1
|
Zheng Z, Qiao X, Yin J, Kong J, Han W, Qin J, Meng F, Tian G, Feng X. Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review). Int J Mol Med 2025; 55:38. [PMID: 39749711 PMCID: PMC11722059 DOI: 10.3892/ijmm.2024.5479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.
Collapse
Affiliation(s)
- Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junjie Kong
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Wanqing Han
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jing Qin
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fanda Meng
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
2
|
Olivares-Martínez E, Hernández-Ramírez DF, Núñez-Álvarez CA, Meza-Sánchez DE, Chapa M, Méndez-Flores S, Priego-Ranero Á, Azamar-Llamas D, Olvera-Prado H, Rivas-Redonda KI, Ochoa-Hein E, López-Mosqueda LG, Rojas-Castañeda E, Urbina-Terán S, Septién-Stute L, Hernández-Gilsoul T, Aguilar-León D, Torres-Villalobos G, Furuzawa-Carballeda J. Polymerized Type I Collagen Downregulates STAT-1 Phosphorylation Through Engagement with LAIR-1 in Circulating Monocytes, Avoiding Long COVID. Int J Mol Sci 2025; 26:1018. [PMID: 39940787 PMCID: PMC11817110 DOI: 10.3390/ijms26031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025] Open
Abstract
The intramuscular administration of polymerized type I collagen (PTIC) for adult symptomatic COVID-19 outpatients downregulated hyperinflammation and improved symptoms. We inferred that LAIR1 is a potential receptor for PTIC. Thus, a binding assay and surface plasmon resonance binding assay were performed to estimate the affinity of the interaction between LAIR1 and PTIC. M1 macrophages derived from THP-1 cells were cultured with 2-10% PTIC for 24 h. Lysates from PTIC-treated THP-1 cells, macrophage-like cells (MLCs), M1, M1 + IFN-γ, and M1 + LPS were analyzed by Western blot for NF-κB (p65), p38, STAT1, and pSTAT1 (tyrosine701). Serum cytokine levels and monocyte LAIR1 expressions (Mo1 and Mo2) were analyzed by luminometry and flow cytometry in symptomatic COVID-19 outpatients on PTIC treatment. PTIC-bound LAIR1 had a similar affinity to collagen in M1 macrophages. It downregulated pSTAT1 in IFN-γ-induced M1. COVID-19 patients under PTIC treatment showed a significant decrease in Mo1 percentages and cytokines (IP-10/MIF/eotaxin/IL-8/IL-1RA/M-CSF) associated with STAT1 and an increase in the Mo2 subset. The inflammatory mediators and Mo1 downregulation were related to better oxygen saturation and decreased dyspnea, chest pain, cough, and chronic fatigue syndrome in the acute and long-term phase of infection. PTIC is an agonist of LAIR1 and downregulates STAT-1 phosphorylation. PTIC could be relevant for treating STAT1-mediated inflammatory diseases, including COVID-19 and long COVID.
Collapse
Affiliation(s)
- Elizabeth Olivares-Martínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Diego Francisco Hernández-Ramírez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Carlos Alberto Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico;
| | - Mónica Chapa
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Silvia Méndez-Flores
- Department of Dermatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Ángel Priego-Ranero
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Daniel Azamar-Llamas
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Héctor Olvera-Prado
- Department of Anesthesiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Kenia Ilian Rivas-Redonda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Eric Ochoa-Hein
- Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Luis Gerardo López-Mosqueda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (E.O.-M.); (D.F.H.-R.); (C.A.N.-Á.); (K.I.R.-R.); (L.G.L.-M.)
| | - Estefano Rojas-Castañeda
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (Á.P.-R.); (D.A.-L.); (E.R.-C.)
| | - Said Urbina-Terán
- Emergency Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.U.-T.); (T.H.-G.)
| | - Luis Septién-Stute
- Department of Pneumology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Thierry Hernández-Gilsoul
- Emergency Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (S.U.-T.); (T.H.-G.)
