1
|
Krajnak K, Waugh S, Warren C, Chapman P, Xu X, Welcome D, Hammer M, Richardson D, Dong R. Force-induced tissue compression alters circulating hormone levels and biomarkers of peripheral vascular and sensorineural dysfunction in an animal model of hand-arm vibration syndrome. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:175-195. [PMID: 39565925 PMCID: PMC11696796 DOI: 10.1080/15287394.2024.2428599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Workers regularly using vibrating hand tools may develop a disorder referred to as hand-arm vibration syndrome (HAVS). HAVS is characterized by cold-induced vasospasms in the hands and fingers that result in blanching of the skin, loss of sensory function, pain, and reductions in manual dexterity. Exposure to vibration induces some of these symptoms. However, the soft tissues of the hands and fingers of workers are compressed as a result of the force generated when a worker grips a tool. The compression of these soft tissues might also contribute to the development of HAVS. The goal of this study was to use an established rat tail model to determine the mechanisms by which compression of the tail tissues affects (1) the ventral tail artery (VTA) and ventral tail nerves (VTN), (2) nerves and sensory receptors in the skin, (3) dorsal root ganglia (DRG), and (4) spinal cord. Tissue compression resulted in the following changes (1) circulating pituitary and steroid hormone concentrations, (2) expression of factors that modulate vascular function in the skin and tail artery, and (3) factors associated with nerve damage, DRG, and spinal cord. Some of these observed effects differed from those previously noted with vibration exposure. Based upon these findings, the effects of applied force and vibration are different. Studies examining the combination of these factors might provide data that may potentially be used to improve risk assessment and support revision of standards.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christopher Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Phillip Chapman
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Xueyan Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Daniel Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Maryann Hammer
- Pathology and Physiology Research Branch and Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Pathology and Physiology Research Branch and Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Renguang Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yunquan He
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yueyang Yu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Sichong Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Ruiwen Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Jieyu Guo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Qingjun Jiang
- Department of Vascular & Endovascular SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Xiuling Zhi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Xinhong Wang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Dan Meng
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
4
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Wang Y, Qiu J, Yan H, Zhang N, Gao S, Xu N, Wang C, Lou H. The Bach1/HO-1 pathway regulates oxidative stress and contributes to ferroptosis in doxorubicin-induced cardiomyopathy in H9c2 cells and mice. Arch Toxicol 2024; 98:1781-1794. [PMID: 38573338 DOI: 10.1007/s00204-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 μM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanwei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Hua Yan
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Nan Zhang
- Research Center of Translational Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shixuan Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ning Xu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Hu D, Zhang Z, Luo X, Li S, Jiang J, Zhang J, Wu Z, Wang Y, Sun M, Chen X, Zhang B, Xu X, Wang S, Xu S, Wang Y, Huang W, Xia L. Transcription factor BACH1 in cancer: roles, mechanisms, and prospects for targeted therapy. Biomark Res 2024; 12:21. [PMID: 38321558 PMCID: PMC10848553 DOI: 10.1186/s40364-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
7
|
Mohamad Yusoff F, Nakashima A, Kajikawa M, Kishimoto S, Maruhashi T, Higashi Y. Therapeutic Myogenesis Induced by Ultrasound Exposure in a Volumetric Skeletal Muscle Loss Injury Model. Am J Sports Med 2023; 51:3554-3566. [PMID: 37743748 DOI: 10.1177/03635465231195850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) irradiation has been shown to induce various responses in different cells. It has been shown that LIPUS activates extracellular signal-regulated kinase 1/2 (ERK1/2) through integrin. PURPOSE To study the effects of LIPUS on myogenic regulatory factors and other related myogenesis elements in a volumetric skeletal muscle loss injury model. STUDY DESIGN Controlled laboratory study. METHODS C57BL/6J mice were subjected to full-thickness muscle defect injury of the quadriceps and treated with direct application of LIPUS 20 min/d or non-LIPUS