1
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
2
|
Larry M, Rabizadeh S, Mohammadi F, Yadegar A, Jalalpour A, Mirmiranpour H, Farahmand G, Esteghamati A, Nakhjavani M. Relationship between advanced glycation end-products and advanced oxidation protein products in patients with type 2 diabetes with and without albuminuria: A cross-sectional survey. Health Sci Rep 2024; 7:e70057. [PMID: 39355098 PMCID: PMC11439888 DOI: 10.1002/hsr2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Background and Aims Literature suggests that oxidative stress plays a crucial role in the progression of diabetes. Since poor glycemic control enhances the formation of advanced glycation end-products (AGEs) and advanced oxidation protein products (AOPP) in individuals with diabetes, exploring the association between glycation and oxidative states in diabetes could also shed light on potential consequences. This study evaluated the effects of albuminuria on AGEs and AOPP levels and measured their relationship in participants with type 2 diabetes (T2D) with or without albuminuria. Methods A cross-sectional, matched case-control study was designed, including 38 T2D subjects with albuminuria and 38 matched T2D subjects with normoalbuminuria. Patients were matched by their body mass index (BMI), age, and duration of diabetes. The unadjusted and adjusted correlation between AGEs and AOPP in the studied groups were analyzed by multiple logistic regression. Using ggplot2, the ties between these two biochemical factors in cases and controls were plotted. Results This study elucidated a significant association between AGEs and AOPP in participants with normoalbuminuria (r = 0.331, p-value < 0.05), which continued to be significant after controlling for BMI, age, systolic blood pressure (SBP), and diastolic blood pressure (DBP) (r = 0.355, p-value < 0.05). However, there was no significant association between AGEs and AOPP in those with albuminuria in the unadjusted model (r = 0.034, p-value = 0.841) or after controlling for BMI, age, SBP, and DBP (r = 0.076, p-value = 0.685). Conclusion Oxidation and glycation molecular biomarkers were correlated in patients without albuminuria; however, this association was not observed in those with albuminuria.
Collapse
Affiliation(s)
- Mehrdad Larry
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Azadeh Jalalpour
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Hossein Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Ghasem Farahmand
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali‐Asr HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Zhang Y, Zhao X, Liu Y, Yang X. Sulforaphane and ophthalmic diseases. Food Sci Nutr 2024; 12:5296-5311. [PMID: 39139965 PMCID: PMC11317731 DOI: 10.1002/fsn3.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 08/15/2024] Open
Abstract
Sulforaphane (SFN) is an organosulfur compound categorized as an isothiocyanate (ITC), primarily extracted from cruciferous vegetables like broccoli and cabbage. The molecular formula of sulforaphane (SFN) is C6H11NOS2. SFN is generated by the hydrolysis of glucoraphanin (GRP) through the enzyme myrosinase, showing notable properties including anti-diabetic, anti-inflammatory, antimicrobial, anti-angiogenic, and anticancer attributes. Ongoing clinical trials are investigating its potential in diseases such as cancer, neurodegenerative diseases, diabetes-related complications, chronic kidney disease, cardiovascular disease, and liver diseases. Several animal carcinogenesis models and cell culture models have shown it to be a very effective chemopreventive agent, and the protective effects of SFN in ophthalmic diseases have been linked to multiple mechanisms. In murine models of diabetic retinopathy and age-related macular degeneration, SFN delays retinal photoreceptor cell degeneration through the Nrf2 antioxidative pathway, NF-κB pathway, AMPK pathway, and Txnip/mTOR pathway. In rabbit models of keratoconus and cataract, SFN has been shown to protect corneal and lens epithelial cells from oxidative stress injury by activating the Keap1-Nrf2-ARE pathway and the Nrf-2/HO-1 antioxidant pathway. Oral delivery or intraperitoneal injection at varying concentrations are the primary strategies for SFN intake in current preclinical studies. Challenges remain in the application of SFN in eye disorders due to its weak solubility in water and limited bioavailability because of the presence of blood-ocular barrier systems. This review comprehensively outlines recent research on SFN, elucidates its mechanisms of action, and discusses potential therapeutic benefits for eye disorders such as age-related macular degeneration (AMD), diabetic retinopathy (DR), cataracts, and other ophthalmic diseases, while also indicating directions for future clinical research to achieve efficient SFN treatment for ophthalmic diseases.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaojing Zhao
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Yang Liu
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiuxia Yang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
4
|
Alanazi AH, Selim MS, Yendamuri MR, Zhang D, Narayanan SP, Somanath PR. The impact of diabetes mellitus on blood-tissue barrier regulation and vascular complications: Is the lung different from other organs? Tissue Barriers 2024:2386183. [PMID: 39072526 DOI: 10.1080/21688370.2024.2386183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetes Mellitus presents a formidable challenge as one of the most prevalent and complex chronic diseases, exerting significant strain on both patients and the world economy. It is recognized as a common comorbidity among severely ill individuals, often leading to a myriad of micro- and macro-vascular complications. Despite extensive research dissecting the pathophysiology and molecular mechanisms underlying vascular complications of diabetes, relatively little attention has been paid to potential lung-related complications. This review aims to illuminate the impact of diabetes on prevalent respiratory diseases, including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), tuberculosis (TB), pneumonia infections, and asthma, and compare the vascular complications with other vascular beds. Additionally, we explore the primary mechanistic pathways contributing to these complications, such as the expression modulation of blood-tissue-barrier proteins, resulting in increased paracellular and transcellular permeability, and compromised immune responses rendering diabetes patients more susceptible to infections. The activation of inflammatory pathways leading to cellular injury and hastening the onset of these respiratory complications is also discussed.
Collapse
Affiliation(s)
- Abdulaziz H Alanazi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Mohamed S Selim
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Manyasreeprapti R Yendamuri
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
5
|
Jha R, Lopez-Trevino S, Kankanamalage HR, Jha JC. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024; 12:1098. [PMID: 38791060 PMCID: PMC11118045 DOI: 10.3390/biomedicines12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of both type 1 and type 2 diabetes. DKD is characterised by injury to both glomerular and tubular compartments, leading to kidney dysfunction over time. It is one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Persistent high blood glucose levels can damage the small blood vessels in the kidneys, impairing their ability to filter waste and fluids from the blood effectively. Other factors like high blood pressure (hypertension), genetics, and lifestyle habits can also contribute to the development and progression of DKD. The key features of renal complications of diabetes include morphological and functional alterations to renal glomeruli and tubules leading to mesangial expansion, glomerulosclerosis, homogenous thickening of the glomerular basement membrane (GBM), albuminuria, tubulointerstitial fibrosis and progressive decline in renal function. In advanced stages, DKD may require treatments such as dialysis or kidney transplant to sustain life. Therefore, early detection and proactive management of diabetes and its complications are crucial in preventing DKD and preserving kidney function.