| | - Diana Aguilar-León
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gonzalo Torres-Villalobos
- Departments of Experimental Surgery and Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Janette Furuzawa-Carballeda
- Departments of Experimental Surgery and Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- School of Medicine, Universidad Panamericana, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Kazemi MH, Momeni-Varposhti Z, Li X, Hurrell BP, Sakano Y, Shen S, Shafiei-Jahani P, Sakano K, Akbari O. FOXO1 pathway activation by VISTA immune checkpoint restrains pulmonary ILC2 functions. J Clin Invest 2025; 135:e184932. [PMID: 39745792 PMCID: PMC11827891 DOI: 10.1172/jci184932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a pivotal role in the development of airway hyperreactivity (AHR). However, the regulatory mechanisms governing ILC2 function remain inadequately explored. This study uncovers V-domain Ig suppressor of T cell activation (VISTA) as an inhibitory immune checkpoint crucial for modulating ILC2-driven lung inflammation. VISTA is upregulated in activated pulmonary ILC2s and plays a key role in regulating lung inflammation, as VISTA-deficient ILC2s demonstrate increased proliferation and function, resulting in elevated type 2 cytokine production and exacerbation of AHR. Mechanistically, VISTA stimulation activates Forkhead box O1 (FOXO1), leading to modulation of ILC2 proliferation and function. The suppressive effects of FOXO1 on ILC2 effector function were confirmed using FOXO1 inhibitors and activators. Moreover, VISTA-deficient ILC2s exhibit enhanced fatty acid oxidation and oxidative phosphorylation to meet their high energy demands. Therapeutically, VISTA agonist treatment reduces ILC2 function both ex vivo and in vivo, significantly alleviating ILC2-driven AHR. Our murine findings were validated in human ILC2s, whose function was reduced ex vivo by a VISTA agonist, and in a humanized mouse model of ILC2-driven AHR. Our studies unravel VISTA as an immune checkpoint for ILC2 regulation via the FOXO1 pathway, presenting potential therapeutic strategies for allergic asthma by modulating ILC2 responses.
Collapse
|
4
|
Konat GW. Neuroplasticity elicited by peripheral immune challenge with a viral mimetic. Brain Res 2025; 1846:149239. [PMID: 39284559 DOI: 10.1016/j.brainres.2024.149239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Peripheral viral infections are well known to profoundly alter brain function; however detailed mechanisms of this immune-to-brain communication have not been deciphered. This review focuses on studies of cerebral effects of peripheral viral challenge employing intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). In this paradigm, PIC challenge induces the acute phase response (APR) characterized by a transient surge of circulating inflammatory factors, primarily IFNβ, IL-6 and CXCL10. The blood-borne factors, in turn, elicit the generation of CXCL10 by hippocampal neurons. Neurons also express the cognate receptor of CXCL10, i.e., CXCR3 implicating the existence of autocrine/paracrine signaling. The CXCL10/CXCR3 axis mediates the ensuing neuroplastic changes manifested as neuronal hyperexcitability, seizure hypersusceptibility, and sickness behavior. Electrophysiological studies revealed that the neuroplastic changes entail the potentiation of excitatory synapses likely at both pre- and postsynaptic loci. Excitatory synaptic transmission is further augmented by PIC challenge-induced elevation of extracellular glutamate that is mediated by astrocytes. In addition, the hyperexcitability of neuronal circuits might involve the repression of inhibitory signaling. Accordingly, CXCL10 released by neurons activates microglia whose processes invade perisomatic inhibitory synapses, resulting in a partial detachment of the presynaptic terminals, and thus, de-inhibition. This process might be facilitated by the cerebral complement system, which is also upregulated and activated by PIC challenge. Moreover, CXCL10 stimulates the expression of neuronal c-fos protein, another index of hyperexcitability. The reviewed studies form a foundation for full elucidation of the fascinating intersection between peripheral viral infections and neuroplasticity. Because the activation of such pathways may constitute a serious comorbidity factor for neuropathological conditions, this research would advance the development of preventive strategies.
