1
|
Zeng XX, Wu Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol 2025; 67:1735-1751. [PMID: 38761327 DOI: 10.1007/s12033-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China.
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Changzhou, 213022, Jiangsu Province, People's Republic of China.
| | - Yuyan Wu
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China
| |
Collapse
|
2
|
Liu C, Rivera Ruiz A, Zhang Y, Zimmern P, Li Z. Emergent biotechnology applications in urology: a mini review. Front Bioeng Biotechnol 2025; 13:1539126. [PMID: 39968011 PMCID: PMC11832658 DOI: 10.3389/fbioe.2025.1539126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Technological advances have significantly impacted the field of urology, providing innovative solutions for diagnosis, treatment, and management of various urological disorders and diseases. This article highlights four groundbreaking technologies: whole-cell biosensors, optogenetic interventions for neuromodulation, bioengineered urinary bladder, and 3D bioprinting. Each technology plays a crucial role in enhancing patient care and improving clinical outcomes in urology. Advances in these fields underscore a shift towards precision diagnostics, personalized treatments, and enhanced regenerative strategies, ultimately aiming to enhance patient outcomes and address unmet clinical needs in urological diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Alejandro Rivera Ruiz
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Philippe Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, United States
| | - Zhengwei Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Biomedical Sciences, The Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
4
|
Li F, XinHuang, Wang R, Li Y, Wu L, Qiao X, Zhong Y, Gong G, Huang W. Collagen-based materials in male genitourinary diseases and tissue regeneration. COLLAGEN AND LEATHER 2024; 6:36. [DOI: 10.1186/s42825-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
AbstractMale genitourinary dysfunction causes serious physical or mental distress, such as infertility and psychological harm, which leads to impaired quality of life. Current conventional treatments involving drug therapy, surgical repair, and tissue grafting have a limited effect on recovering the function and fertility of the genitourinary organs. To address these limitations, various biomaterials have been explored, with collagen-based materials increasingly gaining attention for reconstructing the male genitourinary system due to their superior biocompatibility, biodegradability, low antigenicity, biomimetic 3D matrix characteristics, hemostatic efficacy, and tissue regeneration capabilities. This review covers the recent biomedical applications of collagen-based materials including treatment of erectile dysfunction, premature ejaculation, penile girth enlargement, prostate cancer, Peyronie's disease, chronic kidney disease, etc. Although there are relatively few clinical trials, the promising results of the existing studies on animal models reveal a bright future for collagen-based materials in the treatment of male genitourinary diseases.
Graphic Abstract
Collapse
|
5
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
6
|
Wierzbicka A, Bartniak M, Waśko J, Kolesińska B, Grabarczyk J, Bociaga D. The Impact of Gelatin and Fish Collagen on Alginate Hydrogel Properties: A Comparative Study. Gels 2024; 10:491. [PMID: 39195020 DOI: 10.3390/gels10080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements of separate clinical applications. These materials, however, have numerous limitations in the area of biological activity. In order to eliminate their limitations, sodium alginate is popularly applied in combination with added gelatin, which represents a product of collagen hydrolysis. Despite numerous beneficial biological properties, matrix materials based on gelatin have poor mechanical properties and are characterized by their ability for rapid degradation in an aqueous environment, particularly at the physiological temperature of the body, which significantly limits the independent application opportunities of this type of composition in the range of scaffolding production dedicated for tissue engineering. Collagen hydrogels, unlike gelatin, are characterized