Collapse
Affiliation(s)
- Rajesh Jha
- Kansas College of Osteopathic Medicine, Wichita, KS 67202, USA;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
6
|
Bansal S, Burman A, Tripathi AK. Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes. World J Diabetes 2023; 14:1146-1162. [PMID: 37664478 PMCID: PMC10473940 DOI: 10.4239/wjd.v14.i8.1146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns. Cardiovascular complications associated with diabetes are the leading cause of morbidity and mortality. The cardiovascular diseases that accompany diabetes include angina, myocardial infarction, stroke, peripheral artery disease, and congestive heart failure. Among the various risk factors generated secondary to hyperglycemic situations, advanced glycation end products (AGEs) are one of the important targets for future diagnosis and prevention of diabetes. In the last decade, AGEs have drawn a lot of attention due to their involvement in diabetic patho-physiology. AGEs can be derived exogenously and endogenously through various pathways. These are a non-homogeneous, chemically diverse group of compounds formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amino groups of protein, lipids, and nucleic acid. AGEs mediate their pathological effects at the cellular and extracellular levels by multiple pathways. At the cellular level, they activate signaling cascades via the receptor for AGEs and initiate a complex series of intracellular signaling resulting in reactive oxygen species generation, inflammation, cellular proliferation, and fibrosis that may possibly exacerbate the damaging effects on cardiac functions in diabetics. AGEs also cause covalent modifications and cross-linking of serum and extracellular matrix proteins; altering their structure, stability, and functions. Early diagnosis of diabetes may prevent its progression to complications and decrease its associated comorbidities. In the present review, we recapitulate the role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects in diabetes-associated complications. Furthermore, this review presents an overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Savita Bansal
- Department of Biochemistry, Institute of Home Sciences, University of Delhi, New Delhi 110016, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi 110016, India
| | - Asok Kumar Tripathi
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, New Delhi 110095, India
| |
Collapse
|
7
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
9
|
Chen Z, Hong Q. Correlation of serum IGF-1, AGEs and their receptors with the risk of colorectal cancer in patients with type 2 diabetes mellitus. Front Oncol 2023; 13:1125745. [PMID: 36890832 PMCID: PMC9986935 DOI: 10.3389/fonc.2023.1125745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background According to epidemiological evidence, people with type 2 diabetes mellitus have a higher risk of developing colorectal cancer. Objective To examine the relationship between colorectal cancer (CRC) and serum levels of IGF-1, IGF-1R, AGEs,RAGE and sRAGE in patients with type 2 diabetes. Methods By using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we divided the patients into normal group(58 patients)and tumor group(446 patients), and analyzed the expression and prognostic value analysis of IGF-1,IGF1R and RAGE. Cox regression and the Kaplan-Meier method were used to determine the predictive value of target gene on clinical outcomes in CRC patients. In order to further combine CRC with diabetes research,one hundred forty-eight patients hospitalized in the Second Hospital of Harbin Medical University from July 2021 to July 2022 were enrolled and divided into CA and control groups. There were 106 patients in the CA group, including 75 patients with CRC and 31 patients with CRC+T2DM; the control group comprised 42 patients with T2DM. Circulating levels of IGF-1, IGF-1R, AGEs, RAGE, and sRAGE in the serum of the patients were measured using Enzyme-Linked Immunosorbnent Assay (ELISA) kits, and other clinical parameters were also measured during hospitalization. Statistical methods used were χ² test, independent samples t-test and Pearson correlation analysis were. Finally, we controlled for confounding factors and used logistic multi-factor regression analysis. Results Bioinformatics analysis showed that IGF-1, IGF1R and RAGE were highly expressed in CRC patients, and the patients with high expression also showed significantly lower overall survival rate. Through Cox regression analysis, IGF-1 can be used as an independent influencing factor of CRC. In the ELISA experiment, serum AGE, RAGE, IGF-1, and IGF-1R levels were higher in the CRC and CRC+T2DM groups than in the T2DM group, but the serum sRAGE concentrations in these groups were lower than those in the T2DM group (P < 0.05). Serum AGE, RAGE, sRAGE, IGF1, and IGF1R levels were higher in the CRC+T2DM group than in the CRC group (P < 0.05). In CRC+T2DM patients, serum AGEs were correlated with age (p = 0.027), and the serum AGE levels in these groups were positively correlated with RAGE and IGF-1 levels (p < 0.001) and negatively correlated with sRAGE and IGF-1R levels (p < 0.001). After correcting for confounding factors based on logistic multiple regression analysis, the effects of age, serum IGF-1 and IGF-1R on the development of CRC in patients with T2DM were statistically significant (p<0.05). Conclusion Serum IGF-1 and IGF-1R levels independently influenced the development of CRC in patients with T2DM. Furthermore, IGF-1 and IGF-1R were correlated with AGEs in CRC patients who also had T2DM, suggesting that AGEs may influence the development of CRC in T2DM patients. These findings suggest that we may be able to lower the risk of CRC in the clinic by regulating AGEs through the regulation of blood glucose levels, which will affect IGF-1 and its receptors.
Collapse
Affiliation(s)
- Zeng Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiao Hong
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul 2022; 56:284-294. [DOI: 10.2478/enr-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Several cross-sectional trials have revealed increased arterial stiffness connected with the cardiac autonomic neuropathy in types 2 and 1 diabetic patients. The pathophysiological relationship between arterial stiffness and autonomic dysfunction in diabetes mellitus is still underinvestigated and the question whether the presence of cardiac autonomic neuropathy leads to arterial stiffening or increased arterial stiffness induced autonomic nervous system impairment is still open. Both arterial stiffness and dysfunction of the autonomic nervous system have common pathogenetic pathways, counting state of the chronic hyperinsulinemia and hyperglycemia, increased formation of advanced glycation end products, activation of protein kinase C, development of endothelial dysfunction, and chronic low-grade inflammation. Baroreceptor dysfunction is thought to be one of the possible reasons for the arterial wall stiffening development and progression. On the contrary, violated autonomic nervous system function can affect the vascular tone and by this way alter the large arteries walls elastic properties. Another possible mechanism of attachment and/or development of arterial stiffness is the increased heart rate and autonomic dysfunction corresponding progression. This minireview analyzes the current state of the relationship between the diabetes mellitus and the arterial stiffness. Particular attention is paid to the analysis, interpretation, and application of the results obtained in patients with type 2 diabetes mellitus and diabetic cardiac autonomic neuropathy.
Collapse
|
11
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
12
|
López-Armas GC, Yessenbekova A, González-Castañeda RE, Arellano-Arteaga KJ, Guerra-Librero A, Ablaikhanova N, Florido J, Escames G, Acuña-Castroviejo D, Rusanova I. Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants (Basel) 2022; 11:1675. [PMID: 36139749 PMCID: PMC9495876 DOI: 10.3390/antiox11091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of type 2 diabetes mellitus (T2DM) vascular complications (VCs) is associated with oxidative stress and chronic inflammation and can result in endothelial dysfunctions. Circulating microRNAs play an important role in epigenetic regulation of the etiology of T2DM. We studied 30 healthy volunteers, 26 T2DM patients with no complications, and 26 T2DM patients with VCs, to look for new biomarkers indicating a risk of developing VCs in T2DM patients. Peripheral blood samples were used to determine redox state, by measuring the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; and glucose-6-phosphate dehydrogenase, G6DP) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO). Additionally, inflammatory marker levels (IL-1, IL-6, IL-18, and TNF-α), c-miR-21, and c-miR-126 expression were analyzed. T2DM patients showed the highest oxidative damage with increased GSSG/GSH ratios, LPO, and AOPP levels. In both diabetic groups, we found that diminished SOD activity was accompanied by increased CAT and decreased GRd and G6PD activities. Diabetic patients presented with increased relative expression of c-miR-21 and decreased relative expression of c-miR-126. Overall, c-miR-21, SOD, CAT, and IL-6 had high predictive values for diabetes diagnoses. Finally, our data demonstrated that IL-6 exhibited predictive value for VC development in the studied population. Moreover, c-miR-21 and c-miR-126, along with GPx and AOPP levels, should be considered possible markers for VC development in future studies.
