1
|
Adhikari A, Chen IA. Antibody-Nanoparticle Conjugates in Therapy: Combining the Best of Two Worlds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409635. [PMID: 40051146 PMCID: PMC12001320 DOI: 10.1002/smll.202409635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Indexed: 04/17/2025]
Abstract
Monoclonal antibodies (mAbs) and antibody fragments have revolutionized medicine as highly specific binding agents and inhibitors. At the same time, several types of nanomaterials, including liposomes, lipid nanoparticles (NPs), polymersomes, metal and metal oxide NPs, and protein nanostructures, are increasingly utilized and explored for therapeutic potential due to their versatility, chemical and physical properties, and tunability. However, nanomaterials alone often lack specificity, leading to relatively low efficacy and/or high toxicity. To address this problem, a rapidly emerging area is antibody-nanomaterial conjugates (ANCs), which combine the precise targeting specificity of antibodies with the effector functionality of the nanomaterial. In this review, we give a brief introduction to mAbs and major conjugation techniques, describe major classes of nanomaterials being studied for therapeutic potential, and review the literature on ANCs of each class. Special focus is given to emerging applications including ANCs addressing the blood-brain barrier, ANCs delivering nucleic acids, and light-activated ANCs. While many disease targets are related to cancer, ANCs are also under development to address autoimmune, neurological, and infectious diseases. While important challenges remain, ANCs are poised to become a next-generation therapeutic technology.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| |
Collapse
|
2
|
Zhang Z, Wang G, Zhang Z, Liang X, Wang G, Xu M, Yang X, Zhong X, Li C, Zhou M. Locally administered liposomal drug depot enhances rheumatoid arthritis treatment by inhibiting inflammation and promoting cartilage repair. J Nanobiotechnology 2025; 23:69. [PMID: 39891123 PMCID: PMC11783794 DOI: 10.1186/s12951-025-03110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by synovial hyperplasia, where inflammatory macrophages within the joint synovium produce multiple inflammatory cytokines, leading to cartilage damage. The development of therapeutic strategies that combine anti-inflammatory effects and cartilage repair mechanisms holds great promise for effective RA treatment. To address the limitations associated with the off-target effects of intravenous administration and the risk of synovial cavity infection with repeated local injections, we have innovatively developed a liposomal drug depot through hyaluronic acid (HA)-modified liposomes encapsulating dexamethasone sodium phosphate (DSP)-loaded nanogels, termed HA-Lipo@G/D. The nanogels were prepared by ionic cross-linking of chondroitin sulfate and gelatin, both of which have notable cartilage repair properties. In vitro studies demonstrated that this formulation exhibited sustained drug release, enhanced uptake by inflammatory macrophages, reduced secretion of inflammatory factors (TNF-α, IL-1β), and significantly decreased chondrocyte apoptosis induced by inflammatory factors. Moreover, in vivo assessments in a rat model of collagen-induced arthritis revealed effective accumulation of the liposomal drug depot at the inflamed joint site, resulting in macrophage repolarization and cartilage tissue repair. Our findings provide a synergistic strategy for inhibiting inflammation and mitigating cartilage damage through local joint cavity injection, thereby enhancing the therapeutic efficacy of RA.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guan Wang
- Department of Orthopaedics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guoshuang Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Thangadurai M, Sethuraman S, Subramanian A. Drug Delivery Approaches for Rheumatoid Arthritis: Recent Advances and Clinical Translation Aspects. Crit Rev Ther Drug Carrier Syst 2025; 42:1-54. [PMID: 40084516 DOI: 10.1615/critrevtherdrugcarriersyst.v42.i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized with symmetrical progression of joint deformity that is often diagnosed at a chronic condition with other associated pathological conditions such as pericarditis, keratitis, pulmonary granuloma. Despite the understanding of RA pathophysiology in disease progression, current clinical treatment options such as disease-modifying anti-rheumatic drugs (DMARDs), biologics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) provide only palliative therapy while causing adverse side effects such as off-target multi-organ toxicity and risk of infections. Further, available drug delivery strategies to treat RA pathogenicity does not successfully reach the site of action due to various barriers such as phagocytosis and first pass effect in addition to the disease complexity and unknown etiology, thereby leading to the development of irreversible joint dysfunction. Therefore, novel and effective strategies remain an unmet need to control the disease progression and to maintain the balance between pro- and anti-inflammatory cytokines. This review provides a comprehensive outlook on the RA pathophysiology and its corresponding disease progression. Contributions of synoviocytes such as macrophages, fibroblast-like cells in increasing invasiveness to exacerbate joint damage is also outlined in this review, which could be a potential future therapeutic target to complement the existing treatment regimens in controlling RA pathogenesis. Further, various smart drug delivery approaches under research to achieve maximum therapeutic efficacy with minimal adverse side effects have been discussed, which in turn emphasize the unmet challenges and future perspectives in addressing RA complications.