by higher bioactivity, dictated by a greater number of ligands that allow for cell adhesion, as well as better stability under physiological conditions. Fish-derived collagen provides a material that may be efficiently extracted without the risk of mammalian prion infection and can be used in all patients without religious restrictions. Considering the numerous advantages of collagen indicating its superiority over gelatin, within the framework of this study, the compositions of hydrogel materials based on sodium alginate and fish collagen in different concentrations were developed. Prepared hydrogel materials were compared with the properties of a typical composition of alginate with the addition of gelatin. The rheological, mechanical, and physicochemical properties of the developed polymer compositions were evaluated. The first trials of 3D printing by extrusion technique using the analyzed polymer solutions were also conducted. The results obtained indicate that replacing gelatin with fish collagen at an analogous concentration leads to obtaining materials with a lower swelling degree, better mechanical properties, higher stability, limited release kinetics of calcium ions cross-linking the alginate matrix, a slowed process of protein release under physiological conditions, and the possibility of extrusion 3D printing. The conducted analysis highlights that the optimization of the applied concentrations of fish collagen additives to composition based on sodium alginate creates the possibility of designing materials with appropriate mechanical and rheological properties and degradation kinetics adjusted to the requirements of specific applications, leading to the prospective opportunity to produce materials capable of mimicking the properties of relevant soft tissues. Thanks to its excellent bioactivity and lower-than-gelatin viscosity of the polymer solution, fish collagen also provides a prospective solution for applications in the field of 3D bioprinting.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Mateusz Bartniak
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Joanna Waśko
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Jacek Grabarczyk
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
7
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
8
|
Gholami K, Seyedjafari E, Mahdavi FS, Naghdipoor M, Mesbah G, Zahmatkesh P, Akbarzadehmoallemkolaei M, Baghdadabad LZ, Pandian SK, Meilika KN, Aghamir SMK. The Effect of Multilayered Electrospun PLLA Nanofibers Coated with Human Amnion or Bladder ECM Proteins on Epithelialization and Smooth Muscle Regeneration in the Rabbit Bladder. Macromol Biosci 2024; 24:e2300308. [PMID: 37931180 DOI: 10.1002/mabi.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Nanofibrous scaffolds have attracted much attention in bladder reconstruction approaches due to their excellent mechanical properties. In addition, their biological properties can be improved by combination with biological materials. Taking into account the advantages of nanofibrous scaffolds and decellularized extracellular matrix (dECM) in tissue engineering, scaffolds of poly-L-lactic acid (PLLA) coated with decellularized human amnion membrane (hAM) or sheep bladder (SB)-derived ECM proteins are developed (amECM-coated PLLA and sbECM-coated PLLA, respectively). The bladder regenerative potential of modified electrospun PLLA scaffolds is investigated in rabbits. The presence of ECM proteins is confirmed on the nanofibers' surface. Coating the surface of the PLLA nanofibers improves cell adhesion and proliferation. Histological and immunohistochemical evaluations show that rabbits subjected to cystoplasty with a multilayered PLLA scaffold show de novo formation and maturation of the multilayered urothelial layer. However, smooth muscle bundles (myosin heavy chain [MHC] and α-smooth muscle actin [α-SMA] positive) are detected only in ECM-coated PLLA groups. All groups show no evidence of a diverticulumor fistula in the urinary bladder. These results suggest that the biofunctionalization of electrospun PLLA nanofibers with ECM proteins can be a promising option for bladder tissue engineering. Furthermore, hAM can also replace animal-sourced ECM proteins in bladder tissue regeneration approaches.
