1
|
Wang JX, Cao B, Ma N, Wu KY, Chen WB, Wu W, Dong X, Liu CF, Gao YF, Diao TY, Min XY, Yong Q, Li ZF, Zhou W, Li K. Collectin-11 promotes cancer cell proliferation and tumor growth. JCI Insight 2023; 8:e159452. [PMID: 36883567 PMCID: PMC10077485 DOI: 10.1172/jci.insight.159452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Collectin-11 (CL-11) is a recently described soluble C-type lectin that has distinct roles in embryonic development, host defence, autoimmunity, and fibrosis. Here we report that CL-11 also plays an important role in cancer cell proliferation and tumor growth. Melanoma growth was found to be suppressed in Colec11-/- mice in a s.c. B16 melanoma model. Cellular and molecular analyses revealed that CL-11 is essential for melanoma cell proliferation, angiogenesis, establishment of more immunosuppressive tumor microenvironment, and the reprogramming of macrophages to M2 phenotype within melanomas. In vitro analysis revealed that CL-11 can activate tyrosine kinase receptors (EGFR, HER3) and ERK, JNK, and AKT signaling pathways and has a direct stimulatory effect on murine melanoma cell proliferation. Furthermore, blockade of CL-11 (treatment with L-fucose) inhibited melanoma growth in mice. Analysis of open data sets revealed that COLEC11 gene expression is upregulated in human melanomas and that high COLEC11 expression has a trend toward poor survival. CL-11 also had direct stimulatory effects on human tumor cell proliferation in melanoma and several other types of cancer cells in vitro. Overall, our findings provide the first evidence to our knowledge that CL-11 is a key tumor growth-promoting protein and a promising therapeutic target in tumor growth.
Collapse
Affiliation(s)
- Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kun-Yi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Bing Chen
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Weiju Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ya-Feng Gao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng-Yue Diao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zong-Fang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Wuding Zhou
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
He Z, Le Guen Y, Liu L, Lee J, Ma S, Yang AC, Liu X, Rutledge J, Losada PM, Song B, Belloy ME, Butler RR, Longo FM, Tang H, Mormino EC, Wyss-Coray T, Greicius MD, Ionita-Laza I. Genome-wide analysis of common and rare variants via multiple knockoffs at biobank scale, with an application to Alzheimer disease genetics. Am J Hum Genet 2021; 108:2336-2353. [PMID: 34767756 PMCID: PMC8715147 DOI: 10.1016/j.ajhg.2021.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.
Collapse
Affiliation(s)
- Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Institut du Cerveau - Paris Brain Institute - ICM, Paris 75013, France
| | - Linxi Liu
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Justin Lee
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Shiyang Ma
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Andrew C Yang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxia Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Patricia Moran Losada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Bowen Song
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Robert R Butler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
3
|
Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog 2021; 61:165-172. [PMID: 34644811 DOI: 10.1002/mc.23360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Radiation has been utilized as a direct cytotoxic tumorcidal modality, however, the effect of radiation on tumor vasculature influences response to anticancer therapies. Although numerous reports have demonstrated vascular changes in irradiated tumors, the findings and implications are extensive and at times contradictory depending on the radiation dose, timing, and models used. In this review, we focus on the radiation-mediated effects on tumor vasculature with respect to doses used, timing postradiation, vasculogenesis, adhesion molecule expression, permeability, and pericyte coverage, including the latest findings.