treatment (control) for 3, 7, and 14 days. LIPUS was also applied to C2C12 cells in culture in the presence of low and high doses of lipopolysaccharides. The expression levels of myogenic regulatory factors and the expression levels of myokine-related and angiogenic-related proteins of the control and LIPUS groups were analyzed. RESULTS Muscle volume in the injury site was restored at day 14 with LIPUS treatment. Paired-box protein 7, myogenic factor 5, myogenin, and desmin expressions were significantly different between control and LIPUS groups at days 7 and 14. Myokine and angiogenic cytokine-related factors were significantly increased in the LIPUS group at day 3 and decreased with no significant difference between the groups by day 14. LIPUS induced different responses of myogenic regulatory factors in C2C12 cells with low and high doses of lipopolysaccharides. LIPUS promoted myogenesis through short-lived increase in interleukin-6 and heme oxygenase 1, together with activation of ERK1/2. CONCLUSION LIPUS had a constant effect on the variables of tissue damage, from macrotrauma to microtrauma, leading to efficient muscle regeneration. CLINICAL RELEVANCE The focus of therapeutic strategies with LIPUS has been not only for microvascular regeneration but also for skeletal muscle and related local tissue recovery from acute or chronic damage.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
8
|
Wang T, Dong Y, Huang Z, Zhang G, Zhao Y, Yao H, Hu J, Tüksammel E, Cai H, Liang N, Xu X, Yang X, Schmidt S, Qiao X, Schlisio S, Strömblad S, Qian H, Jiang C, Treuter E, Bergo MO. Antioxidants stimulate BACH1-dependent tumor angiogenesis. J Clin Invest 2023; 133:e169671. [PMID: 37651203 PMCID: PMC10575724 DOI: 10.1172/jci169671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1-overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1's ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Guoqing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Zhao
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Translational Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elin Tüksammel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan Cai
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska University Hospital, Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- BGI-Shenzhen, Shenzhen, China
| | - Xiufeng Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xijie Yang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sarah Schmidt
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xi Qiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Susanne Schlisio
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska University Hospital, Huddinge, Sweden
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
9
|
Wang RX, Gu X, Zhang SX, Zhao YJ, Zhang HJ, Li FY. Deletion of BACH1 alleviates ferroptosis and protects against LPS-triggered acute lung injury by activating Nrf2/HO-1 signaling pathway. Biochem Biophys Res Commun 2023; 644:8-14. [PMID: 36621150 DOI: 10.1016/j.bbrc.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidences have unraveled the emerging role of ferroptosis in the pathophysiological process of acute lung injury (ALI). In this study, we aimed to decipher the role of BACH1 in the onset and progression of ALI with a focus on ferroptosis and elucidated potential molecular mechanism. We observed that BACH1 expression was drastically elevated in BEAS-2B cells upon exposure to LPS. In the functional aspect, BACH1 deletion exerted an anti-inflammatory property, featured by decreased the secretion of several cytokines including TNF-α, IL-1β and IL-6 in the face of LPS challenge. What's more important, BACH1 knockout evidently repressed LPS-triggered oxidative stress damage, as evidenced by reduced reactive oxygen species (ROS) production and malondialdehyde (MDA) generation, accompanied with the elevated the activities of superoxide dismutase (SOD), GSH-Px and CAT. Meanwhile, ablation of BACH1 restrained LPS-elicited ferroptosis, as characterized by decreased iron content and PTGS2 expression, accompanied with increased expression of SLC7A11 and GPX4. In terms of mechanism, Nrf2/HO-1 signaling inhibitor effectively abrogated the beneficial effects of BACH1 inhibition on LPS-stimulated inflammation, oxidative damage and ferroptosis. Taken together, these preceding outcomes strongly illuminated that BACH1 was a novel regulator of LPS-evoked injury through regulation of inflammation response, oxidative stress and ferroptosis via activation Nrf2/HO-1 signaling, indicating that BACH1 may represent as a promising novel therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Rui-Xuan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Si-Xue Zhang
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi, PR China
| | - Yan-Jun Zhao
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Hong-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, The Affiliated Chest Hospital of Xi'an Jiaotong University Medical School, Xi'an, 710100, Shaanxi, PR China
| | - Fei-Yan Li
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi, PR China.
