1
|
Wen HG, Zhao JH, Zhang BS, Gao F, Wu XM, Yan YS, Zhang J, Guo HS. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. NATURE PLANTS 2023; 9:1409-1418. [PMID: 37653339 DOI: 10.1038/s41477-023-01507-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.
Collapse
Affiliation(s)
- Han-Guang Wen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yong-Sheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Shen E, Wang X, Lu Z, Zhou F, Ma W, Cui Z, Li Z, Li C, Lin Y. Overexpression of a beta-1,6-glucanase gene GluM in transgenic rice confers high resistance to rice blast, sheath blight and false smut. PEST MANAGEMENT SCIENCE 2023; 79:2152-2162. [PMID: 36729081 DOI: 10.1002/ps.7394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS We transferred a codon-optimized β-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a β-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a β-1,3-glucanase gene derived from tobacco. CONCLUSION The β-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoxi Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum. Microorganisms 2022; 10:microorganisms10061189. [PMID: 35744707 PMCID: PMC9228387 DOI: 10.3390/microorganisms10061189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The fungal pathogen Sclerotinia sclerotiorum (Helotiales: Sclerotiniaceae) causes white mold, a disease that leads to substantial losses on a wide variety of hosts throughout the world. This economically important fungus affects yield and seed quality, and its control mostly relies on the use of environmentally damaging fungicides. This review aimed to present the latest discoveries on microorganisms and the biocontrol mechanisms used against white mold. A special focus is put on the identification of biocontrol desirable traits required for efficient disease control. A better understanding of the mechanisms involved and the conditions required for their action is also essential to ensure a successful implementation of biocontrol under commercial field conditions. In this review, a brief introduction on the pathogen, its disease cycle, and its main pathogenicity factors is presented, followed by a thorough description of the microorganisms that have so far demonstrated biocontrol potential against white mold and the mechanisms they use to achieve control. Antibiosis, induced systemic resistance, mycoparasitism, and hypovirulence are discussed. Finally, based on our actual knowledge, the best control strategies against S. sclerotiorum that are likely to succeed commercially are discussed, including combining biocontrol desirable traits of particular interest.
Collapse
|
4
|
Monitoring Mycoparasitism of Clonostachys rosea against Botrytis cinerea Using GFP. J Fungi (Basel) 2022; 8:jof8060567. [PMID: 35736050 PMCID: PMC9225460 DOI: 10.3390/jof8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Clonostachys rosea is an important mycoparasite, with great potential for controlling numerous plant fungal diseases. Understanding the mechanisms and modes of action will assist the development and application of this biocontrol fungus. In this study, the highly efficient C. rosea 67-1 strain was marked with the green fluorescent protein (GFP), and the transformant possessed the same biological characteristics as the wild-type strain. Fungal interactions with Botrytis cinerea during co-culture and encounter on tomato leaves were assessed by fluorescence confocal and electron microscopy. The results indicated that once the two fungi met, the hyphae of C. rosea grew alongside those of B. cinerea, then attached tightly to the host and developed special structures, via which the biocontrol fungus penetrated the host and absorbed nutrients, eventually disintegrating the cells of the pathogen. Mycoparasitism to B. cinerea was also observed on tomato leaves, suggesting that C. rosea can colonize on plants and act following the invasion of the pathogenic fungus.
Collapse
|
5
|
Kim TG, Knudsen GR. Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Trichoderma harzianum through Reducing the Hyphal Density. J Microbiol Biotechnol 2021; 31:815-822. [PMID: 33782223 PMCID: PMC9705935 DOI: 10.4014/jmb.2102.02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.