Collapse
Affiliation(s)
- Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon, USA
| |
Collapse
|
4
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
5
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|
6
|
Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer 2018; 17:43. [PMID: 29455663 PMCID: PMC5817793 DOI: 10.1186/s12943-018-0800-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour microenvironment (TME) is a key determinant of tumour growth and metastasis. TME could be very different for each type and location of tumour and TME may change constantly during tumour growth. Multiple counterparts in surrounding microenvironment including mesenchymal-, hematopoietic-originated cells as well as non-cellular components affect TME. Thus, therapeutics that can disrupt the tumour-favouring microenvironment should be further explored for cancer therapy. Previous efforts in unravelling the dysregulated mechanisms of TME components has identified numerous protein tyrosine kinases, while its corresponding inhibitors have demonstrated potent modulatory effect on TME. Recent works have demonstrated that beyond the direct action on cancer cells, tyrosine kinase inhibitors (TKIs) have been implicated in inactivation or normalization of dysregulated TME components leading to cancer regression. Either through re-sensitizing the tumour cells or reversing the immunological tolerance microenvironment, the emergence of these TME modulatory mechanism of TKIs supports the combinatory use of TKIs with current chemotherapy or immunotherapy for cancer therapy. Therefore, an appropriate understanding on TME modulation by TKIs may offer another mode of action of TKIs for cancer treatment. This review highlights mode of kinase activation or paracrine ligand production from TME components and summarises the findings on the potential use of various TKIs on regulating TME components. At last, the combination use of current TKIs with immunotherapy in the perspectives of efficacy and safety are discussed.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Carrasco P, Zuazo-Gaztelu I, Casanovas O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs. J Mol Endocrinol 2017; 59:R77-R91. [PMID: 28469004 DOI: 10.1530/jme-17-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise from cells of the neuroendocrine system. NETs are characterized by being highly vascularized tumors that produce large amounts of proangiogenic factors. Due to their complexity and heterogeneity, progress in the development of successful therapeutic approaches has been limited. For instance, standard chemotherapy-based therapies have proven to be poorly selective for tumor cells and toxic for normal tissues. Considering the urge to develop an efficient therapy to treat NET patients, vascular targeting has been proposed as a new approach to block tumor growth. This review provides an update of the mechanisms regulating different components of vessels and their contribution to tumor progression in order to develop new therapeutic drugs. Following the description of classical anti-angiogenic therapies that target VEGF pathway, new angiogenic targets such as PDGFs, EGFs, FGFs and semaphorins are further explored. Based on recent research in the field, the combination of therapies that target multiple and different components of vessel formation would be the best approach to specifically target NETs and inhibit tumor growth.
Collapse
Affiliation(s)
- Patricia Carrasco
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
8
|
Huang S, Peter Rodemann H, Harari PM. Molecular Targeting of Growth Factor Receptor Signaling in Radiation Oncology. Recent Results Cancer Res 2016; 198:45-87. [PMID: 27318681 DOI: 10.1007/978-3-662-49651-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionizing radiation has been shown to activate and interact with multiple growth factor receptor pathways that can influence tumor response to therapy. Among these receptor interactions, the epidermal growth factor receptor (EGFR) has been the most extensively studied with mature clinical applications during the last decade. The combination of radiation and EGFR-targeting agents using either monoclonal antibody (mAb) or small-molecule tyrosine kinase inhibitor (TKI) offers a promising approach to improve tumor control compared to radiation alone. Several underlying mechanisms have been identified that contribute to improved anti-tumor capacity after combined treatment. These include effects on cell cycle distribution, apoptosis, tumor cell repopulation, DNA damage/repair, and impact on tumor vasculature. However, as with virtually all cancer drugs, patients who initially respond to EGFR-targeted agents may eventually develop resistance and manifest cancer progression. Several potential mechanisms of resistance have been identified including mutations in EGFR and downstream signaling molecules, and activation of alternative member-bound tyrosine kinase receptors that bypass the inhibition of EGFR signaling. Several strategies to overcome the resistance are currently being explored in preclinical and clinical models, including agents that target the EGFR T790 M resistance mutation or target multiple EGFR family members, as well as agents that target other receptor tyrosine kinase and downstream signaling sites. In this chapter, we focus primarily on the interaction of radiation with anti-EGFR therapies to summarize this promising approach and highlight newly developing opportunities.
