1
|
Mpakosi A, Cholevas V, Meletiadis J, Theodoraki M, Sokou R. Neonatal Fungemia by Non-Candida Rare Opportunistic Yeasts: A Systematic Review of Literature. Int J Mol Sci 2024; 25:9266. [PMID: 39273215 PMCID: PMC11395034 DOI: 10.3390/ijms25179266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Fungal colonization poses a significant risk for neonates, leading to invasive infections such as fungemia. While Candida species are the most commonly identified pathogens, other rare yeasts are increasingly reported, complicating diagnosis and treatment due to limited data on antifungal pharmacokinetics. These emerging yeasts, often opportunistic, underscore the critical need for early diagnosis and targeted therapy in neonates. This systematic review aims to comprehensively analyze all published cases of neonatal fungemia caused by rare opportunistic yeasts, examining geographical distribution, species involved, risk factors, treatment approaches, and outcomes. Searching two databases (PubMed and SCOPUS), 89 relevant studies with a total of 342 cases were identified in the 42-year period; 62% of the cases occurred in Asia. Pichia anomala (31%), Kodamaea ohmeri (16%) and Malassezia furfur (15%) dominated. Low birth weight, the use of central catheters, prematurity, and the use of antibiotics were the main risk factors (98%, 76%, 66%, and 65%, respectively). 22% of the cases had a fatal outcome (80% in Asia). The highest mortality rates were reported in Trichosporon beigelii and Trichosporon asahii cases, followed by Dirkmeia churashimamensis cases (80%, 71%, and 42% respectively). Low birth weight, the use of central catheters, the use of antibiotics, and prematurity were the main risk factors in fatal cases (84%, 74%, 70%, and 67%, respectively). 38% of the neonates received fluconazole for treatment but 46% of them, died. Moreover, the rare yeasts of this review showed high MICs to fluconazole and this should be taken into account when planning prophylactic or therapeutic strategies with this drug. In conclusion, neonatal fungemia by rare yeasts is a life-threatening and difficult-to-treat infection, often underestimated and misdiagnosed.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | | | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Roman VA, Crable BR, Wagner DN, Gryganskyi A, Zelik S, Cummings L, Hung CS, Nadeau LJ, Schratz L, Haridas S, Pangilinan J, Lipzen A, Na H, Yan M, Ng V, Grigoriev IV, Barlow D, Biffinger J, Kelley-Loughnane N, Crookes-Goodson WJ, Stamps B, Varaljay VA. Identification and recombinant expression of a cutinase from Papiliotrema laurentii that hydrolyzes natural and synthetic polyesters. Appl Environ Microbiol 2024; 90:e0169423. [PMID: 38624219 PMCID: PMC11205760 DOI: 10.1128/aem.01694-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
Collapse
Affiliation(s)
- Victor A. Roman
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Bryan R. Crable
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Dominique N. Wagner
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Andrii Gryganskyi
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Stephen Zelik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Logan Cummings
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Chia S. Hung
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lloyd J. Nadeau
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lucas Schratz
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | | | | | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | | | - Blake Stamps
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Vanessa A. Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- The Ohio State University, Infectious Diseases Institute, Columbus, Ohio, USA
| |
Collapse
|
3
|
Ahmad S, Asadzadeh M, Al-Sweih N, Khan Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther Adv Infect Dis 2024; 11:20499361241263733. [PMID: 39070702 PMCID: PMC11273600 DOI: 10.1177/20499361241263733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
4
|
Asadzadeh M, Al-Sweih N, Ahmad S, Khan S, Alfouzan W, Joseph L. Fatal Lodderomyces elongisporus Fungemia in a Premature, Extremely Low-Birth-Weight Neonate. J Fungi (Basel) 2022; 8:jof8090906. [PMID: 36135631 PMCID: PMC9505230 DOI: 10.3390/jof8090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Many rare yeasts are emerging as pathogens, causing invasive infections in susceptible hosts that are associated with poor clinical outcome. Here, we describe the first and fatal case of Lodderomyces elongisporus fungemia in a premature, extremely low-birth-weight neonate after spontaneous vaginal delivery. The bloodstream isolate was identified as C. parapsilosis by the VITEK 2 yeast identification system and as L. elongisporus by PCR-sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA. Antifungal susceptibility testing data for the isolate, performed by the broth microdilution-based MICRONAUT-AM assay, showed susceptibility to all nine antifungal drugs tested. Despite the initiation of treatment with liposomal amphotericin B, the patient died on the same day that the blood culture yielded yeast growth. This is the first report of L. elongisporus bloodstream infection in a neonate as the previous nine cases reported in the literature occurred in adult patients. The crude mortality rate for invasive L. elongisporus infection is 50%, as only 5 of 10 patients survived.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
- Microbiology Department, Maternity Hospital, Shuwaikh 70031, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
- Correspondence:
| | - Seema Khan
- Microbiology Department, Maternity Hospital, Shuwaikh 70031, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| |
Collapse
|