Collapse
Affiliation(s)
- Keykavoos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Fatemeh Sadat Mahdavi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1416753955, Iran
| | - Mehdi Naghdipoor
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- AshianGanoTeb Biopharmaceutical Company, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Kirolos N Meilika
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 1416753955, USA
| | | |
Collapse
|
9
|
Guimarães CF, Liu S, Wang J, Purcell E, Ozedirne T, Ren T, Aslan M, Yin Q, Reis RL, Stoyanova T, Demirci U. Co-axial hydrogel spinning for facile biofabrication of prostate cancer-like 3D models. Biofabrication 2024; 16:025017. [PMID: 38306674 DOI: 10.1088/1758-5090/ad2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Glandular cancers are amongst the most prevalent types of cancer, which can develop in many different organs, presenting challenges in their detection as well as high treatment variability and failure rates. For that purpose, anticancer drugs are commonly tested in cancer cell lines grown in 2D tissue culture on plastic dishesin vitro, or in animal modelsin vivo. However, 2D culture models diverge significantly from the 3D characteristics of living tissues and animal models require extensive animal use and time. Glandular cancers, such as prostate cancer-the second leading cause of male cancer death-typically exist in co-centrical architectures where a cell layer surrounds an acellular lumen. Herein, this spatial cellular position and 3D architecture, containing dual compartments with different hydrogel materials, is engineered using a simple co-axial nozzle setup, in a single step utilizing prostate as a model of glandular cancer. The resulting hydrogel soft structures support viable prostate cancer cells of different cell lines and enable over-time maturation into cancer-mimicking aggregates surrounding the acellular core. The biofabricated cancer mimicking structures are then used as a model to predict the inhibitory efficacy of the poly ADP ribose polymerase inhibitor, Talazoparib, and the antiandrogen drug, Enzalutamide, in the growth of the cancer cell layer. Our results show that the obtained hydrogel constructs can be adapted to quickly obtain 3D cancer models which combine 3D physiological architectures with high-throughput screening to detect and optimize anti-cancer drugs in prostate and potentially other glandular cancer types.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga and Guimarães, Portugal
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Shiqin Liu
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Emma Purcell
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Tugba Ozedirne
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Tanchen Ren
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Merve Aslan
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Qingqing Yin
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| |
Collapse
|
10
|
Lim J, Bupphathong S, Huang W, Lin CH. Three-Dimensional Bioprinting of Biocompatible Photosensitive Polymers for Tissue Engineering Application. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:710-722. [PMID: 37335218 DOI: 10.1089/ten.teb.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Podgórski R, Wojasiński M, Ciach T. Pushing boundaries in 3D printing: Economic pressure filament extruder for producing polymeric and polymer-ceramic filaments for 3D printers. HARDWAREX 2023; 16:e00486. [PMID: 37964896 PMCID: PMC10641689 DOI: 10.1016/j.ohx.2023.e00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials. Commercial extruders frequently require a large amount of raw material for experimental purposes, even for small quantities of filament. In our publication, we propose a simple system for pressure filament extruding, which allows obtaining up to 1-meter-long filament suitable for fused filament fabrication-type 3D printers, requiring only 30 g of material to begin work. Our device is based on stainless steel pipes used as a container for material, a basic electric heating system with a proportional-integral-derivative controller, and a pressurised air source with an air pressure regulator. We tested our device on various mixes of polylactide and polycaprolactone with β-tricalcium phosphate and demonstrated the possibility of screening production and testing of new materials for 3D-printed bone implants.
Collapse
Affiliation(s)
- Rafał Podgórski
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
12
|
Oleksy M, Dynarowicz K, Aebisher D. Rapid Prototyping Technologies: 3D Printing Applied in Medicine. Pharmaceutics 2023; 15:2169. [PMID: 37631383 PMCID: PMC10458921 DOI: 10.3390/pharmaceutics15082169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional printing technology has been used for more than three decades in many industries, including the automotive and aerospace industries. So far, the use of this technology in medicine has been limited only to 3D printing of anatomical models for educational and training purposes, which is due to the insufficient functional properties of the materials used in the process. Only recent advances in the development of innovative materials have resulted in the flourishing of the use of 3D printing in medicine and pharmacy. Currently, additive manufacturing technology is widely used in clinical fields. Rapid development can be observed in the design of implants and prostheses, the creation of biomedical models tailored to the needs of the patient and the bioprinting of tissues and living scaffolds for regenerative medicine. The purpose of this review is to characterize the most popular 3D printing techniques.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
13
|
Duan L, Wang Z, Fan S, Wang C, Zhang Y. Research progress of biomaterials and innovative technologies in urinary tissue engineering. Front Bioeng Biotechnol 2023; 11:1258666. [PMID: 37645598 PMCID: PMC10461011 DOI: 10.3389/fbioe.2023.1258666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Substantial interests have been attracted to multiple bioactive and biomimetic biomaterials in recent decades because of their ability in presenting a structural and functional reconstruction of urinary tissues. Some innovative technologies have also been surging in urinary tissue engineering and urological regeneration by providing insights into the physiological behavior of the urinary system. As such, the hierarchical structure and tissue function of the bladder, urethra, and ureter can be reproduced similarly to the native urinary tissues. This review aims to summarize recent advances in functional biomaterials and biomimetic technologies toward urological reconstruction. Various nanofirous biomaterials derived from decellularized natural tissues, synthetic biopolymers, and hybrid scaffolds were developed with desired microstructure, surface chemistry, and mechanical properties. Some growth factors, drugs, as well as inorganic nanomaterials were also utilized to enhance the biological activity and functionality of scaffolds. Notably, it is emphasized that advanced approaches, such as 3D (bio) printing and organoids, have also been developed to facilitate structural and functional regeneration of the urological system. So in this review, we discussed the fabrication strategies, physiochemical properties, and biofunctional modification of regenerative biomaterials and their potential clinical application of fast-evolving technologies. In addition, future prospective and commercial products are further proposed and discussed.