Collapse
Affiliation(s)
- Shyhmin Huang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, WIMR 3136, 1111 Highland Ave Madison, Madison, WI, 53705, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg, 72076, Tübingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA.
| |
Collapse
|
9
|
Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy 2015; 17:509-25. [DOI: 10.1016/j.jcyt.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
10
|
Lewitzki V, Andratschke N, Kuhnt T, Hildebrandt G. Radiation myelitis after hypofractionated radiotherapy with concomitant gefitinib. Radiat Oncol 2015; 10:29. [PMID: 25631068 PMCID: PMC4313465 DOI: 10.1186/s13014-015-0334-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022] Open
Abstract
We describe the case of a 71-year-old Caucasian female with primary disseminated non-small cell cancer of the lung, presented for palliative radiotherapy of metastatic spread to the 9th and 11th thoracic vertebrae without intramedullary growth. Palliative radiotherapy with daily fractions of 3 Gy and a cumulative dose of 36 Gy to thoracic vertebrae 8-12 was performed. The patient received concomitantly 250 mg gefitinib daily. After a latent period of 16 months, the patient developed symptoms of myelitis. Magnetic resonance imaging (MRI) did not reveal any bony or intraspinal tumor progression, but spinal cord signal alteration. No response to steroids was achieved. The neurological symptoms were progressive in August 2013 with the right leg being completely plegic. The left leg was incompletely paralyzed. Deep and superficial sensitivity was also diminished bilaterally. The patient was completely urinary and anally incontinent. Contrary to the clinical findings, a follow-up MRI (July 2013) showed amelioration of the former signal alterations in the spinal cord. The diagnosis of paraneoplastic myelopathy was refuted by a negative test for autologous antibodies. At the last clinical visit in May 2014, the neurological symptoms were stable. The last tumor-specific treatment the patient is receiving is erlotinib 125 mg/d. We reviewed the literature and found no reported cases of radiation myelopathy after the treatment in such a setting. The calculated probability of such complication after radiotherapy alone is statistically measurable at the level of 0.02%. We suppose that gefitinib could also play a role in the development of this rare complication.
Collapse
Affiliation(s)
- Victor Lewitzki
- Department of Radiation Oncology, University Medicine Rostock, Südring 75, 18059, Rostock, Germany. .,Department of Radiation Oncology, University Würzburg, Joseph Schneider Str. 11, 97080, Würzburg, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Medicine Rostock, Südring 75, 18059, Rostock, Germany. .,Department of Radiation Oncology, University Zürich, Rämistrasse 100, 8091, Zürich, Switzerland.
| | - Thomas Kuhnt
- Department of Radiation Oncology, University Medicine Rostock, Südring 75, 18059, Rostock, Germany. .,Department of Radiation Oncology, University Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany.
| | - Guido Hildebrandt
- Department of Radiation Oncology, University Medicine Rostock, Südring 75, 18059, Rostock, Germany.
| |
Collapse
|
11
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Kitahara S, Suzuki Y, Morishima M, Yoshii A, Kikuta S, Shimizu K, Morikawa S, Sato Y, Ezaki T. Vasohibin-2 modulates tumor onset in the gastrointestinal tract by normalizing tumor angiogenesis. Mol Cancer 2014; 13:99. [PMID: 24885408 PMCID: PMC4113181 DOI: 10.1186/1476-4598-13-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background Vasohibin-2 (VASH2) has been identified as an endogenous and vascular endothelial growth factor (VEGF)-independent angiogenic factor that is highly expressed in tumor cells. In the present study, we aimed to determine whether pre-existing vascular changes can be used to predict tumor transformation as benign or malignant. We sought to characterize microvascular changes and tumor development in the intestinal tract of ApcMin/+ mice and ApcMin/+/Vash2-/- mice. Methods ApcMin/+ mice provide a unique orthotopic model for the development of spontaneous adenomatous polyposis and subsequent carcinomas, a phenomenon termed the adenoma-carcinoma sequence. ApcMin/+ mice were mated with Vash2-/- mice with a mixed C57BL/6 background and the resulting pups were screened for the Min mutation and for the Vash2-/- gene by PCR. Intestinal tumors from ApcMin/+ mice and ApcMin/+/Vash2-/- mice were removed and either frozen or