforms, predominantly leveraging the tumor microenvironment (TME), has emerged as a promising strategy. Therapeutic and diagnostic agents can be released controllably at the tumor site by virtue of the bond cleavage or hydrophobic to hydrophilic transformation of TME-sensitive linkages in TME-responsive systems, thus augmenting cancer treatment and imaging precision, while simultaneously attenuating the damage to healthy tissues and false imaging signals caused by non-specific drug leakage. In this comprehensive review, we scrutinize recent studies of TME-responsive polymer delivery platforms, encompassing pH-, ROS-, GSH-, enzyme-, and hypoxia-responsive vectors, significantly from the perspective of their molecular design and responsive mechanism, and further summarizing their bio-application in drug delivery and diagnostic imaging. Moreover, this review encapsulates the critical challenges and offers an insightful perspective on the future prospects of TME-responsive polymer delivery platforms in terms of molecular and vector design.
Collapse
Affiliation(s)
- Yiqi Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qianqian Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
3
|
Rezvanfar A, Pourmanoucheri Z, Ranjbar S, Jalal TJ, Hosseinzadeh L, Rasekhian M, Behbood L. Synergistic topical cancer therapy using dual drug delivery of dexamethasone and 5-fluorouracil via deoxycholic acid micelle-carboxymethyl cellulose hydrogel composites. Int J Biol Macromol 2025; 300:139513. [PMID: 39824428 DOI: 10.1016/j.ijbiomac.2025.139513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects. This study aims to introduce 5-FU loaded deoxycholic acid micelles (DCA Mics) incorporated into carboxymethyl cellulose hydrogel matrix (CMC Hyd) containing Dexa to design Mic/Hyd based carriers cross-linked by physical and chemical cross-linker. The release of 5-FU and Dexa from the final formulation at pH of 5.5 was around 55 % after 5 h. The final formulation shows the pH-controlled release by crosslinking CMC Hyd, increasing the release of Dexa at physiological pH. The MTT results showed both Hyd and the synthesized Mics were non-toxic, but the toxicity increased significantly when 5-FU was incorporated into the formulation. 5-FU@Mic (IC50 = 5.5 μg/mL) was observed to be more potent cytotoxic against A431 compared to the free drugs 5-FU (IC50 = 17.5 μg/mL), and final formulation (IC50 = 26 μg/mL). The dual drug delivery systems might provide insights into the potential of pre-exposure of Dexa for mitigating inflammation caused by 5-FU.
Collapse
Affiliation(s)
- Arefeh Rezvanfar
- Pharmaceutical sciences research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Pourmanoucheri
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Twana Jamal Jalal
- Pharmaceutical sciences research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical sciences research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Rasekhian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Behbood
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Delgado-Pujol EJ, Martínez G, Casado-Jurado D, Vázquez J, León-Barberena J, Rodríguez-Lucena D, Torres Y, Alcudia A, Begines B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:215. [PMID: 40006582 PMCID: PMC11859140 DOI: 10.3390/pharmaceutics17020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Conventional drug delivery approaches, including tablets and capsules, often suffer from reduced therapeutic effectiveness, largely attributed to inadequate bioavailability and difficulties in ensuring patient adherence. These challenges have driven the development of advanced drug delivery systems (DDS), with hydrogels and especially nanogels emerging as promising materials to overcome these limitations. Hydrogels, with their biocompatibility, high water content, and stimuli-responsive properties, provide controlled and targeted drug release. This review explores the evolution, properties, and classifications of hydrogels versus nanogels and their applications in drug delivery, detailing synthesis methods, including chemical crosslinking, physical self-assembly, and advanced techniques such as microfluidics and 3D printing. It also examines drug-loading mechanisms (e.g., physical encapsulation and electrostatic interactions) and release strategies (e.g., diffusion, stimuli-responsive, and enzyme-triggered). These gels demonstrate significant advantages in addressing the limitations of traditional DDS, offering improved drug stability, sustained release, and high specificity. Their adaptability extends to various routes of administration, including topical, oral, and injectable forms, while emerging nanogels further enhance therapeutic targeting through nanoscale precision and stimuli responsiveness. Although hydrogels and nanogels have transformative potential in personalized medicine, challenges remain in scalable manufacturing, regulatory approval, and targeted delivery. Future strategies include integrating biosensors for real-time monitoring, developing dual-stimuli-responsive systems, and optimizing surface functionalization for specificity. These advancements aim to establish hydrogels and nanogels as cornerstones of next-generation therapeutic solutions, revolutionizing drug delivery, and paving the way for innovative, patient-centered treatments.