Collapse
Affiliation(s)
- Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Rocío E. González-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Kevin J. Arellano-Arteaga
- División de Medicina Interna, Nuevo Hospital Civil Juan I. Menchaca, Universidad de Guadalajara, Salvador Quevedo y Subieta 750, Guadalajara 44340, Mexico
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Javier Florido
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| |
Collapse
|
13
|
Lee J, Yun JS, Ko SH. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022; 14:3086. [PMID: 35956261 PMCID: PMC9370094 DOI: 10.3390/nu14153086] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is well established as a chronic disease with a high health burden due to mortality or morbidity from the final outcomes of vascular complications. An increased duration of hyperglycemia is associated with abnormal metabolism. Advanced glycation end products (AGEs) are nonenzymatic glycated forms of free amino acids that lead to abnormal crosslinking of extra-cellular and intracellular proteins by disrupting the normal structure. Furthermore, the interaction of AGEs and their receptors induces several pathways by promoting oxidative stress and inflammation. In this review, we discuss the role of AGEs in diabetic vascular complications, especially type 2 DM, based on recent clinical studies.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03391, Korea;
| | - Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| |
Collapse
|
14
|
Lipopeptides in promoting signals at surface/interface of micelles: Their roles in repairing cellular and nuclear damages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Phytochemicals of six selected herbal plants and their inhibitory activities towards free radicals and glycation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ren X, Lv J, Wang N, Liu J, Gao C, Wu X, Yu Y, Teng Q, Dong W, Kong H, Kong L. Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Diabetes Res Clin Pract 2022; 185:109788. [PMID: 35182712 DOI: 10.1016/j.diabres.2022.109788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
AIMS Autophagy and exosome secretion in photoreceptor and RPE cells play an important role during diabetic retinopathy (DR). Thioredoxin (Trx) upregulation delays diabetes-induced photoreceptor cell degeneration, which the effect of autophagy and exosome secretion on it is unclear. Therefore, we investigated the effect of them on Trx upregulation to delay diabetes-induced photoreceptor cell degeneration and to identify the potential therapy for DR in the future. METHODS Trx-transgenic mice and 661w cell were as models. Retinal function and morphology were evaluated by electroretinography and H&E staining. TUNEL staining was used to evaluate apoptosis. The protein expression was detected by Western blotting. TEM and mRFP-GFP-LC3 method were used to analyze autophagy. RESULTS In vitro and in vivo, Trx upregulation can delay diabetes-induced photoreceptor cell degeneration. Moreover, the expression of LC3 and p62 was decreasing and the expression of Alix and CD63 was increasing after Trx overexpression. However, it was inhibited after AMPK inhibitor treatment. Additionally, secreted exosomes from photoreceptor were phagocytosed by RPE cells to regulate its physiological function. CONCLUSIONS Trx upregulation can delay diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Secreted exosomes from photoreceptor cells could be phagocytosed and degraded by RPE cells in DR.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jinjuan Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Nina Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jiasu Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China; The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Chuanzhou Gao
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiaoli Wu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Yang Yu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Qiufeng Teng
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Wenkang Dong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Hui Kong
- The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| |
Collapse
|
17
|
Mice with Type 2 Diabetes Present Significant Alterations in Their Tissue Biomechanical Properties and Histological Features. Biomedicines 2021; 10:biomedicines10010057. [PMID: 35052737 PMCID: PMC8773308 DOI: 10.3390/biomedicines10010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease often associated with severe complications that may result in patient morbidity or death. One T2DM etiological agent is chronic hyperglycemia, a condition that induces damaging biological processes, including impactful extracellular matrix (ECM) modifications, such as matrix components accumulation. The latter alters ECM stiffness, triggering fibrosis, inflammation, and pathological angiogenesis. Hence, studying ECM biochemistry and biomechanics in the context of T2DM, or obesity, is highly relevant. With this in mind, we examined both native and decellularized tissues of obese B6.Cg-Lepob/J (ob/ob) and diabetic BKS.Cg-Dock7m+/+LeprdbJ (db/db) mice models, and extensively investigated their histological and biomechanical properties. The tissues analyzed herein were those strongly affected by diabetes—skin, kidney, adipose tissue, liver, and heart. The referred organs and tissues were collected from 8-week-old animals and submitted to classical histological staining, immunofluorescence, scanning electron microscopy, rheology, and atomic force microscopy. Altogether, this systematic characterization has identified significant differences in the architecture of both ob/ob and db/db tissues, namely db/db skin presents loose epidermis and altered dermis structure, the kidneys have clear glomerulopathy traits, and the liver exhibits severe steatosis. The distribution of ECM proteins also pinpoints important differences, such as laminin accumulation in db/db kidneys and decreased hyaluronic acid in hepatocyte cytoplasm in both obese and diabetic mice. In addition, we gathered a significant set of data showing that ECM features are maintained after decellularization, making these matrices excellent biomimetic scaffolds for 3D in vitro approaches. Importantly, mechanical studies revealed striking differences between tissue ECM stiffness of control (C57BL/6J), obese, and diabetic mice. Notably, we have unveiled that the intraperitoneal adipose tissue of diabetic animals is significantly stiffer (G* ≈ 10,000 Pa) than that of ob/ob or C57BL/6J mice (G* ≈ 3000–5000 Pa). Importantly, this study demonstrates that diabetes and obesity selectively potentiate severe histological and biomechanical alterations in different matrices that may impact vital processes, such as angiogenesis, wound healing, and inflammation.
Collapse
|
18
|
Natarajan K, Sundaramoorthy A, Shanmugam N. HnRNPK and lysine specific histone demethylase-1 regulates IP-10 mRNA stability in monocytes. Eur J Pharmacol 2021; 920:174683. [PMID: 34914972 DOI: 10.1016/j.ejphar.2021.174683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Altered mRNA metabolism is a feature of many inflammatory diseases. Post transcriptional regulation of interferon-γ-inducible protein (IP)-10 has been uncharacterized in diabetes conditions. RNA-affinity capture method and RNA immuno-precipitation revealed S100b treatment increased the binding of heterogeneous nuclear ribonucleoprotein (hnRNP)K to the IP-10 3'UTR and increased IP-10 mRNA accumulation. Luciferase activity assay using reporter plasmids showed involvement of IP-10 3'UTR. Knocking down of hnRNPK destabilized S100b induced IP-10 mRNA accumulation. S100b promoted the translocation of hnRNPK from nucleus to the cytoplasm and this was confirmed by phosphomimetic S284/353D mutant and non-phosphatable S284/353A hnRNPK mutant. S100b treatment demethylates hnRNPK at Lys219 by Lysine Specific Demethylase (LSD)-1. HnRNPKK219I, a demethylation defective mutant increased IP-10 mRNA stability. Apparently, triple mutant hnRNPKK219I/S284D/353D promoted IP-10 mRNA stability. Interestingly, knocking down LSD-1 abolished S100b induced IP-10 mRNA accumulation. These observations show for the first time that IP-10 mRNA stability is dynamically regulated by Lysine demethylation of hnRNPK by LSD-1. These results indicate that hnRNPK plays an important role in IP-10 mRNA stability induced by S100b which could exacerbate monocyte activation, relevant to the pathogenesis of diabetic complications like atherosclerosis.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Arun Sundaramoorthy
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - Narkunaraja Shanmugam
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
19
|
Omeprazole inhibits α-glucosidase activity and the formation of nonenzymatic glycation products: Activity and mechanism. J Biosci Bioeng 2021; 133:110-118. [PMID: 34802943 DOI: 10.1016/j.jbiosc.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
In this study, the inhibitory effect and mechanism of omeprazole on α-glucosidase and nonenzymatic glycation were investigated in vitro by using multi-spectroscopic methods and molecular docking. Enzyme kinetic results showed that omeprazole inhibited α-glucosidase in a reversible and noncompetitive manner (IC50= 0.595 ± 0.003 mM). The results from fluorescence quenching and thermomechanical analyses signified that omeprazole reduced the fluorescence intensity of α-glucosidase by forming an omeprazole-α-glucosidase complex primarily driven by hydrogen bonds. Molecular docking further confirmed that hydrogen bonds and hydrophobic forces were the major driving forces for omeprazole binding to α-glucosidase. The nonenzymatic glycation assays revealed that omeprazole had a moderate inhibition against the formation of fructosamine, dicarbonyl compounds, and advanced glycation end products (AGEs). This study provides a new inhibitor of both α-glucosidase and nonenzymatic glycation and provides a practicable candidate for treating diabetes and its complications.
Collapse
|
20
|
Quantification of Degradation Products Formed during Heat Sterilization of Glucose Solutions by LC-MS/MS: Impact of Autoclaving Temperature and Duration on Degradation. Pharmaceuticals (Basel) 2021; 14:ph14111121. [PMID: 34832903 PMCID: PMC8625795 DOI: 10.3390/ph14111121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
Heat sterilization of glucose solutions can lead to the formation of various glucose degradation products (GDPs) due to oxidation, hydrolysis, and dehydration. GDPs can have toxic effects after parenteral administration due to their high reactivity. In this study, the application of the F0 concept to modify specific time/temperature models during heat sterilization and their influence on the formation of GDPs in parenteral glucose solutions was investigated using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Glucose solutions (10%, w/v) were autoclaved at 111 °C, 116 °C, and 121 °C for different durations. The GDPs glyoxal, methylglyoxal, glucosone, 3-deoxyglucosone/3-deoxygalactosone, 3,4-dideoxyglucosone-3-ene, and 5-hydroxymethylfurfural were quantified after derivatization with o-phenylenediamine by an optimized LC-MS/MS method. For all GDPs, the limit of detection was <0.078 μg/mL, and the limit of quantification was <0.236 μg/mL. The autoclaving time of 121 °C and 15 min resulted in the lowest levels of 3-DG/3-DGal and 5-HMF, but in the highest levels of GO and 2-KDG. The proposed LC-MS/MS method is rapid and sensitive. So far, only 5-HMF concentrations are limited by the regulatory authorities. Our results suggest reconsidering the impurity limits of various GDPs, especially the more toxic ones such as GO and MGO, by the Pharmacopoeias.
Collapse
|
21
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
22
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
23
|
Sesamin suppresses advanced glycation end products induced microglial reactivity using BV2 microglial cell line as a model. Brain Res Bull 2021; 172:190-202. [PMID: 33894297 DOI: 10.1016/j.brainresbull.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Neuroinflammation-mediated microglial reactivity is a major process, which explains the increased risk of Alzheimer's disease (AD) development in patients with Type 2 diabetes mellitus (T2DM). Advanced glycation end products (AGEs), formed by hyperglycemic condition in diabetes, is characterized as an intermediary of brain injury with diabetes through induction of microglial reactivity. Here, we explored the effect of AGEs on microglial reactivity using BV2 as a model. The NF-κB, p38 and JNK pathways were found to be important mechanism in AGEs-induced BV2 microglial reactivity. NF-κB inhibitor (BAY-11-7082), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) exhibited the potential inhibition of AGEs-induced NO production. We also found that the sesamin, a major lignan found in sesame seed oils, exerts an anti-inflammatory effect under AGEs-induced microglial reactivity via suppressing the phosphorylation of NF-κB, p38 and JNK pathways. Moreover, sesamin also ameliorated AGEs-induced-receptor for advanced glycation end products (RAGE) expression. Taken together, sesamin may be a promising phytochemical compound to delay inflammatory progress by AGEs microglia function. Similarly, inhibition of AGEs-induced microglial reactivity might be potential therapeutic targets of neuroinflammation-based mechanisms in T2DM link progressive AD.