Collapse
Affiliation(s)
- Gregory W Konat
- Department of Biochemistry and Molecular Medicine, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
5
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
6
|
Carreras J, Roncador G, Hamoudi R. Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks. Cancers (Basel) 2024; 16:4230. [PMID: 39766129 PMCID: PMC11674594 DOI: 10.3390/cancers16244230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. OBJECTIVE This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). METHODS A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. RESULTS Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. CONCLUSIONS CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
7
|
Carey KM, Young CD, Clark AJ, Dammer EB, Singh R, Lillard JW. Subtype-specific analysis of gene co-expression networks and immune cell profiling reveals high grade serous ovarian cancer subtype linkage to variable immune microenvironment. J Ovarian Res 2024; 17:240. [PMID: 39627836 PMCID: PMC11613732 DOI: 10.1186/s13048-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is marked by significant molecular diversity, presenting a major clinical challenge due to its aggressive nature and poor prognosis. This study aims to deepen the understanding of HGSOC by characterizing mRNA subtypes and examining their immune microenvironment (TIME) and its role in disease progression. Using transcriptomic data and an advanced computational pipeline, we investigated four mRNA subtypes: immunoreactive, differentiated, proliferative, and mesenchymal, each associated with distinct gene expression profiles and clinical behaviors. We performed differential expression analysis among mRNA subtypes using DESeq2 and conducted Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules related to clinical traits, e.g., age, survival, and subtype classification. Gene Ontology (GO) analysis highlighted key pathways involved in tumor progression and immune evasion. Additionally, we utilized TIMER 2.0 to assess immune cell infiltration across different HGSOC subtypes, providing insights into the interplay between tumor immune microenvironment (TIME). Our findings show that the immunoreactive subtype, particularly the M3 module-associated network, was marked by high immune cell infiltration, including M1 (p < 0.0001) and M2 macrophages (p < 0.01), and Th1 cells (p < 0.01) along with LAIR-1 expression (p = 1.63e-101). The M18 module exhibited strong B cell signatures (p = 6.24e-28), along with significant FCRL5 (adj. p = 3.09e-30) and IRF4 (adj. p = 3.09e-30) coexpression. In contrast, the M5 module was significantly associated with the mesenchymal subtype, along with fibroblasts (p < 0.0001). The proliferative subtype was characterized by M15 module-driven cellular growth and proliferation gene expression signatures, along with significant ovarian stromal cell involvement (p < 0.0001). Our study reveals the complex interplay between mRNA subtypes and suggests genes contributing to molecular subtypes, underscoring the important clinical implications of mRNA subtyping in HGSOC.
Collapse
Affiliation(s)
- Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis J Clark
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
8
|
Zhu G, Yu H, Peng T, Yang K, Xu X, Gu W. Glycolytic enzyme PGK1 promotes M1 macrophage polarization and induces pyroptosis of acute lung injury via regulation of NLRP3. Respir Res 2024; 25:291. [PMID: 39080660 PMCID: PMC11290129 DOI: 10.1186/s12931-024-02926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.
Collapse
Affiliation(s)
- Guiyin Zhu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Haiyang Yu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Tian Peng
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Kun Yang
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Xue Xu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Wen Gu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China.
| |
Collapse
|
9
|
Shafiei-Jahani P, Yan S, Kazemi MH, Li X, Akbari A, Sakano K, Sakano Y, Hurrell BP, Akbari O. CB2 stimulation of adipose resident ILC2s orchestrates immune balance and ameliorates type 2 diabetes mellitus. Cell Rep 2024; 43:114434. [PMID: 38963763 PMCID: PMC11317174 DOI: 10.1016/j.celrep.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shi Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad H Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amitis Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
10
|
Yang D, Wu W, Lu Q, Mou Y, Chen W, Wan S, Zhang M, Wang C, Du X, Li N, Hua J. A multi-omics analysis of viral nucleic acid poly(I:C) responses to mammalian testicular stimulation. STRESS BIOLOGY 2024; 4:9. [PMID: 38300431 PMCID: PMC10834394 DOI: 10.1007/s44154-023-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaling Mou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaomin Du
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, 719000, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, No. 3rd, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|