1
|
Xu M, Xu K, Peng W, Ge J, Wang N, Yu G, Wu Y, Zeng J. Hydrogels in Endoscopic Submucosal Dissection for Gastrointestinal Cancers. Acta Biomater 2025:S1742-7061(25)00368-X. [PMID: 40409509 DOI: 10.1016/j.actbio.2025.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Endoscopic Submucosal Dissection (ESD) has emerged as a pivotal technique for the minimally invasive treatment of early gastrointestinal cancers, offering benefits such as reduced trauma, lower complication rates, and cost-effectiveness. Despite its advantages, the selection of optimal biomaterials for submucosal injection poses significant challenges. Current materials used in clinical settings often suffer from rapid diffusion, requiring multiple injections and potentially causing localized inflammation. These issues underscore the importance of identifying more effective submucosal injection materials to minimize postoperative complications and enhance patient outcomes. Recent advancements have highlighted the potential of hydrogels in this context, favored for their ability to maintain mucosal elevation longer and support wound healing. This review comprehensively examines the development and application of hydrogels in ESD, focusing on their physicochemical properties, biocompatibility, and the clinical implications of their use. These issues discuss various formulations of hydrogels, their mechanisms of action, and comparative analyses with traditional materials. Furthermore, the review explores ongoing innovations and future perspectives in hydrogel research, aiming to catalyze further advancements in ESD techniques. STATEMENT OF SIGNIFICANCE: This review critically examines hydrogel technologies in endoscopic submucosal dissection for gastrointestinal cancers, highlighting their role in improving procedural outcomes and patient recovery. It explores hydrogels' ability to enhance mucosal elevation, reduce complications, and accelerate healing, offering insights into their transformative potential in medical treatments. The findings emphasize the development of innovative materials that could significantly advance clinical practices in gastrointestinal cancer management.
Collapse
Affiliation(s)
- Mengdan Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Wei Peng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Guangqiu Yu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Zhou T, Liu Z, Xu L, Mao X, Jin H, Xiong Y, Chen G, Lv Y, Cen L, Wang C, Zhang Y, Ye K, Shen Q, Zhou J, Lv B, Dai J, Yu C, Shen Z. Konjac glucomannan/sodium alginate/ε-poly-l-lysine hydrogel promotes esophageal and colonic wound healing. Int J Biol Macromol 2025; 306:141146. [PMID: 39986528 DOI: 10.1016/j.ijbiomac.2025.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-l-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed in vitro and in vivo. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Zhaoxue Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Taizhou 318000, Zhejiang, China
| | - Haifeng Jin
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Guangwu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Yong Lv
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350000, Fujian, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunren Wang
- National Institutes for Food and Drug Control, Beijing 100101, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Kexin Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jiaming Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Bin Lv
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jianying Dai
- Department of Research and Development, Hangzhou Yingjian Bioscience and Technology Co., Ltd, Hangzhou 310000, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
3
|
Li H, Chai N, Yang Y, Liu Z, Liu Z, Liu X, Liu S, Zhu L, Zhai H, Zhang W, Du C, Wang X, Li L, Linghu E. Endoscopic Delivery of a Double-Umbrella-Shaped Hydrogel Occluder with Instant Mechanical Interlock and Robust Wet Adhesion for Gastric Perforation Repair. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23642-23655. [PMID: 40198838 DOI: 10.1021/acsami.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Achieving robust adhesion of bioadhesives on wet tissues to block gastric perforation remains a challenge due to the gradually deteriorated adhesive-tissue interactions by interfacial acidity and multienzyme gastric fluids, thus accompanying failure shedding and life-threatening risks. Here, we report a biocompatible double-umbrella-shaped endoscopy-deliverable hydrogel occluder (EHO) made of caffeic acid (CA)-grafted chitosan (CS) and polyacrylamide (PAM) by molding technique, which is capable of the customizable, rapid, robust, and long-term sealing of large gastric perforations. In addition to interfacial physiochemical interactions (e.g., H-bonding, chelation) between the tissues and polymers, efficient sealing also integrates the advantages of fast mechanical interlocking in space and gradual self-expansion over time to tolerant acidic and mechanically dynamic environments. The EHO exhibits favorable biodegradability due to the reducible disulfide cross-linkers and remarkable protective barrier functions to impede the infiltration of gastric acid and digestive pepsin into the wound. To validate EHO's therapeutic efficacy, we further demonstrate the robust in vivo sealing to large gastric tissues via endoscopic delivery to the porcine stomach and monitor of healing process with improved retention of endogenous growth factors. Besides, in views of simple hydrogel fabrication using molding technique, the biodegradable EHO can be facilely tailored with various topologies according to application scenarios in surgical and minimally invasive endoscopic delivery, thus offering a promising alternative for clinical repair of gastrointestinal perforations and other organs.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Ningli Chai