Collapse
Affiliation(s)
- Ernesto J. Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Jesús León-Barberena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - David Rodríguez-Lucena
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| |
Collapse
|
5
|
Ujita M, Zhou H, Yamada T. Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers. ACS Macro Lett 2025; 14:107-113. [PMID: 39783924 DOI: 10.1021/acsmacrolett.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization. Here we report a thermoelectrochemical method to quantify the entropy change produced by redox-active micelles. A set of poly(ethyl glycidyl ether-b-ethylene oxide)phenothiazine (PT-EGE-EO) with varied chain length were synthesized, and their micellization entropy was calculated from the temperature-dependent changes of the equilibrium potential. This thermoelectrochemical method enables a quick evaluation of the micellization entropy with only a single sample preparation and temperature sweep. The obtained results showed a reasonable agreement with the conventional surface tensiometry and isothermal titration calorimetry, indicating that the thermoelectrochemical method is a promising alternative for quantification of the micellization entropy.
Collapse
Affiliation(s)
- Mizuha Ujita
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hongyao Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
7
|
Sun J, Du J, Liu X, An J, Li Y, Yu Y, Li M, Zheng L, Wu C, Hu L. Preparation of chitosan-coated hollow tin dioxide nanoparticles and their application in improving the oral bioavailability of febuxostat. Int J Pharm X 2023; 6:100199. [PMID: 37521247 PMCID: PMC10384222 DOI: 10.1016/j.ijpx.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The aim of this study was to design a chitosan-coated hollow tin dioxide nanosphere (CS-HSn) for loading febuxostat (FEB) using an adsorption method to obtain a sustained-release system (CS-HSn-FEB) to improve the oral bioavailability of FEB. The morphological characteristics of hollow tin dioxide nanospheres (HSn) and CS-HSn were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The hemolysis test and CCK-8 test were used to assess the biosafety of HSn and CS-HSn. Powder X-ray diffraction (PXRD) and differential scanning thermal analysis (DSC) were performed on CS-HSn-FEB to analyze the drug presence status. The dissolution behavior and changes in plasma drug concentration of CS-HSn-FEB were evaluated in vitro and in vivo. Sections of intestinal tissues from SD rats were obtained to observe whether chitosan could increase the distribution of nanoparticles in the intestinal tissues. The results showed that FEB was present in CS-HSn in an amorphous state. Moreover, CS-HSn, with good biosafety, significantly improved the water solubility and oral absorption of FEB, indicating that CS-HSn has great potential to improve the intestinal absorption and oral bioavailability of insoluble drugs.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yanan Yu
- Medical College of Jinzhou Medical University, Jinzhou Medical University, 121010, China
| | - Minghui Li
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Li Zheng
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Lili Hu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
8
|
Li D, Cao Z, Chen C, Li H, He S, Hou X, Liang M, Yang X, Wang J. Nanoassembly of doxorubicin-conjugated polyphosphoester and siRNA simultaneously elicited macrophage- and T cell- mediated anticancer immune response for cancer therapy. Biomaterials 2023; 302:122339. [PMID: 37778054 DOI: 10.1016/j.biomaterials.2023.122339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Efficiently reawakening immune cells, including T cells and macrophages, to eliminate tumor cells is a promising strategy for cancer treatment, but remains a huge challenge nowadays. Herein, a nanoassembly formed by doxorubicin (DOX)-conjugated polyphosphoester (PP-(hDOX)) and CD47-targeting siRNA (siCD47) via electrostatic and π-π stacking interactions, termed as PP-(hDOX&siCD47), was developed to reawaken the T cell and macrophage-mediated anticancer activity. The PP-(hDOX&siCD47) could efficiently blockade antiphagocytic signal by downregulation of CD47 expression to reactive macrophage-mediated anticancer immunotherapy. Moreover, the conjugated DOX of PP-(hDOX&siCD47) can perform the chemotherapy towards tumor cells and also elicit the T cell-mediated anticancer immune response via immunogenic cell death (ICD) effect. Therefore, the PP-(hDOX&siCD47) treatment could significantly increase M1-like macrophages proportion and tumor infiltration of CD8+ T cells, while the proportions of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) were considerably reduced in tumor tissue, eventually achieving significantly tumor growth inhibition. Overall, this study provides a simple siRNA and DOX codelivery approach to simultaneously elicit the macrophage- and T cell-mediated anticancer immune response for cancer therapy.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Ziyang Cao
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Hengyi Li
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Shan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China
| | - Xurui Hou
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
9
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Zhang C, Tian Z, Chen R, Rowan F, Qiu K, Sun Y, Guan JL, Diao J. Advanced imaging techniques for tracking drug dynamics at the subcellular level. Adv Drug Deliv Rev 2023; 199:114978. [PMID: 37385544 PMCID: PMC10527994 DOI: 10.1016/j.addr.2023.114978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.