Collapse
Affiliation(s)
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
4
|
Tupally KR, Seal P, Pandey P, Lohman R, Smith S, Ouyang D, Parekh H. Integration of Dendrimer‐Based Delivery Technologies with Computational Pharmaceutics and Their Potential in the Era of Nanomedicine. EXPLORING COMPUTATIONAL PHARMACEUTICS ‐ AI AND MODELING IN PHARMA 4.0 2024:328-378. [DOI: 10.1002/9781119987260.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
6
|
Erensoy G, Råberg L, von Mentzer U, Menges LD, Bardhi E, Hultgård Ekwall AK, Stubelius A. Dynamic Release from Acetalated Dextran Nanoparticles for Precision Therapy of Inflammation. ACS APPLIED BIO MATERIALS 2024; 7:3810-3820. [PMID: 38795048 PMCID: PMC11191005 DOI: 10.1021/acsabm.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Polymer-based nanoparticles (NPs) that react to altered physiological characteristics have the potential to enhance the delivery of therapeutics to a specific area. These materials can utilize biochemical triggers, such as low pH, which is prone to happen locally in an inflammatory microenvironment due to increased cellular activity. This reduced pH is neutralized when inflammation subsides. For precise delivery of therapeutics to match this dynamic reaction, drug delivery systems (DDS) need to not only release the drug (ON) but also stop the release (OFF) autonomously. In this study, we use a systematic approach to optimize the composition of acetalated dextran (AcDex) NPs to start (ON) and stop (OFF) releasing model cargo, depending on local pH changes. By mixing ratios of AcDex polymers (mixed NPs), we achieved a highly sensitive material that was able to rapidly release cargo when going from pH 7.4 to pH 6.0. At the same time, the mix also offered a stable composition that enabled a rapid ON/OFF/ON/OFF switching within this narrow pH range in only 90 min. These mixed NPs were also sensitive to biological pH changes, with increased release in the presence of inflammatory cells compared to healthy cells. Such precise and controllable characteristics of a DDS position mixed NPs as a potential treatment platform to inhibit disease flare-ups, reducing both systemic and local side effects to offer a superior treatment option for inflammation compared to conventional systems.