Collapse
Affiliation(s)
- Liwei Duan
- The Second Hospital, Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuang Fan
- The Second Hospital, Jilin University, Changchun, China
| | - Chen Wang
- The Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
14
|
Plava J, Cehakova M, Kuniakova M, Trnkova L, Cihova M, Bohac M, Danisovic L. The third dimension of tumor microenvironment-The importance of tumor stroma in 3D cancer models. Exp Biol Med (Maywood) 2023; 248:1347-1358. [PMID: 37750028 PMCID: PMC10625342 DOI: 10.1177/15353702231198050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Recent advances in the three-dimensional (3D) cancer models give rise to a plethora of new possibilities in the development of anti-cancer drug therapies and bring us closer to personalized medicine. Three-dimensional models are undoubtedly more authentic than traditional two-dimensional (2D) cell cultures. Nowadays, they are becoming preferentially used in most cancer research fields due to their more accurate biomimetic characteristics. On the contrary, they still lack the cellular and matrix complexity of the native tumor microenvironment (TME). This review focuses on the description of existing 3D models, the incorporation of TME and fluidics into these models, and their perspective in the future research. It is clear that such an improvement would need not only biological but also technical progress. Therefore, the modern approach to anti-cancer drug discovery should involve various fields.
Collapse
Affiliation(s)
- Jana Plava
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava 811 08, Slovakia
| | - Michaela Cehakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava 811 08, Slovakia
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
| | - Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava 811 08, Slovakia
| | - Lenka Trnkova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava 83310, Slovakia
- Department of Oncosurgery, National Cancer Institute, Bratislava 83310, Slovakia
- Regenmed Ltd., Bratislava 81108, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava 811 08, Slovakia
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Regenmed Ltd., Bratislava 81108, Slovakia
| |
Collapse
|
15
|
Xu K, Huang Y, Wu M, Yin J, Wei P. 3D bioprinting of multi-cellular tumor microenvironment for prostate cancer metastasis. Biofabrication 2023; 15:035020. [PMID: 37236173 DOI: 10.1088/1758-5090/acd960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
| |
Collapse
|
16
|
Zhuang X, Deng G, Wu X, Xie J, Li D, Peng S, Tang D, Zhou G. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol 2023; 13:1143600. [PMID: 37188191 PMCID: PMC10175665 DOI: 10.3389/fonc.2023.1143600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by two-dimensional (2D) cell culture models for studying its complicated tumor microenvironment including diverse contents and dynamic nature. Recently developed three-dimensional (3D) bioprinting is a state-of-the-art technology for fabrication of biological constructs through layer-by-layer deposition of bioinks in a spatially defined manner, which is computer-aided and designed to generate viable 3D constructs. 3D bioprinting has the potential to more closely recapitulate the tumor microenvironment, dynamic and complex cell-cell and cell-matrix interactions compared to the current methods, which benefits from its precise definition of positioning of various cell types and perfusing network in a high-throughput manner. In this review, we introduce and compare multiple types of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We discuss the progress and application of 3D bioprinting in HPB and gastrointestinal cancers, focusing on tumor model manufacturing. We also highlight the current challenges regarding clinical translation of 3D bioprinting and bioinks in the field of digestive tumor research. Finally, we suggest valuable perspectives for this advanced technology, including combination of 3D bioprinting with microfluidics and application of 3D bioprinting in the field of tumor immunology.