Collapse
Affiliation(s)
- Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
11
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
12
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles. BIOMATERIALS ADVANCES 2023; 147:213344. [PMID: 36841112 DOI: 10.1016/j.bioadv.2023.213344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Here, we combined reversible addition-fragmentation chain transfer (RAFT) polymerization and amide coupling reaction to develop a novel drug-polymer conjugate using poly(AMA-co-IMMA)-b-poly(OEGMA) (termed as PAIPO) as nanocarriers. In order to enhance cellular uptake and obtain subsequent endo/lysosomal escape capacity, the dual-drugs-conjugated prodrug was then coupled with 2,3-dimethylmaleimide (DA) moieties and implanted with imidazolyl groups, respectively. Paclitaxel (PTX) was conjugated to PAIPO via 3,3'-dithiodipropionic acid (DPA) to construct a GSH-responsive moiety, while doxorubicin (DOX) was conjugated to PAIPO via 4-formyl benzoic acid to construct a pH-responsive moiety, which synergistically enabled a synchronized and precise drug delivery. The micelles self-assembled from DOX/PTX@PAIPODA showed an ideal average diameter (163.2-178.3 nm), contributing to passive targeting by the EPR effect. Moreover, a switch of the surface Zeta potential of micelles from steady negatively charged (- 9.74 ± 0.54 mV) at pH 7.4 to positively charged (+ 6.33 ± 1.25 mV) at pH 6.5, facilitated the long blood circulation and cellular endocytosis of micelles, respectively. More importantly, in vitro studies confirmed that DAM(DOXn/PTX) exhibited a strong synergism against tumor cells, and under slightly acidic conditions (pH 6.5), the combination index (CI) values for DAM(DOX1/PTX) on HeLa and Skov-3 cells were estimated to be 0.47 and 0.49 (previous to be 0.50 and 0.56 at pH 7.4), respectively. And in vivo results showed effective tumor accumulation potential, remarkable biosafety, and biocompatibility. Combined, such synchronized delivery approach based on multi-responsive micelles might potentiate the efficacy of combination chemotherapy in clinical cancer treatment.
Collapse
|
14
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
15
|
Cai JH, Zhu XZ, Guo PY, Rose P, Liu XT, Liu X, Zhu YZ. Recent updates in click and computational chemistry for drug discovery and development. Front Chem 2023; 11:1114970. [PMID: 36825226 PMCID: PMC9941707 DOI: 10.3389/fchem.2023.1114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Drug discovery is a costly and time-consuming process with a very high failure rate. Recently, click chemistry and computer-aided drug design (CADD) represent popular areas for new drug development. Herein, we summarized the recent updates in click and computational chemistry for drug discovery and development including clicking to effectively synthesize druggable candidates, synthesis and modification of natural products, targeted delivery systems, and computer-aided drug discovery for target identification, seeking out and optimizing lead compounds, ADMET prediction as well as compounds synthesis, hopefully, inspires new ideas for novel drug development in the future.
Collapse
Affiliation(s)
- Jiang Hong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xuan Zhe Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peng Yue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Xiao Tong Liu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
17
|
Tao W, Wang J, Zhou Y, Liu Z, Chen H, Zhao Z, Yan H, Liao X. Acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) as anticancer drug delivery carrier. Colloids Surf B Biointerfaces 2023; 222:113084. [PMID: 36549246 DOI: 10.1016/j.colsurfb.2022.113084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In order to not only improve the stability of nanomicelles in blood circulation but also promote the cellular uptake in tumors and rapidly release the encapsulated drugs in tumor cells, a kind of acid/reduction dual-sensitive amphiphilic graft polyurethane with folic acid and detachable poly(ethylene glycol) (FA-PUSS-gimi-mPEG) was synthesized by grafting folic acid and monomethoxy poly(ethylene glycol) to the polyurethane side chain. FA-PUSS-gimi-mPEG could self-assemble in aqueous solution to form negatively charged nanomicelles, which endowed them good stability under normal physiological condition. Using ultraviolet-visible spectrometer (UV-vis) and dynamic light scattering (DLS), it was found that the hydrophilic poly(ethylene glycol) layer of FA-PUSS-gimi-mPEG micelles could be detached due to the cleavage of benzoic-imine bond under slightly acidic condition, which resulted in reversing the charge of the micellar surface and exposing folic acid to the micellar surface. FA-PUSS-gimi-mPEG micelles could load doxorubicin (DOX), moreover the drug release rate was faster at pH 5.0 and 10 mM glutathione (GSH) than that under normal physiological condition. The results of cell experiments further demonstrated that FA-PUSS-gimi-mPEG micelles had acid/reduction dual-sensitive property. The changes in the structure of FA-PUSS-gimi-mPEG micelles could enhance the cellular uptake under acid condition and the micelles could accelerate the drug release in tumor cells due to the presence of disulfide bonds in the polymer. Therefore, FA-PUSS-gimi-mPEG micelles could efficiently deliver anticancer drug into tumor cells and enhance the inhibition of cellular proliferation through multi-effect synergy.