Collapse
Affiliation(s)
- Gizem Erensoy
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Loise Råberg
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ula von Mentzer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Luca Dirk Menges
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Endri Bardhi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Anna-Karin Hultgård Ekwall
- The
Rheumatology Clinic, Sahlgrenska University
Hospital, Gothenburg 413 45, Sweden
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
| | - Alexandra Stubelius
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
7
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Singh S, Tiwary N, Sharma N, Behl T, Antil A, Anwer MK, Ramniwas S, Sachdeva M, Elossaily GM, Gulati M, Ohja S. Integrating Nanotechnological Advancements of Disease-Modifying Anti-Rheumatic Drugs into Rheumatoid Arthritis Management. Pharmaceuticals (Basel) 2024; 17:248. [PMID: 38399463 PMCID: PMC10891986 DOI: 10.3390/ph17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Disease-modifying anti-rheumatic drugs (DMARDs) is a class of anti-rheumatic medicines that are frequently prescribed to patients suffering from rheumatoid arthritis (RA). Methotrexate, sulfasalazine, hydroxychloroquine, and azathioprine are examples of non-biologic DMARDs that are being used for alleviating pain and preventing disease progression. Biologic DMARDs (bDMARDs) like infliximab, rituximab, etanercept, adalimumab, tocilizumab, certolizumab pegol, and abatacept have greater effectiveness with fewer adverse effects in comparison to non-biologic DMARDs. This review article delineates the classification of DMARDs and their characteristic attributes. The poor aqueous solubility or permeability causes the limited oral bioavailability of synthetic DMARDs, while the high molecular weights along with the bulky structures of bDMARDs have posed few obstacles in their drug delivery and need to be addressed through the development of nanoformulations like cubosomes, nanospheres, nanoemulsions, solid lipid nanoparticles, nanomicelles, liposome, niosomes, and nanostructured lipid carrier. The main focus of this review article is to highlight the potential role of nanotechnology in the drug delivery of DMARDs for increasing solubility, dissolution, and bioavailability for the improved management of RA. This article also focusses on the different aspects of nanoparticles like their applications in biologics, biocompatibility, body clearance, scalability, drug loading, and stability issues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Neha Tiwary
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India; (S.S.); (N.T.); (N.S.)
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, Punjab, India
| | - Anita Antil
- Janta College of Pharmacy, Butana, Sonepat 131302, Haryana, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al-Ain P.O. Box 24162, United Arab Emirates;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 716666, Riyadh 11597, Saudi Arabia;
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 1444411, Punjab, India;
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Shreesh Ohja
- Department of Pharmacology and Therapeutics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Shang W, Sun Q, Zhang C, Liu H, Yang Y, Liu Y, Gao W, Shen W, Yin D. Drug in Therapeutic Polymer: Sinomenine-Loaded Oxidation-Responsive Polymeric Nanoparticles for Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47552-47565. [PMID: 37768213 DOI: 10.1021/acsami.3c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that frequently involves cartilage damage and the destruction of the bone structure, ultimately resulting in disability and long-term pain. It is clear that overexpression of reactive oxygen species (ROS) and the complex inflammatory microenvironment are the main causes of RA pathogenesis; thereby, the efficacy of any single-drug treatment is limited. Herein, we formulated a therapeutic hyaluronic acid derivative (PAM-HA) with adsorption capacity to the subchondral bone, a long retention time within inflamed joints, and ROS-scavenging capacity, which was used as a drug carrier for realizing the controlled release of sinomenine (Sin) within arthritic joints. This "drug in therapeutic polymer" design strategy was aimed at realizing antioxidant and anti-inflammatory combination therapy for RA. In vivo experiments suggest that PAM-HA@Sin NPs can be retained in the inflamed joints of rats for a long time compared with commercially available free Sin injections. As expected, therapeutic PAM-HA polymeric carriers can increase joint lubrication and reduce oxidative stress, while the released Sin induces downregulation of proinflammatory factors (TNF-α and IL-1β) and upregulation of anti-inflammatory factors (Arg-1 and IL-10) via the NF-κB pathway. In summary, a ROS-scavenging hyaluronic acid (HA) derivative was developed as the nanocarrier for Sin delivery to simultaneously remodel the oxidative/inflammatory microenvironment in RA, which opens up new horizons for the development of therapeutic polymers and the combined therapeutic strategies.