Collapse
|
24
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
25
|
Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel) 2020; 9:925. [PMID: 32992565 PMCID: PMC7600946 DOI: 10.3390/antiox9100925] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes prevalence is increasing worldwide, especially through the increase of type 2 diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause of end-stage renal disease. Various factors affect the development and progression of diabetic nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation, protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy have been found. This review summarises current evidence of oxidative stress biomarkers in patients with diabetic nephropathy. Although some of them are promising, they cannot replace currently used clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| |
Collapse
|
26
|
Heidari F, Rabizadeh S, Rajab A, Heidari F, Mouodi M, Mirmiranpour H, Esteghamati A, Nakhjavani M. Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes. Life Sci 2020; 260:118422. [PMID: 32946914 DOI: 10.1016/j.lfs.2020.118422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
AIMS Diabetes is associated with the excess formation of advanced glycation end-products (AGEs) and advanced oxidation protein products (AOPP), and low levels of ferric reducing ability of plasma (FRAP). However, the trend of oxidative and antioxidant markers levels according to diabetes duration is unclear. MAIN METHODS In a case-control study, 240 patients with diabetes and 100 healthy controls were enrolled. Patients were divided into four groups according to the duration of diabetes, including newly diagnosed, 1-5, 5-10, and 10-15 years. Serum AGEs, AOPP, and FRAP levels were compared among groups. KEY FINDINGS AGEs and AOPP were higher and FRAP was lower in patients with diabetes compared to healthy controls. Serum levels of AGEs increased progressively with increasing in diabetes duration. AGEs levels were 68.97 ± 7.28% in newly-diagnosed, 73.43 ± 12.96% in 1-5 years and 80.44 ± 13.84% in 10-15 years of diabetes duration (pairwise p-values <0.05). In linear regression analysis the correlation among AGEs, AOPP, FRAP, and diabetes duration remained significant after adjustment for age, BMI, HDL, HbA1c, waist circumference, microvascular complications, and coronary artery diseases. ROC analysis showed AGEs could predict the duration of diabetes when patients with 10-15 years duration of diabetes were compared to patients with 1-5 years duration of diabetes (AUC = 0.676, p-value = 0.003). SIGNIFICANCE Diabetes promotes AGEs, and AOPP production, independent of glycemic control and patients age. Serum levels of AGEs increase progressively with increasing duration of diabetes. AGEs may be helpful in estimating chronicity of diabetes.
Collapse
Affiliation(s)
- Firouzeh Heidari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armin Rajab
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farrokh Heidari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Mouodi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossien Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5732956. [PMID: 32509147 PMCID: PMC7244977 DOI: 10.1155/2020/5732956] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.
Collapse
|
28
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
29
|
Yin B, Bi YM, Fan GJ, Xia YQ. Molecular Mechanism of the Effect of Huanglian Jiedu Decoction on Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. J Diabetes Res 2020; 2020:5273914. [PMID: 33134394 PMCID: PMC7593729 DOI: 10.1155/2020/5273914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Huanglian Jiedu Decoction (HLJDD) is a Traditional Chinese Medicine (TCM) formula comprising four herbal medicines. This decoction has long been used in China for clinically treating T2DM. However, the molecular mechanism of HLJDD treat for T2DM is still not fully known. Hence, this study was designed to reveal the synergistic mechanism of HLJDD formula in the treatment of T2DM by using network pharmacology method and molecular docking. METHODS Retrieving and screening of active components of different herbs in HLJDD and corresponding T2DM-related target genes across multiple databases. Subsequently, STRING and Cytoscape were applied to analysis and construct PPI network. In addition, cluster and topological analysis were employed for the analysis of PPI networks. Then, the GO and KEGG enrichment analysis were performed by using ClueGO tool. Finally, the differentially expressed analysis was used to verify whether the expression of key target genes in T2DM and non-T2DM samples was statistically significant, and the binding capacity between active components and key targets was validated by molecular docking using AutoDock. RESULTS There are 65 active components involved in 197 T2DM-related targets that are identified in HLJDD formula. What is more, 39 key targets (AKT1, IL-6, FOS, VEGFA, CASP3, etc.) and 3 clusters were obtained after topological and cluster analysis. Further, GO and KEGG analysis showed that HLJDD may play an important role in treating T2DM and its complications by synergistically regulating many biological processes and pathways which participated in signaling transduction, inflammatory response, apoptotic process, and vascular processes. Differentially expressed analysis showed that AKT1, IL-6, and FOS were upregulated in T2DM samples and a significant between sample differential expression. These results were validated by molecular docking, which identified 5 high-affinity active components in HLJDD, including quercetin, wogonin, baicalein, kaempferol, and oroxylin A. CONCLUSION Our research firstly revealed the basic pharmacological effects and relevant mechanisms of the HLJDD in the treatment of T2DM and its complications. The prediction results might facilitate the development of HLJDD or its active compounds as alternative therapy for T2DM. However, more pharmacological experiments should be performed for verification.
Collapse
Affiliation(s)
- Bei Yin
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ming Bi
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guan-Jie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya-Qing Xia
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Kitagawa N, Ushigome E, Tanaka T, Hasegawa G, Nakamura N, Ohnishi M, Tsunoda S, Ushigome H, Yokota I, Kitagawa N, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Isolated high home systolic blood pressure in patients with type 2 diabetes is a prognostic factor for the development of diabetic nephropathy: KAMOGAWA-HBP study. Diabetes Res Clin Pract 2019; 158:107920. [PMID: 31711859 DOI: 10.1016/j.diabres.2019.107920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Isolated high home systolic blood pressure (IH-HSBP) has been revealed to be correlated with cardiovascular disease and diabetic nephropathy, however, the prognostic significance of IH-HSBP with the development of diabetic nephropathy is unclear. METHODS In this prospective 2-year cohort study of 477 patients with normoalbuminuria, we investigated the effect of IH-HSBP on the development of diabetic nephropathy defined by diabetic nephropathy advanced from normoalbuminuira to micro or macroalbuminuria. RESULTS Among 477 patients, 67 patients showed the development of diabetic nephropathy. In the multivariate logistic regression analyses, IH-HSBP was prognostic factor for the development of nephropathy after adjusting for sex, age, duration of diabetes mellitus, body mass index, total cholesterol, hemoglobin A1c, creatinine, smoking habits and use of renin-angiotensin-aldosterone system inhibitors (odds ratio: 2.53, 95% confidence interval: 1.16-5.56, p = 0.020). CONCLUSION IH-HSBP in patients with type 2 diabetes with normoalbuminuria was prognostic factor for the development of diabetic nephropathy. We should pay more attention to IH-HSBP to prevent the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toru Tanaka
- Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto, Japan
| | - Goji Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | | | - Masayoshi Ohnishi
- Department of Endocrinology and Metabolism, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | | | - Hidetaka Ushigome
- Department of Organ Transplantation and General Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
He D, Huang JH, Zhang ZY, Du Q, Peng WJ, Yu R, Zhang SF, Zhang SH, Qin YH. A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3989-4005. [PMID: 31819371 PMCID: PMC6890936 DOI: 10.2147/dddt.s216644] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Background Traditional Chinese medicine (TCM) formulations have proven to be advantageous in clinical treatment and prevention of disease. LiuWei DiHuang Pill (LWDH Pill) is a TCM that was employed to treat type 2 diabetes mellitus (T2DM). However, a holistic network pharmacology approach to understanding the active ingredients and the therapeutic mechanisms underlying T2DM has not been pursued. Methods A network pharmacology approach including drug-likeness evaluation, oral bioavailability prediction, virtual docking, and network analysis has been used to predict the active ingredients and potential targets of LWDH Pill in the treatment of type 2 diabetes. Results The comprehensive network pharmacology approach was successfully to identify 45 active ingredients in LWDH Pill. 45 active ingredients hit by 163 potential targets related to T2DM. Ten of the more highly predictive components (such as :quercetin, Kaempferol, Stigmasterol, beta-sitosterol, Kadsurenone, Diosgenin, hancinone C, Hederagenin, Garcinone B, Isofucosterol) are involved in anti-inflammatory, anti-oxidative stress, and the reduction of beta cell damage. LWDH Pill may play a role in the treatment of T2DM and its complications (atherosclerosis and nephropathy) through the AGE-RAGE signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. Conclusion Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of LWDH Pill for application to T2DM and helps to illustrate mechanism of action on a comprehensive level. This study provides identify key genes and pathway associated with the prognosis and pathogenesis of T2DM from new insights, which also demonstrates a feasible method for the research of chemical basis and pharmacology in LWDH Pill.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410013, People's Republic of China
| | - Zhe-Yu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Wei-Jun Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Si-Fang Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
32
|
Yi X, Zhang L, Lu W, Tan X, Yue J, Wang P, Xu W, Ye L, Huang D. The effect of NLRP inflammasome on the regulation of AGEs-induced inflammatory response in human periodontal ligament cells. J Periodontal Res 2019; 54:681-689. [PMID: 31250434 DOI: 10.1111/jre.12677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/18/2019] [Accepted: 06/01/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetes influences the frequency and development of periodontitis. Inflammation of human periodontal ligament cells (HPDLCs) participates in this pathologic process. Hence, this study aims to explore whether advanced glycation end products (AGEs), by-products of diabetes, could exaggerate inflammation induced by muramyl dipeptide (MDP) in HPDLCs, and whether nucleotide-binding oligomerization domain-like receptors (NLRs) signaling pathway was involved. MATERIAL AND METHODS Human periodontal ligament cells were pre-treated with 100 μg/mL AGEs for 24 hours and stimulated with 10 μg/mL MDP for 24 hours. IL-6, IL-1β, and RAGE were detected, and the activation of NF-κB signaling pathway was observed. The expression of NLRs was evaluated with or without silencing RAGE or blocking NF-κB pathway under AGEs stimulation. Statistical analyses were performed by using independent sample t test. RESULTS Advanced glycation end products induced significant increase of inflammatory cytokines in HPDLCs (P < 0.05). Results of western blot (WB) showed that after 45 minutes stimulation of AGEs, p-p65/p65 ratio peaked; AGEs promoted the expression of NLRP1, NLRP3, and apoptosis-associated speck-like protein containing a CARD (ASC). After silencing RAGE or blocking NF-κB pathway, the up-regulation of NLRs protein caused by AGEs was attenuated. Additionally, AGEs pre-treatment could enhance the inflammatory response of MDP and the expression of NLRs, which were demonstrated by more expression of IL-6, IL-1β, NOD2, NLRP1, NLRP3, and ASC. CONCLUSION Advanced glycation end products induced inflammatory response in HPDLCs via NLRP1-inflammasome and NLRP3-inflammasome activation in which NF-κB signal pathway was involved. Besides, AGEs promoted the inflammatory response of MDP via NOD2, NLRP1-inflammasome, and NLRP3-inflammasome.