Collapse
Affiliation(s)
- Wangwang Tao
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Jun Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yu Zhou
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.
| | - Zhaoxia Liu
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hongxiang Chen
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Zuyi Zhao
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Hongye Yan
- Key Laboratory of Coal Conversion and New Carbon Material of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
| | - Xinghua Liao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
18
|
Tao J, Shi W, Chen K, Lu W, Elbourne AJ, Bao L, Weng L, Zheng X, Su X, Teng Z, Wang L. Elasticity of mesoporous nanocapsules regulates cellular uptake, blood circulation, and intratumoral distribution. Biomater Sci 2023; 11:822-827. [PMID: 36625156 DOI: 10.1039/d2bm01701f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The elasticity of nanoparticles plays a critical role in regulating nanoparticle-biosystem interactions. However, the elasticity of traditional organic-based carriers can only be regulated within a narrow range, and the effects of elasticity on in vivo biological processes have not been evaluated until now. Here, we construct hyaluronic acid modified mesoporous organosilica nanoparticles (MONs-HA) with a wide range of elasticity by an interior preferential etching approach and investigate the impact of their elasticity on in vitro cellular uptake, in vivo blood circulation, and tumor accumulation. The Young's moduli of the prepared MONs-HA are 1.64, 0.93, 0.78, 0.4 and 0.29 GPa (denoted as rigid MONs0-HA, semi-elastic MONs20-HA and MONs50-HA, elastic MONs100-HA and MONs200-HA), respectively. They all possess a similar hydrodynamic size (245-257 nm), similar surface electronegativity (-27 to -35 mV), and excellent dispersibility. In vitro experiments demonstrate that the elastic MONs100-HA and MONs200-HA (0.4 and 0.29 GPa) exhibit significantly greater cellular uptake relative to semi-elastic MONs20-HA and MONs50-HA (0.93 and 0.78 GPa) or rigid MONs0-HA (1.64 GPa). Simultaneously, these elastic MONs100-HA and MONs200-HA show an efficiently prolonged circulation time. In vivo results revealed that the elastic MONs100-HA show enhanced tumor accumulation compared to semi-elastic and rigid MONs-HA after intravenous administration. These desirable features of elasticity can direct the design of nanoplatforms, leading to an enhanced tumor delivery efficiency.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Wenhui Shi
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Kun Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Wei Lu
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | | | - Lei Bao
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Xudong Zheng
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xiaodan Su
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Zhaogang Teng
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| |
Collapse
|
19
|
Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022; 15:cancers15010004. [PMID: 36612002 PMCID: PMC9817890 DOI: 10.3390/cancers15010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the deadliest diseases in our society. Surgery accompanied by subsequent chemotherapy is the treatment most used to prolong or save the patient's life. Still, it carries secondary risks such as infections and thrombosis and causes cytotoxic effects in healthy tissues. Using nanocarriers such as smart polymer micelles is a promising alternative to avoid or minimize these problems. These nanostructured systems will be able to encapsulate hydrophilic and hydrophobic drugs through modified copolymers with various functional groups such as carboxyls, amines, hydroxyls, etc. The release of the drug occurs due to the structural degradation of these copolymers when they are subjected to endogenous (pH, redox reactions, and enzymatic activity) and exogenous (temperature, ultrasound, light, magnetic and electric field) stimuli. We did a systematic review of the efficacy of smart polymeric micelles as nanocarriers for anticancer drugs (doxorubicin, paclitaxel, docetaxel, lapatinib, cisplatin, adriamycin, and curcumin). For this reason, we evaluate the influence of the synthesis methods and the physicochemical properties of these systems that subsequently allow an effective encapsulation and release of the drug. On the other hand, we demonstrate how computational chemistry will enable us to guide and optimize the design of these micelles to carry out better experimental work.