Collapse
Affiliation(s)
- Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenxu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
- Anhui Provincial Key Laboratory of Research & Chinese Medicine, Hefei 230012, China
| |
Collapse
|
10
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
11
|
Radhouani H, Gonçalves C, Maia FR, Oliveira EP, Reis RL, Oliveira JM. Development of Conjugated Kefiran-Chondroitin Sulphate Cryogels with Enhanced Properties for Biomedical Applications. Pharmaceutics 2023; 15:1662. [PMID: 37376110 DOI: 10.3390/pharmaceutics15061662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels based on natural polysaccharides can have unique properties and be tailored for several applications, which may be mainly limited by the fragile structure and weak mechanical properties of this type of system. We successfully prepared cryogels made of newly synthesized kefiran exopolysaccharide-chondroitin sulfate (CS) conjugate via carbodiimide-mediated coupling to overcome these drawbacks. The freeze-thawing procedure of cryogel preparation followed by lyophilization is a promising route to fabricate polymer-based scaffolds with countless and valuable biomedical applications. The novel graft macromolecular compound (kefiran-CS conjugate) was characterized through 1H-NMR and FTIR spectroscopy-which confirmed the structure of the conjugate, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)-which mirrored good thermal stability (degradation temperature of about 215 °C) and, finally, gel permeation chromatography-size exclusion chromatography (GPC-SEC)-which proved an increased molecular weight due to chemical coupling of kefiran with CS. At the same time, the corresponding cryogels physically crosslinked after the freeze-thawing procedure were investigated by scanning electron microscopy (SEM), Micro-CT, and dynamic rheology. The results revealed a prevalent contribution of elastic/storage component to the viscoelastic behavior of cryogels in swollen state, a micromorphology with micrometer-sized open pores fully interconnected, and high porosity (ca. 90%) observed for freeze-dried cryogels. Furthermore, the metabolic activity and proliferation of human adipose stem cells (hASCs), when cultured onto the developed kefiran-CS cryogel, was maintained at a satisfactory level over 72 h. Based on the results obtained, it can be inferred that the newly freeze-dried kefiran-CS cryogels possess a host of unique properties that render them highly suitable for use in tissue engineering, regenerative medicine, drug delivery, and other biomedical applications where robust mechanical properties and biocompatibility are crucial.
Collapse
Affiliation(s)
- Hajer Radhouani
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduarda P Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|
12
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Pal RR, Rajpal V, Singh N, Singh S, Mishra N, Singh P, Maurya P, Alka, Saraf SA. Downregulation of pro-inflammatory markers IL-6 and TNF-α in rheumatoid arthritis using nano-lipidic carriers of a quinone-based phenolic: an in vitro and in vivo study. Drug Deliv Transl Res 2023; 13:627-641. [PMID: 35963927 DOI: 10.1007/s13346-022-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis (RA) is a joint ailment with multi-factorial immune-mediated degenerative pathogenesis, including genetic and environmental defects. Resistance to disease-modifying anti-rheumatic drugs (DMARDs) happens due to excessive drug efflux over time, rendering the concentration insufficient to elicit a response. Thymoquinone (TQ) is a quinone-based phenolic compound with antioxidant and anti-inflammatory activities that downregulate numerous pro-inflammatory cytokines. However, its pharmaceutical importance and therapeutic utility are underexplored due to intrinsic physicochemical characteristics such as inadequate biological stability, short half-life, low hydrophilicity, and less systemic availability. Tamanu oil-stabilised nanostructured lipid carriers (TQ-NLCs) were prepared and optimised using Box-Behnken design (BBD) with the size of 153.9 ± 0.52 nm and surface charge of -30.71 mV. The % entrapment efficiency and drug content were found to be 84.6 ± 0.50% and 14.75 ± 0.52%, respectively. Furthermore, the TQ-loaded NLCs (TQ-NLCs) assayed for skin permeation for transdermal delivery which significantly (p < 0.05) increased skin enhancement ratio 14.6 times compared to the aqueous solution of TQ. Tamanu oil displayed the synergistic anti-inflammatory potential with TQ in comparison to pure TQ, as evidenced against carrageenan (CRG)-induced paw oedema model and Freund's adjuvant-induced arthritic model. The arthritic and X-ray scores significantly (p < 0.05) reduced in TQ-NLCs and standard formulation-treated groups. Moreover, serum pro-inflammatory marker TNF-α and IL-6 levels were also significantly (p < 0.05) reduced in TQ-NLCs gel-treated group compared to the arthritic control group.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Vasundhara Rajpal
- Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow, 226 025, India.