epon-embedded for subsequent analyses. For 3-dimensional imaging using confocal laser-scanning microscopy and transmission electron microscopy, cryosections were made, and immunofluorescent staining for various markers was performed. Results We found that structural abnormalities in tumor vessels from benign tumors resembled those in malignant tumors. In addition, a novel angiogenic factor, vasohibin-2 (VASH2) protein, was detected around tumor blood vessels in late-stage adenomas and adenocarcinomas, but was absent from early-stage adenomas in ApcMin/+ mice. Tumors used to examine endogenous VASH2 (derived from CMT93 colon carcinomas) were less vascularized in Vash2-/- mice and were more regular than those seen in wild-type (WT) mice. In addition, tumors in Vash2-/- mice were smaller than those in WT mice. Furthermore, cross-breeding of mice homozygous for a deletion of Vash2 with mice heterozygous for the APC mutation resulted in animals that showed a significant decrease in the number of polyps in the small intestine. Conclusion We propose that VASH2 may modulate the onset of tumors in the gastrointestinal tract by regulating tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
13
|
Effects of Icotinib on Advanced Non-Small Cell Lung Cancer with Different EGFR Phenotypes. Cell Biochem Biophys 2014; 70:553-8. [DOI: 10.1007/s12013-014-9955-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45. [PMID: 23747841 PMCID: PMC3825748 DOI: 10.1016/j.biochi.2013.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 02/06/2023]
Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Carvalho MI, Guimarães MJ, Pires I, Prada J, Silva-Carvalho R, Lopes C, Queiroga FL. EGFR and microvessel density in canine malignant mammary tumours. Res Vet Sci 2013; 95:1094-9. [PMID: 24091029 DOI: 10.1016/j.rvsc.2013.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/28/2013] [Accepted: 09/02/2013] [Indexed: 01/16/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor which has been shown to have an important role in human breast cancer. Its role appears to be associated with increased angiogenesis and metastasis. In order to clarify its role in canine mammary tumours (CMT), 61 malignant neoplasms were studied by using immunohistochemistry, comparing expression of EGFR, microvessel density (MVD) by CD31 immunolabelling and characteristics of tumour aggressiveness. High EGFR immunoexpression was statistically significantly associated with tumour size, tumour necrosis, mitotic grade, histological grade of malignancy and clinical stage. High CD31 immunoreactivity was statistically significantly associated with tubule formation, histological grade of malignancy and clinical stage. A positive correlation between EGFR and CD31 immunoexpression (r = 0.843; P < 0.001) was also observed. Results suggest that an over-expression of EGFR may contribute to increased angiogenesis and aggression in malignant CMT, presenting the possibility of using EGFR inhibitors in the context of metastatic disease treatment.
Collapse
Affiliation(s)
- Maria Isabel Carvalho
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
16
|
Ma Y, Guo FC, Wang W, Shi HS, Li D, Wang YS. K‑ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep 2013; 8:763-8. [PMID: 23877793 DOI: 10.3892/mmr.2013.1596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/03/2013] [Indexed: 02/05/2023] Open
Abstract
An increasing number of studies support the use of metformin, a common antidiabetic drug, as a novel anticancer therapeutic. However, its mechanism of action has yet to be identified. In the current study, metformin was observed to effectively inhibit the growth of the K-ras mutant but not wild-type tumors in vivo. The antitumor effects of metformin were mediated by the induction of apoptosis and inhibition of proliferation in vivo. In addition, metformin induced apoptosis in the K-ras mutant tumors, A549 and PANC-1, but not in the K-ras wild-type tumor, A431, in vitro. Similarly, at lower concentrations, metformin inhibited cell proliferation in the K-ras mutant, but not in the K-ras wild-type tumor cells in vitro. These observations indicate that tumors with K-ras mutations are sensitive to metformin therapy. In addition, metformin significantly arrested K-ras mutant and wild-type tumor cells in G1 phase in vitro and metformin downregulated two important downstream effectors of the Ras signaling pathway in K-ras mutant tumors. Metformin was concluded to function as a potential K-ras-targeting agent that has potential for cancer therapy.