Collapse
|
20
|
Liang M, Li N, Liu F, Zeng N, Yu C, Li S. Apurinic/apyrimidinic endonuclease triggered doxorubicin-releasing DNA nanoprism for target therapy. Cell Cycle 2022; 21:2627-2634. [PMID: 35943146 PMCID: PMC9704400 DOI: 10.1080/15384101.2022.2108567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drug delivery and triggered release in tumor cells would realize the ultimate goal of precise cancer treatment. An APE1 triggered DNA nanoprism was designed, aiming at the applications of both drug delivery and precise triggered drug release in cancer cell. We demonstrate that the AP-Prism was successfully used as a vehicle based on the intracellular endogenous enzyme APE1 triggered for controlled drug delivery and triggered release. The box like DNA prism was self-assembled by annealing process and Doxorubicin molecules were then inserted into the GC base pairs. The reaction of AP-Prism enzymolysis and stability of DNA prism were investigated. Encouraged by the demonstration of AP-Prism as a drug delivery carrier, the cellular uptake and Dox release were with investigated in a human cervical cancer cell HeLa and human embryonic kidney cell HEK-293 T. Thanks to the overexpression level of APE1 in cancer cells, DNA prism could selectively release the trapped doxorubicin in response to APE1 activity in cancer cells, and provide a new strategy for the development of precision medicine.
Collapse
Affiliation(s)
- Meng Liang
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Liu
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zeng
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,CONTACT Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,Shuo Li Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, China
| |
Collapse
|
21
|
Voycheva C, Slavkova M, Popova T, Tzankova D, Tosheva A, Aluani D, Tzankova V, Ivanova I, Tzankov S, Spassova I, Kovacheva D, Tzankov B. Synthesis and characterization of PnVCL grafted agar with potential temperature-sensitive delivery of Doxorubicin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
23
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Du J, Liu X, Hou Z, Liu X, Yao J, Cheng X, Wang X, Tang R. Acid-sensitive polymeric prodrug micelles for achieving enhanced chemo-photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yang W, Zhang Y, Wang J, Li H, Yang H. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier. Int J Biol Macromol 2022; 216:789-798. [PMID: 35914549 DOI: 10.1016/j.ijbiomac.2022.07.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
In this work, glycyrrhetinic acid (GA)-β-cyclodextrin grafted pullulan (GCDPu) was synthesized and used to form nanoparticles for liver-specific drug delivery. GCDPu was characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR). The self-aggregated nanoparticles (GCDPu NPs) with a spherical dimension of about 200 nm were prepared and analyzed by dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Doxorubicin (DOX) was selected as an anti-cancer model drug, and the drug-loaded GCDPu NPs were prepared by the emulsion solvent evaporation method. Moreover, the drug encapsulation efficiency (LE%) and loading content (LC%) were determined. Slow DOX release from DOX/GCDPu NPs was confirmed. GCDPu NPs were cytocompatible with Bel-7404 cells and showed high cellular uptake according to the MTT assay, confocal laser scanning microscope (CLSM) and flow cytometry (FCM) results. Compared with free DOX, DOX/GCDPu NPs have exhibited a longer half-life time (t1/2) and a larger area-under-the-curve (AUC). GCDPu NPs significantly increased DOX contents in the liver and decreased in heart and kidney. Furthermore, DOX/GCDPu NPs exhibited a better anticancer therapeutic effect on tumor-bearing mice. These findings suggest that GCDPu can serve a liver-specific drug delivery system.
Collapse
Affiliation(s)
- Wenzhi Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Yi Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiajia Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Haiying Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States.