Collapse
Affiliation(s)
- Xiaowei Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlu Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junli Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Hospital of Stomatology Wuhan University, Wuhan, China
| | - Puyu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Affiliated Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Weizhe Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5953685. [PMID: 31214280 PMCID: PMC6535859 DOI: 10.1155/2019/5953685] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) and its complications constitute a major worldwide public health problem, with high rates of morbidity and mortality. Biomarkers for predicting the occurrence and development of the disease may therefore offer benefits in terms of early diagnosis and intervention. This review provides an overview of human studies on circulating biomarkers of oxidative stress and antioxidant defence systems and discusses their usefulness from a clinical perspective. Most case-control studies documented an increase in biomarkers of oxidative lipid, protein, and nucleic acid damage in patients with prediabetes and in those with a diagnosis of T2DM compared to controls, and similar findings were reported in T2DM with micro- and macrovascular complications compared to those without. The inconsistence of the results regarding antioxidant defence systems renders difficulty to draw a general conclusion. The clinical relevance of biomarkers of oxidative lipid and protein damage for T2DM progression is uncertain, but prospective studies suggest that markers of oxidative nucleic acid damage such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine are promising for predicting macrovascular complications of T2DM. Emerging evidence also points out the relationship between serum PON1 and serum HO1 in T2DM and its complications. Overall, enhanced oxidative damage represents an underlying mechanism of glucose toxicity in T2DM and its related micro- and macrovascular complications suggesting that it may be considered as a potential additional target for pharmacotherapy. Therefore, further studies are needed to understand whether targeting oxidative stress may yield clinical benefits. In this view, the measurement of oxidative stress biomarkers in clinical trials deserves to be considered as an additional tool to currently used parameters to facilitate a more individualized treatment of T2DM in terms of drug choice and patient selection.
Collapse
|
34
|
Perkins RK, Miranda ER, Karstoft K, Beisswenger PJ, Solomon TPJ, Haus JM. Experimental Hyperglycemia Alters Circulating Concentrations and Renal Clearance of Oxidative and Advanced Glycation End Products in Healthy Obese Humans. Nutrients 2019; 11:nu11030532. [PMID: 30823632 PMCID: PMC6471142 DOI: 10.3390/nu11030532] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this investigation was to evaluate the effects of experimental hyperglycemia on oxidative damage (OX), advanced glycation end products (AGEs), and the receptor for AGEs (RAGE) through an in vivo approach. Obese subjects (n = 10; 31.2 ± 1.2 kg·m−2; 56 ± 3 years) underwent 24 h of hyperglycemic clamp (+5.4 mM above basal), where plasma at basal and after 2 h and 24 h of hyperglycemic challenge were assayed for OX (methionine sulfoxide, MetSO, and aminoadipic acid, AAA) and AGE-free adducts (Ne-carboxymethyllysine, CML; Ne-carboxyethyllysine, CEL; glyoxal hydroimidazolone-1, GH-1; methylglyoxal hydroimidazolone-1, MG-H1; and 3-deoxyglucosone hydroimidazolone, 3DG-H) via liquid chromatography–tandem mass spectrometry (LC–MS/MS). Urine was also analyzed at basal and after 24 h for OX and AGE-free adducts and plasma soluble RAGE (sRAGE) isoforms (endogenous secretory RAGE, esRAGE, and cleaved RAGE, cRAGE), and inflammatory markers were determined via enzyme-linked immunosorbent assay (ELISA). Skeletal muscle tissue collected via biopsy was probed at basal, 2 h, and 24 h for RAGE and OST48 protein expression. Plasma MetSO, AAA, CEL, MG-H1, and G-H1 decreased (−18% to −47%; p < 0.05), while CML increased (72% at 24 h; p < 0.05) and 3DG-H remained unchanged (p > 0.05) with the hyperglycemic challenge. Renal clearance of MetSO, AAA, and G-H1 increased (599% to 1077%; p < 0.05), CML decreased (−30%; p < 0.05), and 3DG-H, CEL, and MG-H1 remained unchanged (p > 0.05). Fractional excretion of MetSO, AAA, CEL, G-H1, and MG-H1 increased (5.8% to 532%; p < 0.05) and CML and 3DG-H remained unchanged (p > 0.05). Muscle RAGE and OST48 expression, plasma sRAGE, IL-1β, IL-1Ra, and TNFα remained unchanged (p > 0.05), while IL-6 increased (159% vs. basal; p > 0.05). These findings suggest that individuals who are obese but otherwise healthy have the capacity to prevent accumulation of OX and AGEs during metabolic stress by increasing fractional excretion and renal clearance.
Collapse
Affiliation(s)
- Ryan K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Paul J Beisswenger
- Geisel School of Medicine, Dartmouth College, PreventAGE Healthcare, 16 Cavendish Court, Lebanon, NH 03766, USA.
| | - Thomas P J Solomon
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, West Midlands B15 2TT, UK.
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands B15 2TT, UK.
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Miranda ER, Fuller KNZ, Perkins RK, Beisswenger PJ, Farabi SS, Quinn L, Haus JM. Divergent Changes in Plasma AGEs and sRAGE Isoforms Following an Overnight Fast in T1DM. Nutrients 2019; 11:nu11020386. [PMID: 30781793 PMCID: PMC6413006 DOI: 10.3390/nu11020386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
Advanced glycation end products (AGEs) promote the development of diabetic complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE) sequester AGEs and protect against RAGE-mediated diabetic complications. We investigated the effect of an overnight fast on circulating metabolic substrates, hormones, AGEs, and sRAGE isoforms in 26 individuals with type 1 diabetes (T1DM). Blood was collected from 26 young (18–30 years) T1DM patients on insulin pumps before and after an overnight fast. Circulating AGEs were measured via LC-MS/MS and sRAGE isoforms were analyzed via ELISA. Glucose, insulin, glucagon, and eGFRcystatin-c decreased while cortisol increased following the overnight fast (p < 0.05). AGEs (CML, CEL, 3DG-H, MG-H1, and G-H1) decreased (21–58%, p < 0.0001) while total sRAGE, cleaved RAGE (cRAGE), and endogenous secretory RAGE (esRAGE) increased (22–24%, p < 0.0001) following the overnight fast. The changes in sRAGE isoforms were inversely related to MG-H1 (rho = −0.493 to −0.589, p < 0.05) and the change in esRAGE was inversely related to the change in G-H1 (rho = −0.474, p < 0.05). Multiple regression analyses revealed a 1 pg/mL increase in total sRAGE, cRAGE, or esRAGE independently predicted a 0.42–0.52 nmol/L decrease in MG-H1. Short-term energy restriction via an overnight fast resulted in increased sRAGE isoforms and may be protective against AGE accumulation.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| | - Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, 3901 Rainbow Blvd. Kansas City, KS 66160, USA.
| | - Ryan K Perkins
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| | - Paul J Beisswenger
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Rd., Hanover, NH 03755, USA.
| | - Sarah S Farabi
- Endocrine, Metabolism, & Diabetes, Division of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl., Aurora, CO 80045, USA.
| | - Lauretta Quinn
- Department of Biobehavioral Health Science, University of Illinois at Chicago, 845 Damen Ave., Chicago, IL 60612, USA.
