1
|
Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023; 14:1105299. [PMID: 36876098 PMCID: PMC9978114 DOI: 10.3389/fmicb.2023.1105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Festuca rubra subsp. pruinosa is a perennial grass growing in sea cliffs where plants are highly exposed to salinity and marine winds, and often grow in rock fissures where soil is absent. Diaporthe species are one of the most abundant components of the root microbiome of this grass and several Diaporthe isolates have been found to produce beneficial effects in their host and other plant species of agronomic importance. In this study, 22 strains of Diaporthe isolated as endophytes from roots of Festuca rubra subsp. pruinosa were characterized by molecular, morphological, and biochemical analyses. Sequences of the nuclear ribosomal internal transcribed spacers (ITS), translation elongation factor 1-α (TEF1), beta-tubulin (TUB), histone-3 (HIS), and calmodulin (CAL) genes were analyzed to identify the isolates. A multi-locus phylogenetic analysis of the combined five gene regions led to the identification of two new species named Diaporthe atlantica and Diaporthe iberica. Diaporthe atlantica is the most abundant Diaporthe species in its host plant, and Diaporthe iberica was also isolated from Celtica gigantea, another grass species growing in semiarid inland habitats. An in vitro biochemical characterization showed that all cultures of D. atlantica produced indole-3-acetic acid and ammonium, and the strains of D. iberica produced indole 3-acetic acid, ammonium, siderophores, and cellulase. Diaporthe atlantica is closely related to D. sclerotioides, a pathogen of cucurbits, and caused a growth reduction when inoculated in cucumber, melon, and watermelon.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
2
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
3
|
Siddique AB, Biella P, Unterseher M, Albrectsen BR. Mycobiomes of Young Beech Trees Are Distinguished by Organ Rather Than by Habitat, and Community Analyses Suggest Competitive Interactions Among Twig Fungi. Front Microbiol 2021; 12:646302. [PMID: 33936005 PMCID: PMC8086555 DOI: 10.3389/fmicb.2021.646302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Beech trees (Fagus sylvatica) are prominent keystone species of great economic and environmental value for central Europe, hosting a diverse mycobiome. The composition of endophyte communities may depend on tree health, plant organ or tissue, and growth habitat. To evaluate mycobiome communalities at local scales, buds, and twigs were sampled from two young healthy mountain beech stands in Bavaria, Germany, four kilometers apart. With Illumina high-throughput sequencing, we found 113 fungal taxa from 0.7 million high-quality reads that mainly consisted of Ascomycota (52%) and Basidiomycota (26%) taxa. Significant correlations between richness and diversity indices were observed (p < 0.05), and mycobiomes did not differ between habitats in the current study. Species richness and diversity were higher in twigs compared to spring buds, and the assemblages in twigs shared most similarities. Interaction network analyses revealed that twig-bound fungi shared similar numbers of (interaction) links with others, dominated by negative co-occurrences, suggesting that competitive exclusion may be the predominant ecological interaction in the highly connected twig mycobiome. Combining community and network analyses strengthened the evidence that plant organs may filter endophytic communities directly through colonization access and indirectly by facilitating competitive interactions between the fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
4
|
Nelson A, Vandegrift R, Carroll GC, Roy BA. Double lives: transfer of fungal endophytes from leaves to woody substrates. PeerJ 2020; 8:e9341. [PMID: 32923176 PMCID: PMC7457945 DOI: 10.7717/peerj.9341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Fungal endophytes are a ubiquitous feature of plants, yet for many fungi the benefits of endophytism are still unknown. The Foraging Ascomycete (FA) hypothesis proposes that saprotrophic fungi can utilize leaves both as dispersal vehicles and as resource havens during times of scarcity. The presence of saprotrophs in leaf endophyte communities has been previously observed but their ability to transfer to non-foliar saprobic substrates has not been well investigated. To assess this ability, we conducted a culture study by placing surface-sterilized leaves from a single tropical angiosperm tree (Nectandra lineatifolia) directly onto sterile wood fragments and incubating them for 6 weeks. Fungi from the wood were subsequently isolated in culture and identified to the genus level by ITS sequences or morphology. Four-hundred and seventy-seven fungal isolates comprising 24 taxa were cultured from the wood. Of these, 70.8% of taxa (82.3% of isolates) belong to saprotrophic genera according to the FUNGuild database. Furthermore, 27% of OTUs (6% of isolates) were basidiomycetes, an unusually high proportion compared to typical endophyte communities. Xylaria flabelliformis, although absent in our original isolations, formed anamorphic fruiting structures on the woody substrates. We introduce the term viaphyte (literally, "by way of plant") to refer to fungi that undergo an interim stage as leaf endophytes and, after leaf senescence, colonize other woody substrates via hyphal growth. Our results support the FA hypothesis and suggest that viaphytism may play a significant role in fungal dispersal.
