1
|
Zhao G, Zhao Y, Liang W, Lu H, Liu H, Deng Y, Zhu T, Guo Y, Chang L, Garcia-Barrio MT, Chen YE, Zhang J. Endothelial KLF11 is a novel protector against diabetic atherosclerosis. Cardiovasc Diabetol 2024; 23:381. [PMID: 39462409 PMCID: PMC11514907 DOI: 10.1186/s12933-024-02473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases remain the leading cause of mortality in diabetic patients, with endothelial cell (EC) dysfunction serving as the initiating step of atherosclerosis, which is exacerbated in diabetes. Krüppel-like factor 11 (KLF11), known for its missense mutations leading to the development of diabetes in humans, has also been identified as a novel protector of vascular homeostasis. However, its role in diabetic atherosclerosis remains unexplored. METHODS Diabetic atherosclerosis was induced in both EC-specific KLF11 transgenic and knockout mice in the Ldlr-/- background by feeding a diabetogenic diet with cholesterol (DDC). Single-cell RNA sequencing (scRNA-seq) was utilized to profile EC dysfunction in diabetic atherosclerosis. Additionally, gain- and loss-of-function experiments were conducted to investigate the role of KLF11 in hyperglycemia-induced endothelial cell dysfunction. RESULTS We found that endothelial KLF11 deficiency significantly accelerates atherogenesis under diabetic conditions, whereas KLF11 overexpression remarkably inhibits it. scRNA-seq profiling demonstrates that loss of KLF11 increases endothelial-to-mesenchymal transition (EndMT) during atherogenesis under diabetic conditions. Utilizing gain- and loss-of-function approaches, our in vitro study reveals that KLF11 significantly inhibits EC inflammatory activation and TXNIP-induced EC oxidative stress, as well as Notch1/Snail-mediated EndMT under high glucose exposure. CONCLUSION Our study demonstrates that endothelial KLF11 is an endogenous protective factor against diabetic atherosclerosis. These findings indicate that manipulating KLF11 could be a promising approach for developing novel therapies for diabetes-related cardiovascular complications.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Haocheng Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yongjie Deng
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Jolibois J, Domingues A, El Hamaoui D, Awaida R, Berger-de-Gaillardo M, Guérin D, Smadja DM, Marquet-DeRougé P, Margaill I, Rossi E, Nivet-Antoine V. Targeting TXNIP in endothelial progenitors mitigates IL-8-induced neutrophil recruitment under metabolic stress. Stem Cell Res Ther 2024; 15:225. [PMID: 39075518 PMCID: PMC11287885 DOI: 10.1186/s13287-024-03850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND This study explores the potential role of Thioredoxin-interacting protein (TXNIP) silencing in endothelial colony-forming cells (ECFCs) within the scope of age-related comorbidities and impaired vascular repair. We aim to elucidate the effects of TXNIP silencing on vasculogenic properties, paracrine secretion, and neutrophil recruitment under conditions of metabolic stress. METHODS ECFCs, isolated from human blood cord, were transfected with TXNIP siRNA and exposed to a high glucose and β-hydroxybutyrate (BHB) medium to simulate metabolic stress. We evaluated the effects of TXNIP silencing on ECFCs' functional and secretory responses under these conditions. Assessments included analyses of gene and protein expression profiles, vasculogenic properties, cytokine secretion and neutrophil recruitment both in vitro and in vivo. The in vivo effects were examined using a murine model of hindlimb ischemia to observe the physiological relevance of TXNIP modulation under metabolic disorders. RESULTS TXNIP silencing did not mitigate the adverse effects on cell recruitment, vasculogenic properties, or senescence induced by metabolic stress in ECFCs. However, it significantly reduced IL-8 secretion and consequent neutrophil recruitment under these conditions. In a mouse model of hindlimb ischemia, endothelial deletion of TXNIP reduced MIP-2 secretion and prevented increased neutrophil recruitment induced by age-related comorbidities. CONCLUSIONS Our findings suggest that targeting TXNIP in ECFCs may alleviate ischemic complications exacerbated by metabolic stress, offering potential clinical benefits for patients suffering from age-related comorbidities.