| |
Collapse
|
16
|
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. NANOSCALE ADVANCES 2022; 4:3479-3494. [PMID: 36134349 PMCID: PMC9400644 DOI: 10.1039/d2na00229a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has increasingly emerged as a promising tool for exploring new approaches, from treating complex conditions to early detection of the onset of multiple disease states. Tailored designer nanoparticles can now more comprehensively interact with their cellular targets and various pathogens due to a similar size range and tunable surface properties. The basic goal of drug delivery is to employ pharmaceuticals only where they are needed, with as few adverse effects and off-target consequences as possible. Rheumatoid arthritis (RA) is a chronic inflammatory illness that leads to progressive loss of bone and cartilage, resulting in acute impairment, decreased life expectancy, and increased death rates. Recent advancements in treatment have significantly slowed the progression of the disease and improved the lives of many RA sufferers. Some patients, on the other hand, attain or maintain illness remission without needing to continue immunosuppressive therapy. Furthermore, a large percentage of patients do not respond to current treatments or acquire tolerance to them. As a result, novel medication options for RA therapy are still needed. Nanocarriers, unlike standard medications, are fabricated to transport drugs directly to the location of joint inflammation, evading systemic and negative effects. As a result, researchers are reconsidering medicines that were previously thought to be too hazardous for systemic delivery. This article gives an overview of contemporary nanotechnology-based tactics for treating rheumatoid arthritis, as well as how the nanotherapeutic regimen could be enhanced in the future.
Collapse
Affiliation(s)
- Simran Nasra
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar Palaj 382355 Gujarat India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| |
Collapse
|
17
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
18
|
Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des Devel Ther 2022; 16:1311-1347. [PMID: 35547865 PMCID: PMC9081192 DOI: 10.2147/dddt.s357386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.
Collapse
Affiliation(s)
- Luoyang Ma
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xiaoyan Zheng
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
| | - Rui Lin
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen City, Guangdong Province, 518055, People’s Republic of China
| | - Jintong Song
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Zhiqiang Ye
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Dahong Liang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Jia Tian
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xin Zhou
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yanzhi Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen city, Guangdong Province, 518118, People’s Republic of China
- Correspondence: Yanzhi Liu; Yuyu Liu, Tel +86-759-2388405; +86-759-2388588, Email ;
| |
Collapse
|
19
|
Li X, Wang H, Zou X, Su H, Li C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 170:106101. [PMID: 34936935 DOI: 10.1016/j.ejps.2021.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xuena Li
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Huanhui Wang
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Xiaotong Zou
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Hui Su
- Department of Pharmacy, The Sixth Affiliated Hospital of Harbin Medical University, No. 142 road, Zhongyuan Avenue, Harbin 150028, China
| | - Cheng Li
- College of Medicine, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China; Department of Pharmacy, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133000, China.
| |
Collapse
|
20
|
Geng X, Qu R, Kong X, Geng S, Zhang Y, Sun C, Ji C. Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water. Front Chem 2021; 9:743429. [PMID: 34595155 PMCID: PMC8476761 DOI: 10.3389/fchem.2021.743429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Therefore, hyperbranched dendrimers are more suitable for industrial large-scale adsorption. The hyperbranched polyamidoamine (HPAMAM) gels were prepared by cross-linking hyperbranched polyamidoamine (HPAMAM-ECH-x and HPAMAM-EGDE-x) with different amounts of epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE), respectively. The as-synthesized adsorbents were characterized by FT-IR, SEM and XPS. The prepared adsorbents were used to adsorb Hg(Ⅱ) in aqueous solution, and the effects of solution pH, contact time, temperature and initial concentration of metal ion on the adsorption capacity were investigated. The effect of solution pH indicated that the optimum condition to Hg(Ⅱ) removing was at pH 5.0. The adsorption kinetic curves of the two kinds of materials were in accordance with the pseudo-second-order model. For the HPAMAM-ECH samples, the adsorption thermodynamic curves fitted the Langmuir model, while for the HPAMAM-EGDE samples, both Langmuir and Freundlich equations fitted well. The maximum adsorption capacity of HPAMAM-ECH-3 obtained from Langmuir model toward Hg(Ⅱ) was 3.36 mmol/g at pH 5.0 and 35°C.