Collapse
Affiliation(s)
- Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan 46241, Republic of Korea,Corresponding author Phone: +82-515102268 Fax: +82-515141778 E-mail:
| | - Guy R. Knudsen
- Soil and Land Resources Division, Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
6
|
Zhang J, Fu B, Lin Q, Riley IT, Ding S, Chen L, Cui J, Yang L, Li H. Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi). PLoS One 2020; 15:e0232770. [PMID: 32369513 PMCID: PMC7199937 DOI: 10.1371/journal.pone.0232770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cereal cyst nematodes cause serious yield losses of wheat in Hunaghuai winter wheat growing region in China. Beauveria bassiana 08F04 isolated from the surface of cysts is a promising biological control agent for cereal cyst nematodes. As the colonization capacity is a crucial criteria to assess biocontrol effectiveness for a microbial agent candidate, we aimed to label B. bassiana 08F04 for efficient monitoring of colonization in the soil. The binary pCAM-gfp plasmid containing sgfp and hph was integrated into B. bassiana 08F04 using the Agrobacterium tumefaciens-mediated transformation. The transformation caused a significant change in mycelial and conidial yields, and in extracellular chitinase activity in some transformants. The cultural filtrates of some transformants also decreased acetylcholinesterase activity and the survival of Heterodera filipjevi second-stage juveniles relative to the wild-type strain. One transformant (G10) had a growth rate and biocontrol efficacy similar to the wild-type strain, so it was used for a pilot study of B. bassiana colonization conducted over 13 weeks. Real-time PCR results and CFU counts revealed that the population of G10 increased quickly over the first 3 weeks, then decreased slowly over the following 4 weeks before stabilizing. In addition, the application of wild-type B. bassiana 08F04 and transformant G10 significantly reduced the number of H. filipjevi females in roots by 64.4% and 60.2%, respectively. The results of this study have practical applications for ecological, biological and functional studies of B. bassiana 08F04 and for bionematicide registration.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Qitong Lin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ian T. Riley
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiangkuan Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (LY); (HL)
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- * E-mail: (LY); (HL)
| |
Collapse
|
7
|
Németh MZ, Pintye A, Horváth ÁN, Vági P, Kovács GM, Gorfer M, Kiss L. Green Fluorescent Protein Transformation Sheds More Light on a Widespread Mycoparasitic Interaction. PHYTOPATHOLOGY 2019; 109:1404-1416. [PMID: 30900938 DOI: 10.1094/phyto-01-19-0013-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildews, ubiquitous obligate biotrophic plant pathogens, are often attacked in the field by mycoparasitic fungi belonging to the genus Ampelomyces. Some Ampelomyces strains are commercialized biocontrol agents of crop pathogenic powdery mildews. Using Agrobacterium tumefaciens-mediated transformation (ATMT), we produced stable Ampelomyces transformants that constitutively expressed green fluorescent protein (GFP) to (i) improve the visualization of the mildew-Ampelomyces interaction and (ii) decipher the environmental fate of Ampelomyces fungi before and after acting as a mycoparasite. Detection of Ampelomyces structures, and especially hyphae, was greatly enhanced when diverse powdery mildew, leaf, and soil samples containing GFP transformants were examined with fluorescence microscopy compared with brightfield and differential interference contrast optics. We showed for the first time, to our knowledge, that Ampelomyces strains can persist up to 21 days on mildew-free host plant surfaces, where they can attack powdery mildew structures as soon as these appear after this period. As saprobes in decomposing, powdery mildew-infected leaves on the ground and also in autoclaved soil, Ampelomyces strains developed new hyphae but did not sporulate. These results indicate that Ampelomyces strains occupy a niche in the phyllosphere where they act primarily as mycoparasites of powdery mildews. Our work has established a framework for a molecular genetic toolbox for the genus Ampelomyces using ATMT.
Collapse
Affiliation(s)
- Márk Z Németh
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
| | - Alexandra Pintye
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
| | - Áron N Horváth
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
| | - Pál Vági
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
- 2Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gábor M Kovács
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
- 2Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Markus Gorfer
- 3Austrian Institute of Technology, BOKU University of Natural Resources and Life Sciences, A-3430 Tulln, Austria
| | - Levente Kiss
- 1Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
- 4Institute for Life Sciences and the Environment, Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| |
Collapse
|
8
|
Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Funct Integr Genomics 2019; 19:743-758. [PMID: 31054140 DOI: 10.1007/s10142-019-00677-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
Rhizoctonia solani AG1-IA is a soil-borne necrotrophic pathogen that causes devastating rice sheath blight disease in rice-growing regions worldwide. Sclerotia play an important role in the life cycle of R. solani AG1-IA. In this study, RNA sequencing was used to investigate the transcriptomic dynamics of sclerotial development (SD) of R. solani AG1-IA. Gene ontology and pathway enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the functions and pathways of differentially expressed genes (DEGs). Six cDNA libraries were generated, and more than 300 million clean reads were obtained and assembled into 15,100 unigenes. In total, 12,575 differentially expressed genes were identified and 34.62% (4353) were significantly differentially expressed with a FDR ≤ 0.01 and |log2Ratio| ≥ 1, which were enriched into eight profiles using Short Time-series Expression Miner. Furthermore, KEGG and gene ontology analyses suggest the DEGs were significantly enriched in several biological processes and pathways, including binding and catalytic functions, biosynthesis of ribosomes, and other biological functions. Further annotation of the DEGs using the Clusters of Orthologous Groups (COG) database found most DEGs were involved in amino acid transport and metabolism, as well as energy production and conversion. Furthermore, DEGs relevant to SD of R. solani AG1-IA were involved in secondary metabolite biosynthesis, melanin biosynthesis, ubiquitin processes, autophagy, and reactive oxygen species metabolism. The gene expression profiles of 10 randomly selected DEGs were validated by quantitative real-time reverse transcription PCR and were consistent with the dynamics in transcript abundance identified by RNA sequencing. The data provide a high-resolution map of gene expression during SD, a key process contributing to the pathogenicity of this devastating pathogen. In addition, this study provides a useful resource for further studies on the genomics of R. solani AG1-IA and other Rhizoctonia species.