Collapse
Affiliation(s)
- Yu Ma
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, Hong JH. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys 2013; 86:777-84. [PMID: 23601898 DOI: 10.1016/j.ijrobp.2013.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/14/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. METHODS AND MATERIALS Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. RESULTS After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. CONCLUSIONS Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.
Collapse
Affiliation(s)
- Fang-Hsin Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol 2012; 3:32-42. [PMID: 22442756 PMCID: PMC3309891 DOI: 10.5306/wjco.v3.i3.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
Cutaneous malignant melanoma is the most aggressive form of skin cancer with an extremely poor survival rate for the patients diagnosed with locally invasive and metastatic disease states. Intensive research has led in last few years to an improvement of the early detection and curative treatment of primary cutaneous melanomas that are confined to the skin by tumor surgical resection. However, locally advanced and disseminated melanomas are generally resistant to conventional treatments, including ionizing radiation, systemic chemotherapy, immunotherapy and/or adjuvant stem cell-based therapies, and result in the death of patients. The rapid progression of primary melanomas to locally invasive and/or metastatic disease states remains a major obstacle for an early effective diagnosis and a curative therapeutic intervention for melanoma patients. Importantly, recent advances in the melanoma research have led to the identification of different gene products that are often implicated in the malignant transformation of melanocytic cells into melanoma cells, including melanoma stem/progenitor cells, during melanoma initiation and progression to locally advanced and metastatic disease states. The frequent deregulated genes products encompass the oncogenic B-RafV600E and N-RasQ61R mutants, different receptor tyrosine kinases and developmental pathways such as epidermal growth factor receptor (EGFR), stem cell-like factor (SCF) receptor KIT, hedgehog, Wnt/β-catenin, Notch, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF)/VEGFR receptor. These growth factors can cooperate to activate distinct tumorigenic downstream signaling elements and epithelial-mesenchymal transition (EMT)-associated molecules, including phosphatidylinositol 3’-kinase (PI3K)/Akt/ molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), macrophage inhibitory cytokine-1 (MIC-1), vimentin, snail and twist. Of therapeutic relevance, these deregulated signal transduction components constitute new potential biomarkers and therapeutic targets of great clinical interest for improving the efficacy of current diagnostic and prognostic methods and management of patients diagnosed with locally advanced, metastatic and/or relapsed melanomas.
Collapse
Affiliation(s)
- Murielle Mimeault
- Murielle Mimeault, Surinder K Batra, Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States
| | | |
Collapse
|
19
|
Henry C, Lopez-Chavez A, Stabile LP, Siegfried JM. HGF Airway Over-expression Leads to Enhanced Pulmonary Vascularization without Induction of VEGF. ACTA ACUST UNITED AC 2012; 1:52-63. [PMID: 33564620 DOI: 10.2174/2211552811201010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatocyte growth factor (HGF)/c-Met signaling pathway mediates angiogenesis. We have previously reported that airway expression of a human HGF transgene (HGF TG) produced mice that were more susceptible to lung tumorigenesis induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK). Here we show untreated HGF TG mice display enhanced vascularization (40 wks) and enhanced lymph vessel formation (20 wks) in the lungs compared to wild-type (WT) littermates, as ascertained by microvessel density. We profiled mRNA expression from HGF TG and WT mice for genes involved in angiogenesis. We consistently found significant decreases in expression of the VEGF family of angiogenic genes, including Vegfa, Vegfb, Vegfc, and Vegfd / Figf. Decreases were confirmed in whole lung protein extracts by immunoblot. Similar patterns of down-regulation were observed at 10, 20, and 40 wks of age. Vandetanib, an inhibitor of VEGFR2 and VEGFR3, did not prevent the increase in microvessel density observed in HGF TG mice. Reduction in VEGF pathway genes was also detected in lung tumors derived from NNK-treated HGF TG mice. HGF TG lung tumors also showed increased expression of five Cxcl family genes including Cxcl1 and Cxcl2 (murine forms of IL8). These results suggest increased vascularization produced by airway over-expression of HGF occurs through direct activation of c-Met on endothelial cells, rather than induction of VEGF pathways. Elevated HGF may also increase expression of inflammatory mediators that contribute to lung tumor progression.