Collapse
Affiliation(s)
- Xue Geng
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Rongjun Qu
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Xiangyu Kong
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Shengnan Geng
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Ying Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| | - Chunnuan Ji
- School of Chemistry and Materials Science, Ludong University, Yantai, China.,Yantai Research Institute for the Transformation of Old and New Kinetic Forces, Yantai, China
| |
Collapse
|
21
|
Oliveira IM, Carvalho MR, Fernandes DC, Abreu CM, Maia FR, Pereira H, Caballero D, Kundu SC, Reis RL, Oliveira JM. Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. J Mater Chem B 2021; 9:4211-4218. [PMID: 33998627 DOI: 10.1039/d1tb00802a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease characterized by joint inflammation. Since the inflammatory condition plays an important role in the disease process, it is important to develop and test new therapeutic approaches that specifically target and treat joint inflammation. In this study, a human 3D inflammatory cartilage-on-a-chip model was established to test the therapeutic efficacy of anti-TNFα mAb-CS/PAMAM dendrimer NPs loaded-Tyramine-Gellan Gum in the treatment of inflammation. The results showed that the proposed therapeutic approach applied to the human monocyte cell line (THP-1) and human chondrogenic primary cells (hCH) cell-based inflammation system revealed an anti-inflammatory capacity that increased over 14 days. It was also possible to observe that Coll type II was highly expressed by inflamed hCH upon the culture with anti-TNF α mAb-CS/PAMAM dendrimer NPs, indicating that the hCH cells were able maintain their biological function. The developed preclinical model allowed us to provide more robust data on the potential therapeutic effect of anti-TNF α mAb-CS/PAMAM dendrimer NPs loaded-Ty-GG hydrogel in a physiologically relevant model.
Collapse
Affiliation(s)
- I M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D C Fernandes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - F R Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - H Pereira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Orthopedic Department, Povoa de Varzim - Vila do Conde Hospital Centre, Portugal and Ripoll & De Prado Sport Clinic, Spain
| | - D Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Bioengineered Nanoparticles Loaded-Hydrogels to Target TNF Alpha in Inflammatory Diseases. Pharmaceutics 2021; 13:pharmaceutics13081111. [PMID: 34452074 PMCID: PMC8400713 DOI: 10.3390/pharmaceutics13081111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid Arthritis (RA) is an incurable autoimmune disease that promotes the chronic impairment of patients’ mobility. For this reason, it is vital to develop therapies that target early inflammatory symptoms and act before permanent articular damage. The present study offers two novel therapies based in advanced drug delivery systems for RA treatment: encapsulated chondroitin sulfate modified poly(amidoamine) dendrimer nanoparticles (NPs) covalently bonded to monoclonal anti-TNF α antibody in both Tyramine-Gellan Gum and Tyramine-Gellan Gum/Silk Fibroin hydrogels. Using pro-inflammatory THP-1 (i.e., human monocytic cell line), the therapy was tested in an inflammation in vitro model under both static and dynamic conditions. Firstly, we demonstrated effective NP-antibody functionalization and TNF-α capture. Upon encapsulation, the NPs were released steadily over 21 days. Moreover, in static conditions, the approaches presented good anti-inflammatory activity over time, enabling the retainment of a high percentage of TNF α. To mimic the physiological conditions of the human body, the hydrogels were evaluated in a dual-chamber bioreactor. Dynamic in vitro studies showed absent cytotoxicity in THP-1 cells and a significant reduction of TNF-α in suspension over 14 days for both hydrogels. Thus, the developed approach showed potential for use as personalized medicine to obtain better therapeutic outcomes and decreased adverse effects.
Collapse
|