| |
Collapse
|
26
|
Ren G, Duan D, Wang G, Wang R, Li Y, Zuo H, Zhang Q, Zhang G, Zhao Y, Wang R, Zhang S. Construction of reduction-sensitive heterodimer prodrugs of doxorubicin and dihydroartemisinin self-assembled nanoparticles with antitumor activity. Colloids Surf B Biointerfaces 2022; 217:112614. [PMID: 35700564 DOI: 10.1016/j.colsurfb.2022.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
Doxorubicin (DOX) is used as a first-line chemotherapeutic drug, whereas dihydroartemisinin (DHA) also shows a certain degree of antitumor activity. Disulfide bonds (-SS-) in prodrug molecules can be degraded in highly reducing environments. Thus, heterodimer prodrugs of DOX and DHA linked by a disulfide bond was designed and subsequently prepared as reduction-responsive self-assembled nanoparticles (DOX-SS-DHA NPs). In an in vitro release study, DOX-SS-DHA NPs exhibited reduction-responsive activity. Upon cellular evaluation, DOX-SS-DHA NPs were found to have better selectivity toward tumor cells and less cytotoxicity to normal cells. Compared to free DiR, DOX-SS-DHA NPs showed improved accumulation at the tumor site and even had a longer clearance half-life. More importantly, DOX-SS-DHA NPs possessed a much higher tumor inhibition efficacy than DOX-sol and MIX-sol in 4T1 tumor-bearing mice. Our results suggested the superior antitumor efficacy of DOX-SS-DHA NPs with less cytotoxicity.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
27
|
Bhattacharya S, Sen D, Bhattacharjee C. Strategic development to stabilize bioactive diallyl thiosulfinate by pH responsive non ionic micelle carrier system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Tan B, Qi Z, Yang G, Zhong H. Poly (Thioether-Polyesters) Micelles Encapsulation Induces ROS-Triggered Targeted Release of Tangeretin. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tangeretin (Tan) possesses great anti-oxidation and anti-inflammation bioactivities; however, it is accompanied by poor water solubility, which leads to inefficient cellular internalization. To address this issue, a reactive oxygen species (ROS)-triggered poly (thioether-polyesters) micelle (PDHP, PEG-DTT) was designed and prepared via self-assembly, which consisted of poly (thioether-polyesters) as the hydrophilic shell, and the drug Tan as the hydrophobic inner core. The micelles (Tan@ PDHP), with a 63.15% loading efficiency of Tan, showed negligible cytotoxicity, high stability in phosphate-buffered saline buffer (pH = 7.4), and continuous release of Tan with the stimulation of H2O2. In addition, this Tan loading micelle was more efficient in responding to the formation of ROS in the lipopolysaccharide-stimulated RAW264.7 cells compared to that of the free Tan. In short, the strategy of encapsulating the low solubility Tan in ROS-triggered poly (thioether-polyesters) micelles provides an effective assay of enhancing Tan's antioxidative activity.
Collapse
Affiliation(s)
- Bozhan Tan
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Changkang Industrial Co., LTD., Yueyang, Hunan, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Haiyan Zhong
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
29
|
Pooresmaeil M, Namazi H. Folic acid-modified photoluminescent dialdehyde carboxymethyl cellulose crosslinked bionanogels for pH-controlled and tumor-targeted co-drug delivery. Int J Biol Macromol 2022; 200:247-262. [PMID: 35007630 DOI: 10.1016/j.ijbiomac.2022.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023]
Abstract
This work aimed to fabricate a new photoluminescent bionanogel with both targeted anticancer drug delivery and bioimaging potentials. Briefly, at first photoluminescent carbon dots (CDs) were synthesized from the low-cost and more available black pepper with traditional medicinal properties. The as-synthesized dialdehyde carboxymethyl cellulose (DCMC) was used as a safe crosslinker for gelatin crosslinking in the presence of CDs (CDs/DCMC-Gel). Eventually, the residual amine functional groups of gelatin were used for the conjugation of CDs/DCMC-Gel with folic acid (FA) ((CDs/DCMC-Gel)-FA bionanogels). All employed physicochemical characterization methods approved the (CDs/DCMC-Gel)-FA bionanogels fabrication route. SEM analysis specified the spherical morphology with a diameter of ~70-90 nm for it. Curcumin (CUR) and doxorubicin (DOX) respectively were loaded with drug entrapment efficiency of about 44.0% and 41.4%. The release rate for both drugs in acidic conditions was higher than in physiological conditions. In vitro antitumor experiments; MTT, DAPI staining, cellular uptake, and cell cycle tests showed the superior anticancer effect of the CUR@DOX@(CDs/DCMC-Gel)-FA in comparison with free CUR@DOX. Moreover, the (CDs/DCMC-Gel)-FA acted as a hopeful bio-imaging tool. Taken together, the designed (CDs/DCMC-Gel)-FA could be proposed as a promising nanosystem for efficient chemotherapy.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
30
|
Pourmanouchehri Z, Ebrahimi S, Limoee M, Jalilian F, Janfaza S, Vosoughi A, Behbood L. Controlled release of 5-fluorouracil to melanoma cells using a hydrogel/micelle composites based on deoxycholic acid and carboxymethyl chitosan. Int J Biol Macromol 2022; 206:159-166. [PMID: 35218806 DOI: 10.1016/j.ijbiomac.2022.02.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
5-Fluorouracil (5-FU) is an antimetabolite drug widely used for the treatment of skin cancer. Despite its proven efficacy in treating malignancies, its systemic administration is limited due to severe side effects. To address this issue, topical delivery of 5-FU has been proposed as an alternative approach for the treatment of skin cancer, however, the poor permeability of 5-FU through the skin is still a challenge. Here, we introduced a pH-responsive micellar hydrogel system based on deoxycholic acid micelle (DCA Mic) and carboxymethyl chitosan hydrogel (CMC Hyd) to enhance 5-FU efficacy against skin cancer and reduce its systemic side effects by improving its delivery into the skin. The properties of the Mic/Hyd system were determined by Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta sizer, atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Drug release studies showed pH-dependent properties of the Hyd. The final formulation was demonstrated to have enhanced anticancer activity than 5-FU against the growth of melanoma cells. The 5-FU@Mic-Hyd could be a promising delivery platform with enhanced efficacy in the management of skin cancer without systemic toxicity.