Collapse
Affiliation(s)
- Cassandra Henry
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ariel Lopez-Chavez
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Current Address: Division of Hematology and Medical Oncology, Oregon Health and Science University, Multnomah Pavillion Rm 3219, 3181 SW Sam Jackson Rd, Portland, OR 97239, USA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jill M Siegfried
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,The Hillman Cancer Center, UPCI Research Pavilion, Suite 2.18, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA
| |
Collapse
|
20
|
Stratman AN, Davis GE. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:68-80. [PMID: 22166617 PMCID: PMC3919655 DOI: 10.1017/s1431927611012402] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular matrix synthesis and deposition surrounding the developing vasculature are critical for vessel remodeling and maturation events. Although the basement membrane is an integral structure underlying endothelial cells (ECs), few studies, until recently, have been performed to understand its formation in this context. In this review article, we highlight new data demonstrating a corequirement for ECs and pericytes to properly deposit and assemble vascular basement membranes during morphogenic events. In EC only cultures or under conditions whereby pericyte recruitment is blocked, there is a lack of basement membrane assembly, decreased vessel stability (with increased susceptibility to pro-regressive stimuli), and increased EC tube widths (a marker of dysfunctional EC-pericyte interactions). ECs and pericytes both contribute basement membrane components and, furthermore, both cells induce the expression of particular components as well as integrins that recognize them. The EC-derived factors--platelet derived growth factor-BB and heparin binding-epidermal growth factor--are both critical for pericyte recruitment to EC tubes and concomitant vascular basement membrane formation in vitro and in vivo. Thus, heterotypic EC-pericyte interactions play a fundamental role in vascular basement membrane matrix deposition, a critical tube maturation event that is altered in key disease states such as diabetes and cancer.
Collapse
Affiliation(s)
- Amber N. Stratman
- Department of Medical Pharmacology and Physiology, University of Missouri- Columbia, 65212
| | - George E. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri- Columbia, 65212
- Department of Pathology and Anatomical Sciences, University of Missouri- Columbia, 65212
| |
Collapse
|
21
|
Roche B, David V, Vanden-Bossche A, Peyrin F, Malaval L, Vico L, Lafage-Proust MH. Structure and quantification of microvascularisation within mouse long bones: what and how should we measure? Bone 2012; 50:390-9. [PMID: 22019874 DOI: 10.1016/j.bone.2011.09.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
Abstract
Bone marrow vascularisation is involved in both remodeling and hematopoïesis. Challenged mouse models often require imaging and quantitative assessment of blood vessels and bone cell activities for a better understanding of the role of the vascular system. In this study we compared images of mouse hind limb long bone vascularisation after infusion of either barium sulfate or lead chromate-loaded silicon. The images were then analyzed through histology as well as low-resolution and synchrotron-radiation microtomography. We show that barium sulfate infusion provides the best vessel images and furthermore, that it is compatible with staining procedures used in bone histomorphometry and CD31 immunohistochemistry. Bone marrow vascularisation displays large structural and spatial distribution heterogeneity, including large lobular clusters of sinusoids and an unexpectedly substantial amount of capillaries in the adipocytes-rich distal third of the tibia. For an unbiased assessment of bone vascular development/changes, these features must be taken into account. We describe the conditions under which the quantification of microvascularisation on histological sections of barium-infused long bones is reproducible, as applied to seven-month-old male C57/Bl6J and mixed CD1/129Sv/J mice, and we propose a nomenclature for the histological parameters measured. Finally, we validate our technique by studying the effect of ovariectomy on mouse tibial vascular density.