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Vecchié A, Montecucco F, Carbone F, Dallegri F, Bonaventura A. Diabetes and Vascular Disease: Is It All About Glycemia? Curr Pharm Des 2019; 25:3112-3127. [PMID: 31470783 DOI: 10.2174/1381612825666190830181944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes is increasing over time, mainly driven by obesity, aging, and urbanization. Classical macro- and microvascular complications represent the final result of a complex interplay involving atherosclerosis at all stages. METHODS In this review, we aim at focusing on current updates in the pathophysiology of vascular disease in diabetes and discussing how new therapies might influence the management of these patients at high cardiovascular risk. Diabetes shows accelerated atherosclerosis with a larger inflammatory cell infiltrate, thus favoring the development of heart failure. 'Diabetic cardiomyopathy' perfectly describes a specific ischemia- and hypertension- independent entity due to diabetes-related metabolic alterations on myocardial function. Moreover, platelets from subjects with diabetes display a typical hyperreactivity explaining the stronger adhesion, activation, and aggregation. Additionally, diabetes provokes an exaggerated stimulation of the endothelium, with an increased release of reactive oxygen species and a reduced release of nitric oxide, both key elements of the endothelial dysfunction. Also, the coagulation cascade and leukocytes activate contributing to this pro-thrombotic environment. Neutrophils have been recently recognized to play a pivotal role by releasing neutrophil extracellular traps. Finally, microparticles from platelets, neutrophils or monocytes are detrimental effectors on the vessel wall and are involved both in vascular dysfunction and in thrombotic complications. CONCLUSION In light of these findings, the therapeutic management of diabetes needs to be mostly focused on limiting the progression of complications by targeting precise pathophysiological mechanisms rather than the mere glycemic control, which failed to markedly reduce the risk for macrovascular complications and mortality.
Collapse
Affiliation(s)
- Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, Virginia, United States of America
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
37
|
Borilova Linhartova P, Kavrikova D, Tomandlova M, Poskerova H, Rehka V, Dušek L, Izakovicova Holla L. Differences in Interleukin-8 Plasma Levels between Diabetic Patients and Healthy Individuals Independently on Their Periodontal Status. Int J Mol Sci 2018; 19:E3214. [PMID: 30340321 PMCID: PMC6214016 DOI: 10.3390/ijms19103214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic periodontitis (CP) and diabetes mellitus (DM) involve several aspects of immune functions, including neutrophil activity and cytokine biology. Considering the critical function of chemokine interleukin-8 (IL-8) in the inflammatory process, the aims of this study were to determine: (i) IL-8 plasma levels; (ii) IL-8 (-251A/T, rs4073) and its receptor 2 (CXCR2, +1208C/T, rs1126579) polymorphisms, and (iii) the presence of the selected periodontal bacteria in types 1 and 2 DM patients (T1DM and T2DM) and systemically healthy controls (HC) with known periodontal status. This case⁻control study comprises of 153 unrelated individuals: 36/44 patients suffering from T1DM+CP/T2DM+CP and 32/41 from HC+CP/non-periodontitis HC. Both the clinical and biochemical parameters were monitored. The genotypes were determined using qPCR, IL-8 plasma levels were measured using an ELISA kit. Subgingival bacterial colonization was analyzed with a DNA microarray detection kit. The IL-8 plasma levels differed significantly between non-periodontitis HC and T1DM+CP/T2DM+CP patients (P < 0.01). Even in HC+CP, IL-8 concentrations were significantly lower than in T1DM+CP/T2DM+CP patients (P ≤ 0.05). No significant associations between the IL-8 plasma levels and the studied IL-8 and CXCR2 polymorphisms or the occurrence of selected periodontal bacteria (P > 0.05) were found. CP does not influence the circulating IL-8 levels. Patients with T1DM+CP/T2DM+CP had higher circulating IL-8 levels than HC+CP/non-periodontitis HC.
Collapse
Affiliation(s)
- Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic.
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Denisa Kavrikova
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic.
| | - Marie Tomandlova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Hana Poskerova
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic.
| | - Vaclav Rehka
- Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic.
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
38
|
Thilavech T, Abeywardena MY, Dallimore J, Adams M, Adisakwattana S. Cyanidin-3-rutinoside alleviates methylglyoxal-induced cardiovascular abnormalities in the rat. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Saberzadeh-Ardestani B, Karamzadeh R, Basiri M, Hajizadeh-Saffar E, Farhadi A, Shapiro AMJ, Tahamtani Y, Baharvand H. Type 1 Diabetes Mellitus: Cellular and Molecular Pathophysiology at A Glance. CELL JOURNAL 2018; 20:294-301. [PMID: 29845781 PMCID: PMC6004986 DOI: 10.22074/cellj.2018.5513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a disease where destruction of the insulin producing pancreatic beta-cells leads to increased blood sugar levels. Both genetic and environmental factors play a part in the development of T1DM. Currently, numerous loci are specified to be the responsible genetic factors for T1DM; however, the mechanisms of only a few of these genes are known. Although several environmental factors are presumed responsible for progression of T1DM, to date, most of their mechanisms remain undiscovered. After several years of hyperglycemia, late onsets of macrovascular (e.g., cardiovascular) and microvascular (e.g., neurological, ophthalmological, and renal) complications may occur. This review and accompanying figures provides an overview of the etiological factors for T1DM, its pathogenesis at the cellular level, and attributed complications.
Collapse
Affiliation(s)
- Bahar Saberzadeh-Ardestani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aisan Farhadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - A M J Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran. Electronic Address:
| |
Collapse
|
40
|
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes. IUBMB Life 2018; 70:1122-1132. [PMID: 30184318 DOI: 10.1002/iub.1920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Fibrocytes are bloodborne mesenchymal progenitor cells that are recruited to injured tissue sites and contribute to the repair process by acquiring a myofibroblast-like phenotype and producing extracellular matrix components and growth factors. Treatment with normal fibrocytes or their exosomes restores the ability of genetically diabetic mice to heal skin wounds, suggesting the existence of dysfunctional alterations in diabetic fibrocytes. This study compared the migratory, metabolic and functional characteristics of fibrocytes from patients with type 2 diabetes (T2DPs) and healthy controls (HCs). It was found that the frequency of these cells was abnormally low in the peripheral blood of T2DPs. Diabetic fibrocytes showed reduced expression of the C-X-C motif and C-C motif chemokine receptors (CXCR)4, (CCR)5, and CCR7, and demonstrated reduced migration in response to their ligands (CXCL)12, (CCL)5, and CCL21. They exhibited increased expression of the receptor for advanced glycation end product, suppression of the alternative AGE receptor 1, increased intracellular concentrations of AGEs, decreased expression of sirtuin-1 and elevated oxidative stress. In short-term cultures, fibrocytes from T2DPs released larger amounts of proinflammatory cytokines than those from HCs. Unlike normal fibrocytes, diabetic fibrocytes did not exhibit increased expression of type I collagen and α-smooth muscle actin on stimulation with transforming growth factor (TGF)-β1 and this abnormal response was associated with downregulation of TGF-β1 type II receptor on the cell surface. Study findings uncover multiple migratory and functional alterations of diabetic fibrocytes that may contribute to explain why T2DPs experience impaired wound healing and chronic ulcers. © 2018 IUBMB Life, 70(11):1122-1132, 2018.