Collapse
|
9
|
Sarrocco S, Matarese F, Baroncelli R, Vannacci G, Seidl-Seiboth V, Kubicek CP, Vergara M. The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens. PHYTOPATHOLOGY 2017; 107:537-544. [PMID: 28095207 DOI: 10.1094/phyto-03-16-0139-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichoderma spp. are opportunistic fungi some of which are commonly present in the rhizosphere. Several species, such as T. virens, are also efficient biocontrol agents against phytopathogenic fungi and exert beneficial effects on plants. These effects are the consequence of interactions between Trichoderma and plant roots, which trigger enhanced plant growth and induce plant resistance. We have previously shown that T. virens I10 expresses two endopolygalacturonase genes, tvpg1 and tvpg2, during the interaction with plant roots; tvpg1 is inducible while tvpg2 is constitutively transcribed. Using the same system, the tomato polygalacturonase-inhibitor gene Lepgip1 was induced at the same time as tvpg1. Here we show by gene disruption that TvPG2 performs a regulatory role on the inducible tvpg1 gene and in triggering the plant immune response. A tvpg2-knockout strain fails to transcribe the inducible tvpg1 gene in neither in vitro in inducing media containing pectin or plant cell walls, nor during the in vivo interaction with tomato roots. Likewise, the in vivo induction of Lepgip1 does not occur, and its defense against the pathogen Botrytis cinerea is significantly reduced. Our data prove the importance of a T. virens constitutively produced endopolygalacturonase in eliciting plant induced systemic resistance against pathogenic fungi.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Fabiola Matarese
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Riccardo Baroncelli
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giovanni Vannacci
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Verena Seidl-Seiboth
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Christian Peter Kubicek
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Mariarosaria Vergara
- First, second, third, fourth, and seventh authors: Department of Agriculture, Food and Environment, University of Pisa, Italy, via del Borghetto 80, 56124 Pisa, Italy; fifth and sixth authors: Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, 1060 Vienna, Austria; and seventh author: Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
10
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|
11
|
Sørensen A, Lübeck PS, Lübeck M, Teller PJ, Ahring BK. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Can J Microbiol 2011; 57:638-50. [PMID: 21815831 DOI: 10.1139/w11-052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
β-Glucosidase activity plays an essential role for efficient and complete hydrolysis of lignocellulosic biomass. Direct use of fungal fermentation broths can be cost saving relative to using commercial enzymes for production of biofuels and bioproducts. Through a fungal screening program for β-glucosidase activity, strain AP (CBS 127449, Aspergillus saccharolyticus ) showed 10 times greater β-glucosidase activity than the average of all other fungi screened, with Aspergillus niger showing second greatest activity. The potential of a fermentation broth of strain AP was compared with the commercial β-glucosidase-containing enzyme preparations Novozym 188 and Cellic CTec. The fermentation broth was found to be a valid substitute for Novozym 188 in cellobiose hydrolysis. The Michaelis-Menten kinetics affinity constant as well as performance in cellobiose hydrolysis with regard to product inhibition were found to be the same for Novozym 188 and the broth of strain AP. Compared with Novozym 188, the fermentation broth had higher specific activity (11.3 U/mg total protein compared with 7.5 U/mg total protein) and also increased thermostability, identified by the thermal activity number of 66.8 vs. 63.4 °C for Novozym 188. The significant thermostability of strain AP β-glucosidases was further confirmed when compared with Cellic CTec. The β-glucosidases of strain AP were able to degrade cellodextrins with an exo-acting approach and could hydrolyse pretreated bagasse to monomeric sugars when combined with Celluclast 1.5L. The fungus therefore showed great potential as an onsite producer for β-glucosidase activity.