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenyu Liu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Zhengyuan Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuemiao Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang Liu
- Hospital of the People's Liberation Army, 82nd Group Army, Baoding, Hebei 071000, China
| | - Lizhou Zhu
- School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Haoqi Zhai
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Wengang Zhang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Chen Du
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longsong Li
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Enqiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| |
Collapse
|
4
|
Yano H, Sasaki F, Maeda H, Uehara S, Kabayama M, Fujino Y, Tanaka A, Hinokuchi M, Arima S, Hashimoto S, Kanmura S, Ito S, Nishiguchi A, Taguchi T, Ido A. Effect of sprayable, highly adhesive hydrophobized gelatin microparticles on esophageal stenosis after endoscopic submucosal dissection: an experimental study in a swine model. Esophagus 2025; 22:95-104. [PMID: 39404963 PMCID: PMC11717788 DOI: 10.1007/s10388-024-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Esophageal mucosal resection for superficial esophageal cancer can lead to postoperative esophageal stricture, with current preventive measures being insufficient. Sprayable wound dressings containing hydrophobized microparticles exhibit strong adhesion. This study aimed to investigate the preventive effects of hydrophobized microparticles on esophageal stenosis following endoscopic submucosal dissection. METHODS Circumferential esophageal endoscopic submucosal dissection was performed on miniature swine (n = 6). Swine were categorized into two groups: those sprayed with hydrophobized microparticles (sprayed group) and those not sprayed (non-sprayed group). Hydrophobized microparticles were sprayed onto the sprayed group on Days 0, 3, and 7 of endoscopic submucosal dissection. The non-sprayed group underwent endoscopy on the same days. Esophageal stricture rate, submucosal inflammatory cell infiltration, submucosal fibrosis, and thickening of the muscular layer were compared between the groups on Day 14 of endoscopic submucosal dissection. RESULTS Spraying of hydrophobized microparticles was easily performed using an existing endoscopic spraying device. The esophageal stricture rate was significantly lower in the sprayed group than in the non-sprayed group (76.1% versus 90.6%, p < 0.05). The sprayed group showed suppression of inflammatory cell infiltration in the submucosal layer (p < 0.01) and thickening of the muscular layer (p < 0.01). CONCLUSIONS Sprayable tissue-adhesive hydrophobized microparticles reduce the stricture rate after esophageal ESD by inhibiting inflammatory cell infiltration, submucosal fibrosis, and thickening of the muscular layer. The use of hydrophobized microparticles for preventing post-endoscopic submucosal dissection esophageal stenosis offers a promising avenue for clinical applications in endoscopic procedures, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Hiroki Yano
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Hidehito Maeda
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shohei Uehara
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Kabayama
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yusuke Fujino
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Akihito Tanaka
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Makoto Hinokuchi
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shiho Arima
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shima Ito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Nishiguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Tetsushi Taguchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
5
|
Ito S, Watanabe S, Komatsu H, Nagasaka K, Palai D, Maki N, Tai T, Sugai K, Kawamura T, Sato Y, Taguchi T. Development of a Janus tissue adhesive hemostatic patch based on hydrophobically-modified Alaska pollock gelatin. BIOMATERIALS ADVANCES 2025; 166:214028. [PMID: 39244829 DOI: 10.1016/j.bioadv.2024.214028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Uncontrollable hemorrhage from trauma and open surgery leads to a high percentage of death. Even though some patch-type hemostatic materials have been used in the clinic, sufficient tissue adhesion property and the management of tissue adhesion and anti-adhesion have been the challenges. In this report, we designed Janus tissue adhesive hemostatic patch, consisting of Alaska pollock gelatin (Org-ApGltn) as a support layer and decanoyl group-modified ApGltn (C10-ApGltn) with pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-PEG) as an adhesive layer, named as the C10-ApGltn patch. The C10-ApGltn patch adhered onto blood vessel surface by the activation 4S-PEG and hydrophobic groups in C10-ApGltn through the covalent bond formation and physical interaction. The burst strength of the C10-ApGltn patch was optimized in terms of the degree of substitution, the molecular weight of 4S-PEG, the concentration of C10-ApGltn, and the NHS/NH2 ratio. The optimized C10-ApGltn patch showed significantly higher burst strength with commercially available TachoSil®. The C10-ApGltn patch showed enzymatic degradability in a buffer solution with collagenase. In a rat liver hemorrhage model, the C10-ApGltn patch acted as a sealant on the hemorrhage site and exhibited competitive hemostatic property to TachoSil®.