Collapse
|
22
|
Garrido G, Rabasa A, Sánchez B, López MV, Blanco R, López A, Hernández DR, Pérez R, Fernández LE. Induction of Immunogenic Apoptosis by Blockade of Epidermal Growth Factor Receptor Activation with a Specific Antibody. THE JOURNAL OF IMMUNOLOGY 2011; 187:4954-66. [DOI: 10.4049/jimmunol.1003477] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Cascone T, Herynk MH, Xu L, Du Z, Kadara H, Nilsson MB, Oborn CJ, Park YY, Erez B, Jacoby JJ, Lee JS, Lin HY, Ciardiello F, Herbst RS, Langley RR, Heymach JV. Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 2011; 121:1313-28. [PMID: 21436589 PMCID: PMC3070607 DOI: 10.1172/jci42405] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/26/2011] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis is critical for tumor growth and metastasis, and several inhibitors of angiogenesis are currently in clinical use for the treatment of cancer. However, not all patients benefit from antiangiogenic therapy, and those tumors that initially respond to treatment ultimately become resistant. The mechanisms underlying this, and the relative contributions of tumor cells and stroma to resistance, are not completely understood. Here, using species-specific profiling of mouse xenograft models of human lung adenocarcinoma, we have shown that gene expression changes associated with acquired resistance to the VEGF inhibitor bevacizumab occurred predominantly in stromal and not tumor cells. In particular, components of the EGFR and FGFR pathways were upregulated in stroma, but not in tumor cells. Increased activated EGFR was detected on pericytes of xenografts that acquired resistance and on endothelium of tumors with relative primary resistance. Acquired resistance was associated with a pattern of pericyte-covered, normalized revascularization, whereas tortuous, uncovered vessels were observed in relative primary resistance. Importantly, dual targeting of the VEGF and EGFR pathways reduced pericyte coverage and increased progression-free survival. These findings demonstrated that alterations in tumor stromal pathways, including the EGFR and FGFR pathways, are associated with, and may contribute to, resistance to VEGF inhibitors and that targeting these pathways may improve therapeutic efficacy. Understanding stromal signaling may be critical for developing biomarkers for angiogenesis inhibitors and improving combination regimens.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Apoptosis/drug effects
- Bevacizumab
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Profiling
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Stromal Cells/metabolism
- Up-Regulation
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fang S, Salven P. Stem cells in tumor angiogenesis. J Mol Cell Cardiol 2011; 50:290-5. [DOI: 10.1016/j.yjmcc.2010.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
|
25
|
Killingsworth MC, Wu X. Vascular Pericyte Density and Angiogenesis Associated with Adenocarcinoma of the Prostate. Pathobiology 2011; 78:24-34. [DOI: 10.1159/000322739] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022] Open
|
26
|
Gast A, Scherer D, Chen B, Bloethner S, Melchert S, Sucker A, Hemminki K, Schadendorf D, Kumar R. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer 2010; 49:733-45. [PMID: 20544847 DOI: 10.1002/gcc.20785] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We performed DNA microarray-based comparative genomic hybridization to identify somatic alterations specific to melanoma genome in 60 human cell lines from metastasized melanoma and from 44 corresponding peripheral blood mononuclear cells. Our data showed gross but nonrandom somatic changes specific to the tumor genome. Although the CDKN2A (78%) and PTEN (70%) loci were the major targets of mono-allelic and bi-allelic deletions, amplifications affected loci with BRAF (53%) and NRAS (12%) as well as EGFR (52%), MITF (40%), NOTCH2 (35%), CCND1 (18%), MDM2 (18%), CCNE1 (10%), and CDK4 (8%). The amplified loci carried additional genes, many of which could potentially play a role in melanoma. Distinct patterns of copy number changes showed that alterations in CDKN2A tended to be more clustered in cell lines with mutations in the BRAF and NRAS genes; the PTEN locus was targeted mainly in conjunction with BRAF mutations. Amplification of CCND1, CDK4, and other loci was significantly increased in cell lines without BRAF-NRAS mutations and so was the loss of chromosome arms 13q and 16q. Our data suggest involvement of distinct genetic pathways that are driven either through oncogenic BRAF and NRAS mutations complemented by aberrations in the CDKN2A and PTEN genes or involve amplification of oncogenic genomic loci and loss of 13q and 16q. It also emerges that each tumor besides being affected by major and most common somatic genetic alterations also acquires additional genetic alterations that could be crucial in determining response to small molecular inhibitors that are being currently pursued.