Collapse
Affiliation(s)
- Audrey Walker
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Erwin Nissen
- Proteomics & Metabolomics Laboratory, DreiRosen Pharma GmbH, Berlin, Germany
| | - Adolf Geiger
- Technology Development, DreiRosen Pharma GmbH, Berlin, Germany
| |
Collapse
|
41
|
Wang B, Yu J, Wang T, Shen Y, Lin D, Xu X, Wang Y. Identification of megakaryocytes as a target of advanced glycation end products in diabetic complications in bone marrow. Acta Diabetol 2018; 55:419-427. [PMID: 29417230 DOI: 10.1007/s00592-018-1109-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
AIMS To define the possible effect of diabetic conditions on megakaryocytes, the long-know precursors of platelets and lately characterized modulator of hematopoietic stem quiescence-activation transition. METHODS Megakaryoblastic MEG-01 cell culture and TPO/SCF/IL-3-induced differentiation of human umbilical blood mononuclear cells toward megakaryocytes were used to test effects of glycated bovine serum albumin (BSA-AGEs). The ob/ob mice and streptozotocin-treated mice were used as models of hyperglycemia. MTT was used to measure cell proliferation, FACS for surface marker and cell cycle, and RT-qPCR for the expression of interested genes. Megakaryocytes at different stages in marrow smear were checked under microscope. RESULTS When added in MEG-01 cultures at 200 μg/ml, BSA-AGEs increased proliferation of cells and enhanced mRNA expression of RAGE, VEGFα and PF4 in the cells. None of cell cycle distribution, PMA-induced platelet-like particles production, expression of GATA1/NF-E2/PU-1/IL-6/OPG/PDGF in MEG-01 cells nor TPO/SCF/IL-3 induced umbilical cord blood cells differentiation into megakaryocyte was affected by BSA-AGEs. In the ob/ob diabetic mice, MKs percentages in marrow cells and platelets in peripheral blood were significantly increased compared with control mice. In streptozotocin-induced diabetic mice, however, MKs percentage in marrow cells was decreased though peripheral platelet counts were not altered. Gene expression assay showed that the change in MKs in these two diabetic conditions might be explained by the alteration of GATA1 and NF-E2 expression, respectively. CONCLUSIONS Diabetic condition in animals might exert its influence on hematopoiesis via megakaryocytes-the newly identified modulator of hematopoietic stem cells in bone marrow.
Collapse
Affiliation(s)
- Benfang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Jianjiang Yu
- Department of Clinical Laboratory, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin, 214400, China
| | - Ting Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Ying Shen
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Dandan Lin
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, 708 Renmin Road, Suzhou, 215007, China
| | - Xin Xu
- Department of Hematology, The Affiliated Jiangyin Hospital of Southeast University, Jiangyin, 214400, China
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, 708 Renmin Road, Suzhou, 215007, China.
| |
Collapse
|
42
|
Hagiwara S, Sourris K, Ziemann M, Tieqiao W, Mohan M, McClelland AD, Brennan E, Forbes J, Coughlan M, Harcourt B, Penfold S, Wang B, Higgins G, Pickering R, El-Osta A, Thomas MC, Cooper ME, Kantharidis P. RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor-β and Increasing Resistance to Apoptosis. Diabetes 2018; 67:960-973. [PMID: 29449307 DOI: 10.2337/db17-0538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022]
Abstract
Signaling via the receptor of advanced glycation end products (RAGE)-though complex and not fully elucidated in the setting of diabetes-is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic markers (collagen I and IV, fibronectin) and the inflammatory marker MCP-1 in primary mouse mesangial cells (MCs) and in kidney cortex. RNA sequencing analysis in MCs from RAGE-/- and wild-type mice confirmed these observations. Nevertheless, despite these gene expression changes, decreased responsiveness to transforming growth factor-β was identified in RAGE-/- mice. Furthermore, RAGE deletion conferred a more proliferative phenotype in MCs and reduced susceptibility to staurosporine-induced apoptosis. RAGE restoration experiments in RAGE-/- MCs largely reversed these gene expression changes, resulting in reduced expression of fibrotic and inflammatory markers. This study highlights that protection against DN in RAGE knockout mice is likely to be due in part to the decreased responsiveness to growth factor stimulation and an antiapoptotic phenotype in MCs. Furthermore, it extends our understanding of the role of RAGE in the progression of DN, as RAGE seems to play a key role in modulating the sensitivity of the kidney to injurious stimuli such as prosclerotic cytokines.
Collapse
Affiliation(s)
- Shinji Hagiwara
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Karly Sourris
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mark Ziemann
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Wu Tieqiao
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Aaron D McClelland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Eoin Brennan
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Josephine Forbes
- Mater Clinical School, University of Queensland, St. Lucia, Brisbane, Australia
| | - Melinda Coughlan
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Brooke Harcourt
- Centre for Hormone Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sally Penfold
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Bo Wang
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Kidney Regeneration and Stem Cell Laboratory, Monash University, Melbourne, Australia
| | - Gavin Higgins
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Raelene Pickering
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Assam El-Osta
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Merlin C Thomas
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Melbourne, Australia
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
43
|
Santos-Bezerra DP, Machado-Lima A, Monteiro MB, Admoni SN, Perez RV, Machado CG, Shimizu MH, Cavaleiro AM, Thieme K, Queiroz MS, Machado UF, Giannella-Neto D, Passarelli M, Corrêa-Giannella ML. Dietary advanced glycated end-products and medicines influence the expression of SIRT1 and DDOST in peripheral mononuclear cells from long-term type 1 diabetes patients. Diab Vasc Dis Res 2018; 15:81-89. [PMID: 29027826 DOI: 10.1177/1479164117733918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Quantitative polymerase chain reaction was employed to quantify expression of two genes coding for advanced glycation end-product receptors [RAGE ( AGER) and AGER1 ( DDOST)] and of the gene coding the deacetylase SIRT1 ( SIRT1) in peripheral blood mononuclear cells from type 1 diabetes patients without [Group A, n = 35; 28.5 (24-39) years old; median (interquartile interval)] or with at least one microvascular complication [Group B, n = 117; 34.5 (30-42) years old]; 31 healthy controls were also included. In a subgroup of 48 patients, daily advanced glycation end-products intake before blood collection was assessed. Lower expression of DDOST was found in patients than in controls after adjustment for sex, age, use of statins, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Higher expressions of AGER, DDOST and SIRT1 were observed in Group A. Stratifying by complications, AGER and DDOST expressions were higher in those without retinopathy and without diabetic kidney disease, respectively, compared to patients with these complications. Patients using statins or angiotensin receptor blockers presented higher expression of DDOST. Expression of SIRT1 was higher in patients consuming ≥12,872 KU daily of advanced glycation end-products. Although AGER, DDOST and SIRT1 are differently expressed in peripheral blood mononuclear cells from type 1 diabetes patients with and without microvascular complications, they are also influenced by dietary advanced glycation end-products and by statins and angiotensin receptor blockers.
Collapse
Affiliation(s)
- Daniele P Santos-Bezerra
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Adriana Machado-Lima
- 2 Laboratório de Lípides (LIM-10), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria Beatriz Monteiro
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Sharon N Admoni
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ricardo V Perez
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Cleide G Machado
- 3 Divisão de Oftalmologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Maria Heloíza Shimizu
- 4 Laboratório de Pesquisa Básica em Doenças Renais (LIM-12), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana M Cavaleiro
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Karina Thieme
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Márcia S Queiroz
- 5 Divisão de Endocrinologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Ubiratan F Machado
- 6 Laboratório de Metabolismo e Endocrinologia, Instituto de Ciências Biomédicas da Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Giannella-Neto
- 7 Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Marisa Passarelli
- 2 Laboratório de Lípides (LIM-10), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- 7 Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
- 8 Núcleo de Estudos e Terapia Celular e Molecular (NUCEL/NETCEM) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Haybrard J, Simon N, Danel C, Pinçon C, Barthélémy C, Tessier FJ, Décaudin B, Boulanger E, Odou P. Factors Generating Glucose Degradation Products In Sterile Glucose Solutions For Infusion: Statistical Relevance Determination Of Their Impacts. Sci Rep 2017; 7:11932. [PMID: 28931894 PMCID: PMC5607278 DOI: 10.1038/s41598-017-12296-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022] Open
Abstract
Sterilising glucose solutions by heat promotes the generation of a large number of glucose degradation products (GDPs). It has been shown that high levels of GDPs may result in Advanced Glycation End products that have an impact on cellular homeostasis and health in general. If data is available for peritoneal dialysis solutions, little has been published for glucose infusion fluids. It is essential to identify the parameters causing the formation of GDPs and so limit the risk of exposing patients to them. After quantifying both 5-hydroxymethyl-2-furfural, considered as an important indicator of degradation, and 2-furaldehyde, an ultimate GDP of one degradation pathway, in marketed solutions, the aim of this work is to build a model integrating all the parameters involved in the formation rates of these two GDPs: supplier, glucose amount, container material, oxygen permeability coefficient and time-lapse since manufacture. Our results show a good logarithmic relationship between GDP formation rates and time-lapse since manufacture for both GDPs. The amount of GDPs in the glucose solutions for infusion depends on the initial glucose amount, the polymer of the container, the time elapsed since manufacturing and the supplier.