Collapse
Affiliation(s)
- Shima Ito
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shiharu Watanabe
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiyori Komatsu
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Nagasaka
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Debabrata Palai
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Maki
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuo Tai
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuto Sugai
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoyuki Kawamura
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsushi Taguchi
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
6
|
Yee YC, Mori T, Ito S, Taguchi T, Katayama Y. Impact of hydrophobic modification on biocompatibility of Alaska pollock gelatin microparticles. ANAL SCI 2024; 40:2053-2061. [PMID: 39120821 DOI: 10.1007/s44211-024-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
This study investigates the impact of hydrophobic modification on the immunogenicity, cytotoxicity, and inflammatory response of Alaska pollock gelatin (ApGltn) microparticles (MPs). Gelatin, known for its inherent biocompatibility, was modified with decyl group (C10) to explore potential alterations in its interaction with the immune system. Immunogenicity was evaluated through the measurement of material-specific IgM and IgG responses, indicating no significant increase post-modification. Cytotoxicity against Caco-2 cell lines and NF-κB-mediated LPS-induced inflammation were also assessed, revealing no exacerbation by the modified MPs. Furthermore, C10 modification with different types of linkage such as secondary amine and amide structure did not influence immune reactivity. These findings suggest that C10 modification maintains the non-immunogenicity and biocompatibility of gelatin MPs, supporting their potential use in biomedical applications.
Collapse
Affiliation(s)
- Ying Chuin Yee
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shima Ito
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC.
| |
Collapse
|
7
|
Muñoz Taboada G, Dahis D, Dosta P, Edelman E, Artzi N. Sprayable Hydrogel Sealant for Gastrointestinal Wound Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311798. [PMID: 38421085 DOI: 10.1002/adma.202311798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Naturally occurring internal bleeding, such as in stomach ulcers, and complications following interventions, such as polyp resection post-colonoscopy, may result in delayed (5-7 days) post-operative adverse events-such as bleeding, intestinal wall perforation, and leakage. Current solutions for controlling intra- and post-procedural complications are limited in effectiveness. Hemostatic powders only provide a temporary solution due to their short-term adhesion to GI mucosal tissues (less than 48 h). In this study, a sprayable adhesive hydrogel for facile application and sustained adhesion to GI lesions is developed using clinically available endoscopes. Upon spraying, the biomaterial (based on polyethyleneimine-modified Pluronic micelles precursor and oxidized dextran) instantly gels upon contact with the tissue, forming an adhesive shield. In vitro and in vivo studies in guinea pigs, rabbits, and pig models confirm the safety and efficacy of this biomaterial in colonic and acidic stomach lesions. The authors' findings highlight that this family of hydrogels ensures prolonged tissue protection (3-7 days), facilitates wound healing, and minimizes the risk of delayed complications. Overall, this technology offers a readily adoptable approach for gastrointestinal wound management.
Collapse
Affiliation(s)
- Gonzalo Muñoz Taboada
- BioDevek, Boston, MA, 02134, USA
- Institut Químic de Sarrià, Univeritat Ramon Llull, Barcelona, 08017, Spain
| | | | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Elazer Edelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Liu S, Xiang Y, Liu Z, Li L, Dang R, Zhang H, Wei F, Chen Y, Yang X, Mao M, Zhang YS, Song J, Zhang X. A Nature-Derived, Hetero-Structured, Pro-Healing Bioadhesive Patch for High-Performance Sealing of Wet Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309774. [PMID: 38490747 DOI: 10.1002/adma.202309774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.