Collapse
Affiliation(s)
- Annette Sørensen
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, Lautrupvang 15, DK-2750 Ballerup, Denmark
| | | | | | | | | |
Collapse
|
12
|
Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus. Fungal Biol 2011; 115:317-25. [DOI: 10.1016/j.funbio.2010.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 11/24/2022]
|
13
|
Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V. Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 2011; 57:13-23. [PMID: 20872221 PMCID: PMC3023040 DOI: 10.1007/s00294-010-0322-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/07/2010] [Accepted: 09/10/2010] [Indexed: 11/17/2022]
Abstract
The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1.
Collapse
Affiliation(s)
- Valentina Catalano
- Department of Tree Science, Entomology and Plant Pathology G. Scaramuzzi, Plant Pathology Section, Faculty of Agriculture, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria
| | | | - Jasmin R. Hauzenberger
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria
| | - Sabrina Sarrocco
- Department of Tree Science, Entomology and Plant Pathology G. Scaramuzzi, Plant Pathology Section, Faculty of Agriculture, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Vannacci
- Department of Tree Science, Entomology and Plant Pathology G. Scaramuzzi, Plant Pathology Section, Faculty of Agriculture, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Christian P. Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria
| | - Verena Seidl-Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060 Vienna, Austria
| |
Collapse
|
14
|
Nga NTT, Giau NT, Long NT, Lübeck M, Shetty NP, De Neergaard E, Thuy TTT, Kim PV, Jørgensen HJL. Rhizobacterially induced protection of watermelon against Didymella bryoniae. J Appl Microbiol 2010; 109:567-582. [PMID: 20163499 DOI: 10.1111/j.1365-2672.2010.04685.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify rhizobacteria from the Mekong Delta of Vietnam, which can systemically protect watermelon against Didymella bryoniae and elucidate the mechanisms involved in the protection conferred by isolate Pseudomonas aeruginosa 23(1-1). METHODS AND RESULTS Bacteria were isolated from watermelon roots and their antagonistic ability tested in vitro. Of 190 strains, 68 were able to inhibit D. bryoniae by production of antibiotics. Four strains were able to reduce foliar infection by D. bryoniae when applied to watermelon seeds before sowing. Strain Ps. aeruginosa 23(1-1) was chosen for investigations of the mechanisms involved in protection and ability to control disease under field conditions. In the field, the bacterium was able to significantly reduce disease in two consecutive seasons and increase yield. Furthermore, it colonized watermelon plants endophytically, with higher numbers in plants infected by D. bryoniae than in noninoculated plants. To elucidate the mechanisms involved in protection, the infection biology of the pathogen was studied in bacterially treated and control plants. Pseudomonas aeruginosa 23(1-1) treatment inhibited pathogen penetration and this was associated with hydrogen peroxide accumulation, increased peroxidase activity and occurrence of new peroxidase isoforms, thus indicating that resistance was induced. CONCLUSIONS The endophytic bacterium Ps. aeruginosa 23(1-1) can control D. bryoniae in watermelon by antibiosis and induced resistance under greenhouse and field conditions. SIGNIFICANCE AND IMPACT OF THE STUDY These findings suggest that rhizobacteria from native soils in Vietnam can be used to control gummy stem blight of watermelon through various mechanisms including induction of resistance.