Collapse
Affiliation(s)
- Zahra Pourmanouchehri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sayeh Ebrahimi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mazdak Limoee
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereshteh Jalilian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Departments of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Amirhossein Vosoughi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Behbood
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
31
|
Lei J, Song Y, Li D, Lei M, Tan R, Liu Y, Zheng H. pH
‐sensitive and charge‐reversal Daunorubicin‐conjugated polymeric micelles for enhanced cancer therapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.51535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiaqing Lei
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Yajing Song
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Mengheng Lei
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Rui Tan
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Yiqing Liu
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
- School of Materials Science and Engineering Wuhan University of Technology Wuhan PR China
| |
Collapse
|
32
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022; 33:369-385. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective nanocarrier-mediated drug delivery to cancer cells primarily faces limitations like the presence of successive drug delivery barriers, insufficient circulation time, drug leakage, and decreased tumor penetration capacity. With the aim of addressing this paradox, a self-therapeutic, curcumin-derived copolymer was synthesized by conjugation with PEGylated biotin via enzyme- and acid-labile ester and acetal linkages. This copolymer is a prodrug of curcumin and self-assembles into ∼150-200 nm-sized nanomicelles; it is capable of encapsulating doxorubicin (DOX) and hence can be designated as self-therapeutic. pH- and enzyme-responsive linkages in the polymer skeleton assist in its hierarchical disassembly only in the tumor microenvironment. Further, the conjugation of biotin and poly(ethylene glycol) (PEG) imparts features of tumor specificity and improved circulation times to the nanocarrier. The dynamic light scattering (DLS) analysis supports this claim and demonstrates rapid swelling and disruption of micelles under acidic pH. UV-vis spectroscopy provided evidence of an accelerated acetal degradation at pH 4.0 and 5.0. The in vitro release studies revealed a controlled release of DOX under acidic conditions and curcumin release in response to the enzyme. The value of the combination index calculated on HepG2 cells was found to be <1, and hence, the drug pair curcumin and DOX acts synergistically for tumor regression. To prove the efficiency of acid-labile linkages and the prodrug strategy for effective cancer therapy, curcumin-derived polymers devoid of sensitive linkages were also prepared. The prodrug stimuli-responsive nanomicelles showed enhanced cell cytotoxicity and tumor penetration capability on HepG2 cells as well as drug-resistant MCF-7 cell lines and no effect on normal NIH/3T3 fibroblasts as compared to the nonresponsive micelles. The results were also supported by in vivo evidence on a hepatocellular carcinoma (HCC)-induced nude mice model. An evident decrease in MMP-2, MMP-9, and α-fetoprotein (AFP), the biomarkers specific to tumor progression, was observed along with metastasis upon treatment with the drug-loaded dual-responsive nanomicelles. These observations corroborated with the SGOT and SGPT data as well as the histoarchitecture of the liver tissue in mice.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad 382 481, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| |
Collapse
|
33
|
Li W, Hu X, Li Y, Song K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J Nat Med 2021; 75:854-870. [PMID: 34043154 DOI: 10.1007/s11418-021-01525-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Astragalus polysaccharide (APS) has been frequently used as an adjuvant agent responsible for its immunoregulatory activity to enhance efficacy and reduce toxicity of chemotherapy used in the management of breast cancer. However, the other synergism mechanism of APS remains unclear. This study was performed to evaluate the potential targets and possible mechanism behind APS in vivo direct anti-tumor activity on breast cancer. Multiple biological detections were conducted to investigate the protein and mRNA expression levels of key targets. In total, 116 down-regulated and 73 up-regulated differential expressed genes (DEGs) were examined from 7 gene expression datasets. Top ten hub genes were obtained in four typical protein-protein interaction (PPI) network of DEGs involved in each specific biological process (BP, cell cycle, cell proliferation, cell apoptosis and death) that was related to inhibitory activity of APS in vitro against breast cancer cell lines. Four common DEGs (EGFR, ANXA1, KIF14 and IGF1) were further identified in the above four BP-PPI networks, among which EGFR and ANXA1 were the hub genes that were potentially linked to the progression of breast cancer. The results of biological detections indicated that the expression of EGFR in breast cancer cells was down-regulated, while the expression of ANXA1 was markedly increased in response to APS. In conclusion, the present study may provide potential molecular therapeutic targets and a new insight into the mechanism of APS against breast cancer.