Collapse
Affiliation(s)
- Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yangfan Xiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Zekun Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Lan Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Huicong Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Feng Wei
- The People's Hospital of Kaizhou District, Chongqing, 405499, P. R. China
| | - Yuqin Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiang Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Mengjie Mao
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
9
|
Ito S, Nagasaka K, Komatsu H, Palai D, Nishiguchi A, Taguchi T. Improved hydration property of tissue adhesive/hemostatic microparticle based on hydrophobically-modified Alaska pollock gelatin. BIOMATERIALS ADVANCES 2024; 159:213834. [PMID: 38518390 DOI: 10.1016/j.bioadv.2024.213834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The management of bleeding is an important aspect of endoscopic surgery to avoid excessive blood loss and minimize pain. In clinical settings, sprayable hemostatic particles are used for their easy delivery, adaptability to irregular shapes, and rapid hydration. However, conventional hemostatic particles present challenges associated with tissue adhesion. In a previous study, we reported tissue adhesive microparticles (C10-sa-MPs) derived from Alaska pollock gelatin modified with decyl groups (C10-sa-ApGltn) using secondary amines as linkages. The C10-sa-MPs adhere to soft tissues through a hydration mechanism. However, their application as a hemostatic agent was limited by their long hydration times, attributed to their high hydrophobicity. In this study, we present a new type microparticle, C10-am-MPs, synthesized by incorporating decanoyl group modifications into ApGltn (C10-am-ApGltn), using amide bonds as linkages. C10-am-MPs exhibited enhanced hydration characteristics compared to C10-sa-MPs, attributed to superior water absorption facilitated by amide bonds rather than secondary amines. Furthermore, C10-am-MPs demonstrated comparable tissue adhesion properties and underwater adhesion stability to C10-sa-MPs. Notably, C10-am-MPs exhibited accelerated blood coagulation in vitro compared to C10-sa-MPs. The application of C10-am-MPs in an in vivo rat liver hemorrhage model resulted in a hemostatic effect comparable to a commercially available hemostatic particle. These findings highlight the potential utility of C10-am-MPs as an effective hemostatic agent for endoscopic procedures and surgical interventions.
Collapse
Affiliation(s)
- Shima Ito
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Nagasaka
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiyori Komatsu
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Debabrata Palai
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Nishiguchi
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
10
|
Ito S, Nagasaka K, Komatsu H, Mamiya H, Takeguchi M, Nishiguchi A, Taguchi T. Sprayable tissue adhesive microparticle-magnetic nanoparticle composites for local cancer hyperthermia. BIOMATERIALS ADVANCES 2024; 156:213707. [PMID: 38043335 DOI: 10.1016/j.bioadv.2023.213707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Incomplete removal of early-stage gastrointestinal cancers by endoscopic treatments often leads to recurrence induced by residual cancer cells. To completely remove or kill cancer tissues and cells and prevent recurrence, chemotherapy, radiotherapy, and hyperthermia using biomaterials with drugs or nanomaterials are usually administered following endoscopic treatments. However, there are few biomaterials that can be applied using endoscopic devices to locally kill cancer tissues and cells. We previously reported that decyl group-modified Alaska pollock gelatin-based microparticles (denoted C10MPs) can adhere to gastrointestinal tissues under wet conditions through the formation of a colloidal gel driven by hydrophobic interactions. In this study, we combined C10MPs with superparamagnetic iron oxide nanoparticles (SPIONs) to develop a sprayable heat-generating nanomaterial (denoted SP/C10MP) for local hyperthermia of gastrointestinal cancers. The rheological property, tissue adhesion strength, burst strength, and underwater stability of SP/C10MP were improved through decyl group modification and SPION addition. Moreover, SP/C10MP that adhered to gastrointestinal tissues formed a colloidal gel, which locally generated heat in response to an alternating magnetic field. SP/C10MP successfully killed cancer tissues and cells in colon cancer-bearing mouse models in vitro and in vivo. Therefore, SP/C10MP has the potential to locally kill residual cancer tissues and cells after endoscopic treatments.