Collapse
Affiliation(s)
- Andreas Gast
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 2010; 116:4720-30. [PMID: 20739660 DOI: 10.1182/blood-2010-05-286872] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, we reported a novel system whereby human pericytes are recruited to endothelial cell (EC)-lined tubes in 3-dimensional (3D) extracellular matrices to stimulate vascular maturation including basement membrane matrix assembly. Through the use of this serum-free, defined system, we demonstrate that pericyte motility within 3D collagen matrices is dependent on the copresence of ECs. Using either soluble receptor traps consisting of the extracellular ligand-binding domains of platelet-derived growth factor receptor β, epidermal growth factor receptor (EGFR), and ErbB4 receptors or blocking antibodies directed to platelet-derived growth factor (PDGF)-BB, or heparin-binding EGF-like growth factor (HB-EGF), we show that both of these EC-derived ligands are required to control pericyte motility, proliferation, and recruitment along the EC tube ablumenal surface. Blockade of pericyte recruitment causes a lack of basement membrane matrix deposition and, concomitantly, increased vessel widths. Combined inhibition of PDGF-BB and HB-EGF-induced signaling in quail embryos leads to reduced pericyte recruitment to EC tubes, decreased basement membrane matrix deposition, increased vessel widths, and vascular hemorrhage phenotypes in vivo, in support of our findings in vitro. In conclusion, we report a dual role for EC-derived PDGF-BB and HB-EGF in controlling pericyte recruitment to EC-lined tubes during developmental vascularization events.
Collapse
|
28
|
Nolan-Stevaux O, Truitt MC, Pahler JC, Olson P, Guinto C, Lee DC, Hanahan D. Differential contribution to neuroendocrine tumorigenesis of parallel egfr signaling in cancer cells and pericytes. Genes Cancer 2010; 1:125-41. [PMID: 20975924 PMCID: PMC2958675 DOI: 10.1177/1947601909358722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Factors associated with tumor sensitivity to epidermal growth factor receptor (EGFR) inhibitors in the context of wild-type EGFR remain elusive. This study investigates the mechanistic basis of responsiveness to EGFR inhibitors in the RIP1-Tag2 (RT2) mouse model of pancreatic neuroendocrine tumorigenesis (PNET). Upon treatment of RT2 mice with EGFR inhibitors, PNET tumors harboring wild-type, nonamplified alleles of Egfr grow at a markedly reduced rate and display a significant increase in tumor cell apoptosis, as well as reduced neovascularization. The authors identify Tgf-α and Hb-egf as key limiting mediators of separable pathological functions of Egfr in neuroendocrine tumor progression: Tgf-α mutant tumors present with an elevated apoptotic index, whereas Hb-egf mutant lesions exhibit decreased angiogenic switching and neovascularization. This study not only associates Tgf-α and Hb-egf expression with wild-type Egfr oncogenicity but also ascribes the proangiogenic activity of Egfr in this tumor model to a novel mesenchymal Hb-egf/Egfr signaling axis, whereby endothelial and pericyte-derived Hb-egf activates Egfr specifically in tumor-associated perivascular cells, leading to increased pericyte coverage of the tumor endothelium and enhanced angiogenesis.
Collapse
Affiliation(s)
- Olivier Nolan-Stevaux
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Morgan C. Truitt
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Jessica C. Pahler
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Peter Olson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Cristina Guinto
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas Hanahan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Biophysics and Biochemistry, University of California San Francisco, San Francisco, CA, USA
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|