Collapse
Affiliation(s)
- Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanjie Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
34
|
Fan X, Luo Z, Ye E, You M, Liu M, Yun Y, Loh XJ, Wu YL, Li Z. AuNPs Decorated PLA Stereocomplex Micelles for Synergetic Photothermal and Chemotherapy. Macromol Biosci 2021; 21:e2100062. [PMID: 33871168 DOI: 10.1002/mabi.202100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Indexed: 11/05/2022]
Abstract
A unique platform for combined photothermal and chemotherapy using PLA stereocomplex (PLA SC) micelles-induced hybrid gold nanocarriers is designed. The PLA SC micelles, made from the self-assembly of poly(ethylene glycol)-block-poly(l-lactide) (PEG-PLLA) and poly(2-(dimethylamino) ethyl methacrylate)-block-poly(d-lactide) (PDMAEMA-PDLA), for the first time are used as a template to fabricate the hybrid PLA SC@Au core-shell nanocarriers, in which the anticancer drugs are encapsulated within the core, while the Au nanoparticles are tethered in the shell via the in situ reduction of AuCl4 - by PDMAEMA. The obtained PLA SC@Au hybrid nanocarriers exhibit low toxicity and remarkable photothermal effect. Upon near-infrared laser irradiation, the on-site photothermal therapy can further induce an accelerated drug release from the hybrid nanocarrier reservoir via hyperthermia heating of the nanocarriers, thus leading to a synergistic photothermal and chemotherapy toward a significantly improved efficacy in tumor shrinkage. The as-designed PLA SC@Au hybrid nanocarriers, with their biocompatible compositions, dual-drug delivery characteristics, and combined photothermal/chemotherapy, show high potential as a novel platform for cancer treatment.
Collapse
Affiliation(s)
- Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ye Yun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634
| |
Collapse
|
35
|
Liang X, Wang Y, Shi H, Dong M, Han H, Li Q. Nucleolin-Targeting AS1411 Aptamer-Modified Micelle for the Co-Delivery of Doxorubicin and miR-519c to Improve the Therapeutic Efficacy in Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2021; 16:2569-2584. [PMID: 33833512 PMCID: PMC8019667 DOI: 10.2147/ijn.s304526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) has emerged to be a major hindrance in cancer therapy, which contributes to the reduced sensitivity of cancer cells toward chemotherapeutic drugs mainly owing to the over-expression of drug efflux transporters. The combination of gene therapy and chemotherapy has been considered as a potential approach to improve the anti-cancer efficacy by reversing the MDR effect. MATERIALS AND METHODS The AS1411 aptamer-functionalized micelles were constructed through an emulsion/solvent evaporation strategy for the simultaneous co-delivery of doxorubicin and miR-519c. The therapeutic efficacy and related mechanism of micelles were explored based on the in vitro and in vivo active targeting ability and the suppression of MDR, using hepatocellular carcinoma cell line HepG2 as a model. RESULTS The micelle was demonstrated to possess favorable cellular uptake and tumor penetration ability by specifically recognizing the nucleolin in an AS1411 aptamer-dependent manner. Further, the intracellular accumulation of doxorubicin was significantly improved due to the suppression of ABCG2-mediated drug efflux by miR-519c, resulting in the efficient inhibition of tumor growth. CONCLUSION The micelle-mediated co-delivery of doxorubicin and miR-519c provided a promising strategy to obtain ideal anti-cancer efficacy through the active targeting function and the reversion of MDR.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/chemistry
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Delivery Systems/methods
- Drug Resistance, Multiple
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Micelles
- MicroRNAs/administration & dosage
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/chemistry
- Phosphoproteins/antagonists & inhibitors
- RNA-Binding Proteins/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Nucleolin
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Hui Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Mengmeng Dong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
36
|
Saravanakumar K, Mariadoss AVA, Sathiyaseelan A, Venkatachalam K, Hu X, Wang MH. pH-sensitive release of fungal metabolites from chitosan nanoparticles for effective cytotoxicity in prostate cancer (PC3) cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|