Collapse
Affiliation(s)
- Shima Ito
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Nagasaka
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiyori Komatsu
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Mamiya
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Masaki Takeguchi
- Research Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Akihiro Nishiguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
11
|
Chen Z, Ding J, Wu C, Wei D, Sun J, Fan H, Guo Z. A review of hydrogels used in endoscopic submucosal dissection for intraoperative submucosal cushions and postoperative management. Regen Biomater 2023; 10:rbad064. [PMID: 37501677 PMCID: PMC10368804 DOI: 10.1093/rb/rbad064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) has been clinically proved to have prominent advantages in the treatment of early gastrointestinal cancers over traditional surgery, including less trauma, fewer complications, a quicker recovery and lower costs. During the procedure of ESD, appropriate and multifunctional submucosal injected materials (SIMs) as submucosal cushions play an important role, however, even with many advances in design strategies of SIMs over the past decades, the performance of the submucosal cushions with postoperative management function seems to be still unsatisfactory. In this review, we gave a brief historical recount about the clinical development of SIMs, then some common applications of hydrogels used as SIMs in ESD were summarized, while an account of the universal challenges during ESD procedure was also outlined. Going one step further, some cutting-edge functional strategies of hydrogels for novel applications in ESD were exhibited. Finally, we concluded the advantages of hydrogels as SIMs for ESD as well as the treatment dilemma clinicians faced when it comes to deeply infiltrated lesions, some technical perspectives about linking the clinical demand with commercial supply were also proposed. Encompassing the basic elements of SIMs used in ESD surgery and the corresponding postoperative management requirements, this review could be a good reference for relevant practitioners in expanding the research horizon and improving the well-being index of patients.
Collapse
Affiliation(s)
| | | | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | | | | |
Collapse
|
12
|
Hu X, Grinstaff MW. Advances in Hydrogel Adhesives for Gastrointestinal Wound Closure and Repair. Gels 2023; 9:282. [PMID: 37102894 PMCID: PMC10138019 DOI: 10.3390/gels9040282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Millions of individuals undergo gastrointestinal (GI) tract surgeries each year with common postoperative complications including bleeding, perforation, anastomotic leakage, and infection. Today, techniques such as suturing and stapling seal internal wounds, and electrocoagulation stops bleeding. These methods induce secondary damage to the tissue and can be technically difficult to perform depending on the wound site location. To overcome these challenges and to further advance wound closure, hydrogel adhesives are being investigated to specifically target GI tract wounds because of their atraumatic nature, fluid-tight sealing capability, favorable wound healing properties, and facile application. However, challenges remain that limit their use, such as weak underwater adhesive strength, slow gelation, and/or acidic degradation. In this review, we summarize recent advances in hydrogel adhesives to treat various GI tract wounds, with a focus on novel material designs and compositions to combat the environment-specific challenges of GI injury. We conclude with a discussion of potential opportunities from both research and clinical perspectives.
Collapse
Affiliation(s)
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Ito S, Nishiguchi A, Taguchi T. Effect of particle size on the tissue adhesion and particle floatation of a colloidal wound dressing for endoscopic treatments. Acta Biomater 2023; 159:83-94. [PMID: 36706853 DOI: 10.1016/j.actbio.2023.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Endoscopic submucosal dissection (ESD) is a minimally invasive technique that is widely used to remove gastrointestinal tumors. However, because the walls of the duodenum and large intestine are thin, perforation can easily occur after ESD. We have previously reported that alkyl group-modified Alaska pollock gelatin-based microparticles (C10Ps) formed a colloidal gel that could adhere to defects and close perforations, driven by hydrophobic interactions. The present study focused on the effect of particle size on the colloidal gel properties and the floatation of C10Ps in the air in the delivery of C10Ps. We prepared C10Ps with different particle sizes from 0.1 to 100 µm. The storage modulus and adhesion strength of the C10P colloidal gel increased with decreasing particle size. All the C10Ps formed a colloidal gel layer on duodenum tissue after being sprayed from an endoscopic device. The underwater stability and burst strength of C10Ps with a particle size of 0.1 and 1 µm were higher than for larger C10Ps. Floating of the small-sized C10Ps in the air was observed. The results indicated that C10Ps with a size of 1 µm had suitable properties for use in endoscopic treatments. STATEMENT OF SIGNIFICANCE: We previously reported tissue adhesive microparticles as a spray-deliverable wound dressing in gastrointestinal tissues. However, their functions depending on particle size have not yet been clarified. In the present study, we prepared decyl group-modified Alaska pollock gelatin nano and microparticles (C10Ps) with different particle sizes from 0.1 to 100 µm and evaluated the effect of particle size on the colloidal gel properties (rheological property, underwater stability and perforation-closing ability) and the floatation of C10Ps in the air in the delivery of C10Ps.