Collapse
Affiliation(s)
- Julia Jolibois
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - Alison Domingues
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France.
| | - Divina El Hamaoui
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - Raphaël Awaida
- Laboratoire de Biochimie générale, AP-HP, Hôpital Necker Enfants Malades, Paris, F-75015, France
| | | | - Daniel Guérin
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - David M Smadja
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Européen Georges Pompidou, Paris, F-75015, France
| | - Perrine Marquet-DeRougé
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - Isabelle Margaill
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - Elisa Rossi
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
| | - Valérie Nivet-Antoine
- Université Paris Cité, INSERM, Innovations thérapeutiques en hémostase, Paris, F-75006, France
- Laboratoire de Biochimie générale, AP-HP, Hôpital Necker Enfants Malades, Paris, F-75015, France
| |
Collapse
|
3
|
Dou B, Zhu Y, Sun M, Wang L, Tang Y, Tian S, Wang F. Mechanisms of Flavonoids and Their Derivatives in Endothelial Dysfunction Induced by Oxidative Stress in Diabetes. Molecules 2024; 29:3265. [PMID: 39064844 PMCID: PMC11279171 DOI: 10.3390/molecules29143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
4
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of recovery from neonatal hyperoxic lung injury by sex as a biological variable. Redox Biol 2023; 68:102933. [PMID: 38661305 PMCID: PMC10628633 DOI: 10.1016/j.redox.2023.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 04/26/2024] Open
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1; pre-exposure), PND 7, and PND 21neonatal male and female C57BL/6 mice exposed to 95 % FiO2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Montserrat Anguera
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of Recovery from Neonatal Hyperoxic Lung Injury by Sex as a Biological Variable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552532. [PMID: 37609288 PMCID: PMC10441379 DOI: 10.1101/2023.08.09.552532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1) and postnatal day 21 (PND 21) neonatal male and female C57BL/6 mice exposed to 95% FiO 2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
|
6
|
Cohen-Hagai K, Kashua H, Benchetrit S, Zitman-Gal T. Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants (Basel) 2023; 12:antiox12051109. [PMID: 37237975 DOI: 10.3390/antiox12051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction, vascular inflammation and accelerated atherosclerosis have been investigated extensively in patients with chronic kidney disease (CKD). These conditions, as well as protein-energy malnutrition and oxidative stress, impair kidney function and contribute to increased morbidity and mortality among patients with end-stage kidney disease undergoing hemodialysis (HD). TXNIP, a key regulator of oxidative stress, has been linked to inflammation and suppresses eNOS activity. STAT3 activation adds to endothelial cell dysfunction, macrophage polarization, immunity and inflammation. Therefore, it is critically involved in atherosclerosis. This study evaluated the effect of sera from HD patients on the TXNIP-eNOS-STAT3 pathway using an in vitro model of human umbilical vein endothelial cells (HUVECs). METHODS Thirty HD patients with end-stage kidney disease and ten healthy volunteers were recruited. Serum samples were taken at dialysis initiation. HUVECs were treated with HD or healthy serum (10% v/v) for 24 h. Then, cells were collected for mRNA and protein analysis. RESULTS TXNIP mRNA and protein expression were significantly increased in HUVECs treated with HD serum compared to healthy controls (fold changes: 2.41 ± 1.84 vs. 1.41 ± 0.5 and 2.04 ± 1.16 vs. 0.92 ± 0.29, respectively), as were IL-8 mRNA (fold changes: 2.22 ± 1.09 vs. 0.98 ± 0.64) and STAT3 protein expression (fold changes: 1.31 ± 0.75 vs. 0.57 ± 0.43). The expression of eNOS mRNA and protein (fold changes: 0.64 ± 0.11 vs. 0.95 ± 0.24; 0.56 ± 0.28 vs. 4.35 ± 1.77, respectively) and that of SOCS3 and SIRT1 proteins were decreased. Patients' nutritional status, reflected by their malnutrition-inflammation scores, did not affect these inflammatory markers. CONCLUSIONS This study showed that sera from HD patients stimulated a novel inflammatory pathway, regardless of their nutritional status.
Collapse
Affiliation(s)
- Keren Cohen-Hagai
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadil Kashua
- Department of Pediatric, Meir Medical Center, Kfar Saba 44281, Israel
| | - Sydney Benchetrit
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Zitman-Gal
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|