Collapse
Affiliation(s)
- N T T Nga
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark., Department of Plant Protection, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Vietnam
| | - N T Giau
- Department of Plant Protection, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Vietnam
| | - N T Long
- Department of Plant Protection, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Vietnam
| | - M Lübeck
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark., Section for Sustainable Biotechnology, Copenhagen Institute of Technology, Aalborg University, Lautrupvang 15, Ballerup, Denmark
| | - N P Shetty
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - E De Neergaard
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - T T T Thuy
- Department of Plant Protection, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Vietnam
| | - P V Kim
- Department of Plant Protection, College of Agriculture and Applied Biology, Can Tho University, Can Tho City, Vietnam
| | - H J L Jørgensen
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Liu LN, Zhang JZ, Xu T. Histopathological studies of sclerotia ofRhizoctonia solaniparasitized by the EGFP transformant ofTrichoderma virens. Lett Appl Microbiol 2009; 49:745-50. [DOI: 10.1111/j.1472-765x.2009.02737.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sarrocco S, Gambineri F, Magneschi L, Valentini G, Vannacci G. Growth evaluation of an antagonistic Trichoderma virens isolate by using a BOD OxiTop® respirometric apparatus. J GEN APPL MICROBIOL 2008; 54:311-5. [DOI: 10.2323/jgam.54.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Slot JC, Hibbett DS. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2007; 2:e1097. [PMID: 17971860 PMCID: PMC2040219 DOI: 10.1371/journal.pone.0001097] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/08/2007] [Indexed: 11/19/2022] Open
Abstract
High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biology, Clark University, Worcester, Massachusetts, United States of America.
| | | |
Collapse
|
18
|
Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 2007; 44:950-64. [PMID: 17300969 DOI: 10.1016/j.fgb.2007.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/27/2006] [Accepted: 01/01/2007] [Indexed: 11/25/2022]
Abstract
Trichoderma is widely used as biocontrol agent against phytopathogenic fungi, and as biofertilizer because of its ability to establish mycorriza-like association with plants. The key factor to the ecological success of this genus is the combination of very active mycoparasitic mechanisms plus effective defense strategies induced in plants. This work, different from most of the studies carried out that address the attacking mechanisms, focuses on elucidating how Trichoderma is able to tolerate hostile conditions. A gene from Trichoderma harzianum CECT 2413, qid74, was strongly expressed during starvation of carbon or nitrogen sources; it encoded a cell wall protein of 74kDa that plays a significant role in mycelium protection. qid74 was originally isolated and characterized, in a previous work, by a differential hybridization approach under simulated mycoparasitism conditions. Heterologous expression of Qid74 in Saccharomyces cerevisiae indicated that the protein, located in the cell wall, interfered with mating and sporulation but not with cell integrity. The qid74 gene was disrupted by homologous recombination and it was overexpressed by isolating transformants selected for the amdS gene that carried several copies of qid74 gene under the control of the pki promoter. Disruptants and transformants showed similar growth rate and viability when they were cultivated in different media, temperatures and osmolarities, or were subjected to different abiotic stress conditions. However, disruptants produced about 70% mass yield under any condition and were substantially more sensitive than the wild type to cell wall degradation by different lytic preparations. Transformants had similar mass yield and were more resistant to lytic enzymes but more sensitive to copper sulfate than the wild type. When experiments of adherence to hydrophobic surfaces were carried out, the disruptants had a reduced capacity to adhere, whereas that capacity in the overproducer transformants was slightly higher than that of the wild type. Results point to a significant role for Qid74 both in cell wall protection and adhesion to hydrophobic surfaces.
Collapse
Affiliation(s)
- Iván V Rosado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Djonović S, Pozo MJ, Kenerley CM. Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 2006; 72:7661-70. [PMID: 16997978 PMCID: PMC1694269 DOI: 10.1128/aem.01607-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Even though beta-1,6-glucanases have been purified from several filamentous fungi, the physiological function has not been conclusively established for any species. In the present study, the role of Tvbgn3, a beta-1,6-glucanase from Trichoderma virens, was examined by comparison of wild-type (WT) and transformant strains in which Tvbgn3 was disrupted (GKO) or constitutively overexpressed (GOE). Gene expression analysis revealed induction of Tvbgn3 in the presence of host fungal cell walls, indicating regulation during mycoparasitism. Indeed, while deletion or overexpression of Tvbgn3 had no evident effect on growth and development, GOE and GKO strains showed an enhanced or reduced ability, respectively, to inhibit the growth of the plant pathogen Pythium ultimum compared to results with the WT. The relevance of this activity in the biocontrol ability of T. virens was confirmed in plant bioassays. Deletion of the gene resulted in levels of disease protection that were significantly reduced from WT levels, while GOE strains showed a significantly increased biocontrol capability. These results demonstrate the involvement of beta-1,6-glucanase in mycoparasitism and its relevance in the biocontrol activity of T. virens, opening a new avenue for biotechnological applications.
Collapse
Affiliation(s)
- Slavica Djonović
- Department of Plant Pathology and Microbiology, 413C LF Peterson Building, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | |
Collapse
|