Collapse
Affiliation(s)
- Shima Ito
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
14
|
Liu S, Luan Z, Wang T, Xu K, Luo Q, Ye S, Wang W, Dan R, Shu Z, Huang Y, Mequanint K, Fan C, Xing M, Yang S. Endoscopy Deliverable and Mushroom-Cap-Inspired Hyperboloid-Shaped Drug-Laden Bioadhesive Hydrogel for Stomach Perforation Repair. ACS NANO 2023; 17:111-126. [PMID: 36343209 DOI: 10.1021/acsnano.2c05247] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gastrointestinal tract perforation is a full-thickness injury that causes bleeding and fatal infection of the peritoneum. This condition worsens in an acidic gastric environment which interferes with the normal coagulation cascade. Current endoscopic clips to repair gastric perforations are ineffective, and metal or plastic occluders need secondary surgery to remove them. Herein, we report a self-expandable, endoscopy deliverable, adhesive hydrogel to block gastric perforation. We found the nanosilica coating significantly enhanced the adhesive strength even under a simulated strong acidic stomach environment. The developed device was disulfide cross-linked for the reducible degraded gel. By loading with vonoprazan fumarate (VF) and acidic fibroblast growth factor (AFGF), the hyperboloid-shaped device can have a sustained drug release to regulate intragastric pH and promote wound healing. The gel device can be compressed and then expanded like a mushroom when applied in an acute gastric perforation model in both rabbits and minipigs. By utilizing a stomach capsule robot for remotely monitoring the pH and by immunohistochemical analysis, we demonstrated that the compressible hyperboloid-shaped gel could stably block the perforation and promoted wound healing during the 28 days of observation. The real-time pH meter demonstrated that the gel could control intragastric pH above 4 for nearly 60 h to prevent bleeding.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Zhaohui Luan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Tongchuan Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Kaige Xu
- Departments of Mechanical Engineering, University of Manitoba, Winnipeg, ManitobaR3T 2N2, Canada
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Shaosong Ye
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Ruijue Dan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Zhenzhen Shu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, and School of Biomedical Engineering, The University of Western Ontario, London, OntarioN6A 5B9, Canada
| | - Chaoqiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing400037, China
| | - Malcolm Xing
- Departments of Mechanical Engineering, University of Manitoba, Winnipeg, ManitobaR3T 2N2, Canada
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No.183, Xinqiao Street, Shapingba District, Chongqing400037, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing400037, China
| |
Collapse
|
15
|
Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles. Acta Biomater 2022; 149:139-149. [PMID: 35697199 DOI: 10.1016/j.actbio.2022.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Postoperative adhesion, bonding of the abdominal wall to damaged organs, causes severe complications after abdominal surgery. Despite the availability of physical barriers (i.e., solutions, films, and hydrogels), adhesion prevention materials that are a single-substance system with stability in wet tissue and ease of use have not been reported. Here, we report a microparticle based, sprayable adhesion prevention material comprising decyl group modified Alaska pollock gelatin (C10-ApGltn). C10-ApGltn microparticles (C10-MPs) were prepared by a coacervation method, freeze drying, and thermal crosslinking. The C10-MPs adhered to and formed a colloidal gel layer on intestinal serosal tissue by hydration without any crosslinking agents. After hydration of the C10-MPs, the resulting colloidal gel layer did not adhere to other tissues. Additionally, the C10-MP colloidal gel layer formed on the stomach serosal tissue showed stability when submersed in saline for 2 days. The colloidal gel layer also showed tissue followability. An in vivo rat adhesion model revealed that C10-MP colloidal gel layer on the cecum and abdominal wall defects effectively reduced postoperative adhesion and induced tissue remodeling, including re-mesothelialization. Therefore, C10-MPs are a potential anti-adhesion material for preventing postoperative adhesion. STATEMENT OF SIGNIFICANCE: We evaluated the postoperative adhesion prevention ability of a colloidal gel based on decyl group modified Alaska pollock gelatin (ApGltn) microparticles (C10-MPs). These microparticles are sprayable and form a colloidal gel with only hydration on the gastrointestinal tissue. We revealed that the modification of the decyl group into ApGltn improved the stability of C10-MP colloidal gel on the tissue by hydrophobic interaction in the in-vitro experiments. The gel prevented postoperative adhesion by being a physical barrier in the in-vivo rat adhesion model.
Collapse
|