| |
Collapse
|
10
|
Cai L, Arbab AS, Lee TJ, Sharma A, Thomas B, Igarashi K, Raju RP. BACH1-Hemoxygenase-1 axis regulates cellular energetics and survival following sepsis. Free Radic Biol Med 2022; 188:134-145. [PMID: 35691510 PMCID: PMC10507736 DOI: 10.1016/j.freeradbiomed.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/24/2022]
Abstract
Sepsis is a complex disease due to dysregulated host response to infection. Oxidative stress and mitochondrial dysfunction leading to metabolic dysregulation are among the hallmarks of sepsis. The transcription factor NRF2 (Nuclear Factor E2-related factor2) is a master regulator of the oxidative stress response, and the NRF2 mediated antioxidant response is negatively regulated by BTB and CNC homology 1 (BACH1) protein. This study tested whether Bach1 deletion improves organ function and survival following polymicrobial sepsis induced by cecal ligation and puncture (CLP). We observed enhanced post-CLP survival in Bach1-/- mice with a concomitantly increased liver HO-1 expression, reduced liver injury and oxidative stress, and attenuated systemic and tissue inflammation. After sepsis induction, the liver mitochondrial function was better preserved in Bach1-/- mice. Furthermore, BACH1 deficiency improved liver and lung blood flow in septic mice, as measured by SPECT/CT. RNA-seq analysis identified 44 genes significantly altered in Bach1-/- mice after sepsis, including HMOX1 and several genes in lipid metabolism. Inhibiting HO-1 activity by Zinc Protoporphyrin-9 worsened organ function in Bach1-/- mice following sepsis. We demonstrate that mitochondrial bioenergetics, organ function, and survival following experimental sepsis were improved in Bach1-/- mice through the HO-1-dependent mechanism and conclude that BACH1 is a therapeutic target in sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bobby Thomas
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neuroscience and Drug Discovery, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int 2022; 2022:6795274. [PMID: 35355589 PMCID: PMC8958070 DOI: 10.1155/2022/6795274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia preconditioning enhances the paracrine abilities of mesenchymal stem cells (MSCs) for vascular regeneration and tissue healing. Implantation of hypoxia-induced mesenchymal stem cells (hi-MSCs) may further improve limb perfusion in a murine model of hindlimb ischemia. This study is aimed at determining whether implantation of hi-MSCs is an effective modality for improving outcomes of treatment of ischemic artery diseases. We evaluated the effects of human bone marrow-derived MSC implantation on limb blood flow in an ischemic hindlimb model. hi-MSCs were prepared by cell culture under 1% oxygen for 24 hours prior to implantation. A total of 1 × 105 MSCs and hi-MSCs and phosphate-buffered saline (PBS) were intramuscularly implanted into ischemic muscles at 36 hours after surgery. Restoration of blood flow and muscle perfusion was evaluated by laser Doppler perfusion imaging. Blood perfusion recovery, enhanced vessel densities, and improvement of function of the ischemia limb were significantly greater in the hi-MSC group than in the MSC or PBS group. Immunochemistry revealed that hi-MSCs had higher expression levels of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor A than those in MSCs. In addition, an endothelial cell-inducing medium showed high expression levels of vascular endothelial growth factor, platelet endothelial cell adhesion molecule-1, and von Willebrand factor in hi-MSCs compared to those in MSCs. These findings suggest that pretreatment of MSCs with a hypoxia condition and implantation of hi-MSCs advances neovascularization capability with enhanced therapeutic angiogenic effects in a murine hindlimb ischemia model.