Collapse
Affiliation(s)
- J Haybrard
- CHU Lille, Institut de Pharmacie, F-59000, Lille, France.,Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - N Simon
- CHU Lille, Institut de Pharmacie, F-59000, Lille, France. .,Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France.
| | - C Danel
- Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - C Pinçon
- Univ. Lille, EA 2694, 59000, Lille, Cedex, France
| | - C Barthélémy
- Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - F J Tessier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000, Lille, France
| | - B Décaudin
- CHU Lille, Institut de Pharmacie, F-59000, Lille, France.,Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - E Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000, Lille, France
| | - P Odou
- CHU Lille, Institut de Pharmacie, F-59000, Lille, France.,Univ. Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| |
Collapse
|
45
|
Gregório PC, Favretto G, Sassaki GL, Cunha RS, Becker-Finco A, Pecoits-Filho R, Souza WM, Barreto FC, Stinghen AEM. Sevelamer reduces endothelial inflammatory response to advanced glycation end products. Clin Kidney J 2017; 11:89-98. [PMID: 29423208 PMCID: PMC5798142 DOI: 10.1093/ckj/sfx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Background Advanced glycation end products (AGEs) have been related to the pathogenesis of cardiovascular diseases (CVD), chronic kidney disease (CKD) and diabetes mellitus. We sought to investigate the binding capacity of sevelamer to both AGEs and uremic serum in vitro and then test this pharmaceutical effect as a potential vascular anti-inflammatory strategy. Methods AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. Human endothelial cells were incubated in culture media containing AGEs and uremic serum with or without sevelamer. Receptor for advanced glycation end product (RAGE) expression was evaluated through immunocytochemistry and western blot to explore the interactions between AGEs and the endothelium. Inflammatory and endothelial dysfunction biomarkers, such as interleukin 6 (IL-6) and IL-8, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and serum amyloid A (SAA) were also measured in cell supernatant. The chemotactic property of the supernatant was evaluated. Results AGEs significantly induced the expression of RAGE, inflammatory and endothelial activation biomarkers [IL-6, (P < 0.005); IL-8, MCP-1, PAI-1 and SAA (P < 0.001)] and monocyte chemotaxis as compared with controls. In addition, AGEs increased the levels of inflammatory biomarkers, which were observed after 6 h of endothelial cell incubation with uremic serum [IL-6 (P < 0.001) IL-8, MCP-1 and PAI-1 (P < 0.05)]. On the other hand, after 6 h of endothelial cell treatment with sevelamer, RAGE expression (P < 0.05) and levels of inflammatory biomarkers [IL-6 and IL-8 (P < 0.001), MCP-1 (P < 0.01), PAI-1 and SAA (P < 0.005)] significantly decreased compared with the AGEs/uremic serum treatment alone. Conclusions Sevelamer decreased both endothelial expression of RAGE and endothelial dysfunction biomarkers, induced by AGEs, and uremic serum. Further studies are necessary for a better understanding of the potential protective role of sevelamer on uremic serum and AGEs-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Paulo C Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Giane Favretto
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Guilherme L Sassaki
- Biochemistry Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Regiane S Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Alessandra Becker-Finco
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Wesley M Souza
- Pharmacy Departament, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fellype C Barreto
- Department of Internal Medicine, Division of Nephrology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Andréa E M Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
46
|
Spasov AA, Solov’eva OA, Kuznetsova VA. Protein Glycation During Diabetes Mellitus and the Possibility of its Pharmacological Correction (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
|
48
|
Inhibitory Effect of Bunium Persicum Hydroalcoholic Extract on Glucose-Induced Albumin Glycation, Oxidation, and Aggregation In Vitro. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:369-376. [PMID: 28761203 PMCID: PMC5523044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Glucose-induced protein glycation has been implicated in the progression of diabetic complications and age-related diseases. The anti-glycation potential of polyphenol-rich plant extracts has been shown previously. Bunium Persicum has been demonstrated to possess a high level of polyphenols. The aim of current in vitro study was to determine the possible inhibitory effect of Bunium Persicum hydroalcoholic extract (BPE) on glucose-induced bovine serum albumin (BSA) glycation, oxidation, and aggregation. METHODS Folin-Ciocalteu assay was used to measure the content of total phenolic compounds of BPE. To test the in vitro effect of BPE on the formation of glycated BSA, thiol group oxidation, and protein aggregation of BSA, various concentrations of BPE were incubated with BSA and glucose at 37 °C for 72 hr. Glycation, thiol group oxidation, and aggregation of BSA were then measured using thiobarbituric acid, 2, 4-dinitrophenylhydrazine, and Congo red colorimetric methods, respectively. Data were analyzed using the SPSS software (version 16.0). One-way ANOVA followed by Tukey's post hoc test was used to compare group means. P<0.05 was accepted as the statistically significant difference between groups. RESULTS The results demonstrated that the content of total phenolics of BPE was 122.41 mg gallic acid equivalents per gram dried extract. BPE (10, 15, and 30 μg/ml) significantly inhibited the formation of GA in a concentration-dependent manner. BPE also significantly decreased the levels of thiol group oxidation and BSA aggregation. CONCLUSION The results showed that BPE has anti-glycation and antioxidant properties and might have therapeutic potentials in the prevention of glycation-mediated diabetic complications.
Collapse
|
49
|
Ren X, Li C, Liu J, Zhang C, Fu Y, Wang N, Ma H, Lu H, Kong H, Kong L. Thioredoxin plays a key role in retinal neuropathy prior to endothelial damage in diabetic mice. Oncotarget 2017; 8:61350-61364. [PMID: 28977868 PMCID: PMC5617428 DOI: 10.18632/oncotarget.18134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a chronic metabolic syndrome that results in changes in carbohydrate, lipid and protein metabolism. With diabetes for a long time, it increases the risk of diabetic retinopathy (DR) and long-term morbidity and mortality. Moreover, emerging evidence suggests that neuron damage occurs earlier than microvascular complications in DR patients, but the underlying mechanism is unclear. We investigated diabetes-induced retinal neuropathy and elucidated key molecular events to identify new therapeutic targets for the clinical treatment and prevention of DR. For in vivo studies, a high-fat diet and streptozotocin (STZ) injection were used to generate the diabetes model. Hematoxylin-eosin staining was used for morphological observations and measurements of the outer nuclear layer thickness. Electroretinography (ERG) was used to assess retinal function. For in vitro studies, Neuro2a cells were incubated in normal (5.5 mM) and high-glucose (30 mM) conditions. Flow cytometry assays were performed to analyze apoptosis. Additionally, real-time PCR and Western blotting analyses were carried out to determine gene and protein expression in vitro and in vivo. Taken together, the results indicated that retinal neuropathy occurred prior to endothelial damage induced by diabetes, and thioredoxin (Trx) plays a key role in this process. This underlying mechanism may be related to activation of the Trx/ASK1/p-p38/Trx-interacting protein pathway.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chen Li
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Junli Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chenghong Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuzhen Fu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Nina Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Haiying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Heyuan Lu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
50
|
Zhang B, Shen Q, Chen Y, Pan R, Kuang S, Liu G, Sun G, Sun X. Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy. Sci Rep 2017; 7:44239. [PMID: 28287141 PMCID: PMC5347164 DOI: 10.1038/srep44239] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) has been increasingly considered as a main cause of heart failure and death in diabetic patients. At present, no effective treatment exists to prevent its development. In the present study, we describe the potential protective effects and mechanisms of myricitrin (Myr) on the cardiac function of streptozotosin-induced diabetic mice and on advanced glycation end products (AGEs)-induced H9c2 cardiomyocytes. In vitro experiments revealed that pretreatment with Myr significantly decreased AGEs-induced inflammatory cytokine expression, limited an increase in ROS levels, and reduced cell apoptosis, fibrosis, and hypertrophy in H9c2 cells. These effects are correlated with Nrf2 activation and NF-κB inhibition. In vivo investigation demonstrated that oral administration of Myr at 300 mg/kg/day for 8 weeks remarkably decreased the expression of enzymes associated with cardiomyopathy, as well as the expression of inflammatory cytokines and apoptotic proteins. Finally, Myr improved diastolic dysfunction and attenuated histological abnormalities. Mechanistically, Myr attenuated diabetes-induced Nrf2 inhibition via the regulation of Akt and ERK phosphorylation in the diabetic heart. Collectively, these results strongly indicate that Myr exerts cardioprotective effects against DCM through the blockage of inflammation, oxidative stress, and apoptosis. This suggests that Myr might be a potential therapeutic agent for the treatment of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Qiang Shen
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China
| | - Yaping Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Guiyan Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|