Collapse
Affiliation(s)
- Xiaomei Zhuang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Deng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Wu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juping Xie
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songlin Peng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Mir TA, Nakamura M, Sakai S, Iwanaga S, Wani SI, Alzhrani A, Arai K, Mir BA, Kazmi S, Assiri AM, Broering DC. Mammalian-specific decellularized matrices derived bioink for bioengineering of liver tissue analogues: A review. Int J Bioprint 2023; 9:714. [PMID: 37273993 PMCID: PMC10236352 DOI: 10.18063/ijb.714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/18/2023] [Indexed: 06/06/2023] Open
Abstract
The absolute shortage of compatible liver donors and the growing number of potential recipients have led scientists to explore alternative approaches to providing tissue/ organ substitutes from bioengineered sources. Bioartificial regeneration of a fully functional tissue/organ replacement is highly dependent on the right combination of engineering tools, biological principles, and materiobiology horizons. Over the past two decades, remarkable achievements have been made in hepatic tissue engineering by converging various advanced interdisciplinary research approaches. Three-dimensional (3D) bioprinting has arisen as a promising state-of-the-art tool with strong potential to fabricate volumetric liver tissue/organ equivalents using viscosity- and degradation-controlled printable bioinks composed of hydrous microenvironments, and formulations containing living cells and associated supplements. Source of origin, biophysiochemical, or thermomechanical properties and crosslinking reaction kinetics are prerequisites for ideal bioink formulation and realizing the bioprinting process. In this review, we delve into the forecast of the potential future utility of bioprinting technology and the promise of tissue/organ- specific decellularized biomaterials as bioink substrates. Afterward, we outline various methods of decellularization, and the most relevant studies applying decellularized bioinks toward the bioengineering of in vitro liver models. Finally, the challenges and future prospects of decellularized material-based bioprinting in the direction of clinical regenerative medicine are presented to motivate further developments.
Collapse
Affiliation(s)
- Tanveer Ahmad Mir
- Transplant Research and Innovation Department, Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, KSA
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shadil Ibrahim Wani
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Alaa Alzhrani
- Transplant Research and Innovation Department, Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, KSA
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, KSA
- College of Medicine, Alfaisal University, Riyadh 11211, KSA
| | - Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Bilal Ahmed Mir
- Division of Intellectual Information Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shadab Kazmi
- Transplant Research and Innovation Department, Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, KSA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, USA
| | - Abdullah M. Assiri
- Transplant Research and Innovation Department, Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, KSA
- College of Medicine, Alfaisal University, Riyadh 11211, KSA
| | - Dieter C. Broering
- Transplant Research and Innovation Department, Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, KSA
- College of Medicine, Alfaisal University, Riyadh 11211, KSA
| |
Collapse
|
18
|
Dai S, Wang Q, Jiang Z, Liu C, Teng X, Yan S, Xia D, Tuo Z, Bi L. Application of three-dimensional printing technology in renal diseases. Front Med (Lausanne) 2022; 9:1088592. [PMID: 36530907 PMCID: PMC9755183 DOI: 10.3389/fmed.2022.1088592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
Three-dimensional (3D) printing technology involves the application of digital models to create 3D objects. It is used in construction and manufacturing and has gradually spread to medical applications, such as implants, drug development, medical devices, prosthetic limbs, and in vitro models. The application of 3D printing has great prospects for development in orthopedics, maxillofacial plastic surgery, cardiovascular conditions, liver disease, and other fields. With in-depth research on 3D printing technology and the continuous update of printing materials, this technology also shows broad development prospects in renal medicine. In this paper, the author mainly summarizes the basic theory of 3D printing technology, its research progress, application status, and development prospect in renal diseases.
Collapse
Affiliation(s)
- Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Songbai Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|