Collapse
|
12
|
Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130129. [DOI: 10.1016/j.bbagen.2022.130129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
13
|
Igarashi K, Nishizawa H, Matsumoto M. Iron in Cancer Progression: Does BACH1 Promote Metastasis by Altering Iron Homeostasis? Subcell Biochem 2022; 100:67-80. [PMID: 36301491 DOI: 10.1007/978-3-031-07634-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor BACH1, which is regulated by direct binding of prosthetic group heme, promotes epithelial-mesenchymal transition (EMT) and drives metastasis of diverse types of cancer cells. De-regulated target genes of BACH1 in cancer cells include those for glycolysis, oxidative phosphorylation, epithelial cell adhesion, and mesodermal cell motility. In addition, the canonical target genes of BACH1 include genes for the regulation of iron homeostasis. Importantly, cancer cells are addicted to iron. We summarize known functions of BACH1 in cancer and discuss how BACH1 may affect iron homeostasis in cancer cells to support their progression by increasing mobile iron within cells. The dependency on BACH1 for cancer progression may also confer upon cancer cells susceptibility to iron-dependent cell death ferroptosis. Finally, we discuss that the human transcription factors provide research opportunities for better understanding of cancer cell properties.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Gross C, Le-Bel G, Desjardins P, Benhassine M, Germain L, Guérin SL. Contribution of the Transcription Factors Sp1/Sp3 and AP-1 to Clusterin Gene Expression during Corneal Wound Healing of Tissue-Engineered Human Corneas. Int J Mol Sci 2021; 22:12426. [PMID: 34830308 PMCID: PMC8621254 DOI: 10.3390/ijms222212426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manel Benhassine
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
15
|
BACH1, the master regulator of oxidative stress, has a dual effect on CFTR expression. Biochem J 2021; 478:3741-3756. [PMID: 34605540 PMCID: PMC8589331 DOI: 10.1042/bcj20210252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene lies within a topologically associated domain (TAD) in which multiple cis-regulatory elements (CREs) and transcription factors (TFs) regulate its cell-specific expression. The CREs are recruited to the gene promoter by a looping mechanism that depends upon both architectural proteins and specific TFs. An siRNA screen to identify TFs coordinating CFTR expression in airway epithelial cells suggested an activating role for BTB domain and CNC homolog 1 (BACH1). BACH1 is a ubiquitous master regulator of the cellular response to oxidative stress. Here, we show that BACH1 may have a dual effect on CFTR expression by direct occupancy of CREs at physiological oxygen (∼8%), while indirectly modulating expression under conditions of oxidative stress. Hence BACH1, can activate or repress the same gene, to fine tune expression in response to environmental cues such as cell stress. Furthermore, our 4C-seq data suggest that BACH1 can also directly regulate CFTR gene expression by modulating locus architecture through occupancy at known enhancers and structural elements, and depletion of BACH1 alters the higher order chromatin structure.
Collapse
|
16
|
Sun M, Guo M, Ma G, Zhang N, Pan F, Fan X, Wang R. MicroRNA-30c-5p protects against myocardial ischemia/reperfusion injury via regulation of Bach1/Nrf2. Toxicol Appl Pharmacol 2021; 426:115637. [PMID: 34217758 DOI: 10.1016/j.taap.2021.115637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are critical regulatory factors in myocardial ischemia/reperfusion (I/R) injury. The miRNA miR-30c-5p has been reported as a key mediator in several myocardial abnormalities. However, the precise roles and mechanisms of miR-30c-5p in myocardial I/R injury remain not well-studied. This project aimed to explore the potential function of this miRNA in mediating myocardial I/R injury. Significant induction of miR-30c-5p was observed in myocardial tissue of rats with myocardial I/R injury in vivo and cardiomyocytes with hypoxia/re‑oxygenation (H/R) injury in vitro. Functional studies elucidated that forced expression of miR-30c-5p in rats effectively reduced infarct area, cardiac apoptosis, oxidative stress and inflammation induced by myocardial I/R injury. Moreover, in vitro cardiomyocytes with forced expression of miR-30c-5p were also protected from H/R-induced apoptosis, oxidative stress and inflammation. Importantly, BTB domain and CNC homology 1 (Bach1) was identified as a new target of miR-30c-5p. miR-30c-5p was shown to promote the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via the inhibition of Bach1. The re-expression of Bach1 reversed miR-30c-5p-mediated-cardioprotective effects against myocardial I/R injury in vivo or H/R injury in vitro. Overall, our results demonstrate that forced expression of miR-30c-5p exhibited beneficial effects against myocardial I/R injury through enhancement of Nrf2 activation via inhibition of Bach1. This work reveals a novel molecular mechanism for myocardial I/R injury at the miRNA level and suggests a therapeutic value of miR-30c-5p in treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Min Guo
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Guijin Ma
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Nan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Feifei Pan
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Xiaoling Fan
- Department of Geriatrics, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China
| | - Rui Wang
- Department of Cardiology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, China.
| |
Collapse
|
17
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
18
|
Igarashi K, Nishizawa H, Saiki Y, Matsumoto M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. J Biol Chem 2021; 297:101032. [PMID: 34339740 PMCID: PMC8387770 DOI: 10.1016/j.jbc.2021.101032] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell–cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a “two-faced BACH1 model”, which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|