Collapse
Affiliation(s)
- Aaron Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Roo Vandegrift
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - George C. Carroll
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Bitty A. Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
5
|
Wolfe ER, Ballhorn DJ. Do Foliar Endophytes Matter in Litter Decomposition? Microorganisms 2020; 8:microorganisms8030446. [PMID: 32245270 PMCID: PMC7143956 DOI: 10.3390/microorganisms8030446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. From 29 studies and 1 review, we compiled a comprehensive table of 710 leaf-associated fungal taxa, including the type of tissue these taxa were associated with and isolated from, whether they were reported as endo- or epiphytic, and whether they had reported saprophytic abilities. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (p < 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (p < 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.
Collapse
|
6
|
|
7
|
Itagaki H, Nakamura Y, Hosoya T. Two new records of ascomycetes from Japan, Pyrenopeziza protrusa and P. nervicola (Helotiales, Dermateaceae sensu lato). MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Ahumada-Rudolph R, Novoa V, Becerra J. Morphological response to salinity, temperature, and pH changes by marine fungus Epicoccum nigrum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 191:35. [PMID: 30593600 DOI: 10.1007/s10661-018-7166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Epicoccum nigrum (strain LQRA39-P) was isolated from sediments collected in Chilean Patagonian fjords using microscopy and molecular techniques. We analyzed adaptive responses of cell wall morphology to salinity, temperature, and pH in order to explain the ability of E. nigrum to co-inhabit both marine and freshwater environments. For this purpose, E. nigrum was cultured in a series of media with variations in salinity (freshwater and seawater), pH (acidic, neutral, and basic), and temperature (5 to 25 °C). Changes were observed through transmission electron microscopy. A direct correlation between increased salinity and cell wall thickening (> 0.2 μm) was observed, along with a significant relationship between pH and the presence of extracellular polymeric substances (EPS) on the outside of the cell wall. The observed morphological changes could confirm that an ubiquitous fungus such as E. nigrum requires adaptive responses to co-inhabit freshwater, marine, and terrestrial substrates.
Collapse
Affiliation(s)
- Ramón Ahumada-Rudolph
- Laboratorio de Bioprocesos y Biotratamientos, Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Collao 1202, PO Box 5-C, Concepción, Chile
| | - Vanessa Novoa
- Department of Geography, School of Architecture, Urbanism and Geography, Universidad de Concepción, Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | - José Becerra
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| |
Collapse
|
9
|
Hosoya T, Hosaka K, Nam KO. A check list of non-lichenised fungi occurring on Fagus crenata, a tree endemic to Japan. Mycology 2018; 9:29-34. [PMID: 30123658 PMCID: PMC6059079 DOI: 10.1080/21501203.2017.1363092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/29/2017] [Indexed: 11/03/2022] Open
Abstract
Non-lichenised fungi from Fagus crenata, an endemic and major temperate tree species, were enumerated based on three approaches: fungarium specimens at the National Museum of Nature and Science; isolates obtained mainly from leaves and roots, and their molecular identification by barcoding region; and literature. In total, 209, 49, and 232 taxa were recognised from the fungarium specimens, isolates, and literature, respectively. Only three taxa were commonly observed using all three approaches. Moreover, the results demonstrate the diversity of fungi occurring on a single host plant species, and provide the basis for comparisons between fungi from Fagus spp. in other regions of the world.
Collapse
Affiliation(s)
- Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| | - Kyong-Ok Nam
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
10
|
|
11
|
Hirose D, Hobara S, Tanabe Y, Uchida M, Kudoh S, Osono T. Abundance, richness, and succession of microfungi in relation to chemical changes in Antarctic moss profiles. Polar Biol 2017. [DOI: 10.1007/s00300-017-2157-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T. Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Tanney JB, McMullin DR, Green BD, Miller JD, Seifert KA. Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol 2016; 120:1448-1457. [DOI: 10.1016/j.funbio.2016.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
|