1
|
shaikh R, Bhattacharya S, Saoji SD. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024; 10:e39632. [PMID: 39559212 PMCID: PMC11570312 DOI: 10.1016/j.heliyon.2024.e39632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h. Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.
Collapse
Affiliation(s)
- Rehan shaikh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Amravati Road, Nagpur, 440033, Maharashtra, India
| |
Collapse
|
2
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
3
|
Garg A, Karhana S, Khan MA. Nanomedicine for the eradication of Helicobacter pylori: recent advances, challenges and future perspective. Future Microbiol 2024; 19:431-447. [PMID: 38381027 DOI: 10.2217/fmb-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is linked to gastritis, ulcers and gastric cancer. Nanomedicine offers a promising solution by utilizing nanoparticles for precise drug delivery, countering antibiotic resistance and delivery issues. Nanocarriers such as liposomes and nanoparticles enhance drug stability and circulation, targeting infection sites through gastric mucosa characteristics. Challenges include biocompatibility, stability, scalability and personalized therapies. Despite obstacles, nanomedicine's potential for reshaping H. pylori eradication is significant and showcased in this review focusing on benefits, limitations and future prospects of nanomedicine-based strategies.
Collapse
Affiliation(s)
- Aakriti Garg
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd A Khan
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Alshetaili AS, Ali R, Qamar W, Almohizea S, Anwer MK. Preparation, optimization, and characterization of chrysin-loaded TPGS-b-PCL micelles and assessment of their cytotoxic potential in human liver cancer (Hep G2) cell lines. Int J Biol Macromol 2023; 246:125679. [PMID: 37406911 DOI: 10.1016/j.ijbiomac.2023.125679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In total, nine TPGS-b-PCL copolymers were synthesized employing distinct TPGS analogues (TPGS 2000, 3500, and 5000). In these copolymers, the length of the PCL chain varied according to the TPGS to PCL molecular weight ratio (1:1, 1:2, and 1:3). The formulation optimization was done by optimizing the drug to polymer ratio, encapsulation efficiency, drug loading, micelle diameter, and polydispersity index (PDI). TPGS3500-b-PCL7000 copolymer (TPGS to PCL ratio 1:2) with drug to polymer ratio 1:30 showed the best percentage encapsulation (63.50 ± 0.45 %) and drug loading (2.05 ± 0.07). The optimal micelle (CHR-M) diameter and PDI were determined to be 94.57 ± 13.40 nm and 0.16 ± 0.02, respectively. CHR-M showed slow release when compared with alcoholic solution of chrysin. Approximately 70.70 ± 6.4 % drug was released in 72 h. The CHR-M demonstrated considerably greater absorption in Hep G2 cells, which confirmed the reliability of the micellar carrier. The MTT assay results showed that the IC50 values for CHR-M were much lower after 24 and 48 h when compared to free chrysin. Therefore, CHR-M may be a viable carrier for active chrysin targeting with improved anticancer potential. Also, it could be a better alternative for the currently available treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdullah S Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Salman Almohizea
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Patil KS, Hajare AA, Manjappa AS, More HN, Disouza JI. Design, Development, In Silico, and In Vitro Characterization of Camptothecin-Loaded Mixed Micelles: In Vitro Testing of Verapamil and Ranolazine for Repurposing as Coadjuvant Therapy in Cancer. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Curcumin-Encapsulated Nanomicelles Improve Cellular Uptake and Cytotoxicity in Cisplatin-Resistant Human Oral Cancer Cells. J Funct Biomater 2022; 13:jfb13040158. [PMID: 36278627 PMCID: PMC9589971 DOI: 10.3390/jfb13040158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer has a high mortality rate, which is mostly determined by the stage of the disease at the time of admission. Around half of all patients with oral cancer report with advanced illness. Hitherto, chemotherapy is preferred to treat oral cancer, but the emergence of resistance to anti-cancer drugs is likely to occur after a sequence of treatments. Curcumin is renowned for its anticancer potential but its marred water solubility and poor bioavailability limit its use in treating multidrug-resistant cancers. As part of this investigation, we prepared and characterized Curcumin nanomicelles (CUR-NMs) using DSPE-PEG-2000 and evaluated the anticancer properties of cisplatin-resistant cancer cell lines. The prepared CUR-NMs were sphere-shaped and unilamellar in structure, with a size of 32.60 ± 4.2 nm. CUR-NMs exhibited high entrapment efficiency (82.2%), entrapment content (147.96 µg/mL), and a mean zeta potential of −17.5ζ which is considered moderately stable. The cellular uptake and cytotoxicity studies revealed that CUR-NMs had significantly higher cytotoxicity and cellular uptake in cisplatin drug-resistant oral cancer cell lines and parental oral cancer cells compared to plain curcumin (CUR). The DAPI and FACS analysis corroborated a high percentage of apoptotic cells with CUR-NMs (31.14%) compared to neat CUR (19.72%) treatment. Conclusively, CUR-NMs can potentially be used as an alternative carrier system to improve the therapeutic effects of curcumin in the treatment of cisplatin-resistant human oral cancer.
Collapse
|
7
|
Li L, Zeng Y, Chen M, Liu G. Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:3278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Minyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Stealth Liposomes (PEGylated) Containing an Anticancer Drug Camptothecin: In Vitro Characterization and In Vivo Pharmacokinetic and Tissue Distribution Study. Molecules 2022; 27:molecules27031086. [PMID: 35164350 PMCID: PMC8838228 DOI: 10.3390/molecules27031086] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous attempts to overcome the poor water solubility of cam ptothecin (CPT) by various nano drug delivery systems are described in various sources in the literature. However, the results of these approaches may be hampered by the incomplete separation of free CPT from the formulations, and this issue has not been investigated in detail. This study aimed to promote the solubility and continuous delivery of CPT by developing long-lasting liposomes using various weights (M.W. 2000 and 5000 Daltons) of the hydrophilic polymer polyethylene glycol (PEG). Conventional and PEGylated liposomes containing CPT were formulated via the lipid film hydration method (solvent evaporation) using a rotary flash evaporator after optimising various formulation parameters. The following physicochemical characteristics were investigated: surface morphology, particle size, encapsulation efficiency, in vitro release, and formulation stability. Different molecular weights of PEG were used to improve the encapsulation efficiency and particle size. The stealth liposomes prepared with PEG5000 were discrete in shape and with a higher encapsulation efficiency (83 ± 0.4%) and a prolonged rate of drug release (32.2% in 9 h) compared with conventional liposomes (64.8 ± 0.8% and 52.4%, respectively) and stealth liposomes containing PEG2000 (79.00 ± 0.4% and 45.3%, respectively). Furthermore, the stealth liposomes prepared with PEG5000 were highly stable at refrigeration temperature. Significant changes were observed using various pharmacokinetic parameters (mean residence time (MRT), half-life, elimination rate, volume of distribution, clearance, and area under the curve) of stealth liposomes containing PEG2000 and PEG5000 compared with conventional liposomes. The stealth liposomes prepared with PEG5000 showed promising results with a slow rate of release over a long period compared with conventional liposomes and liposomes prepared with PEG2000, with altered tissue distribution and pharmacokinetic parameters.
Collapse
|
9
|
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15:19-27. [PMID: 34694727 PMCID: PMC8675821 DOI: 10.1049/nbt2.12018] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 02/03/2023] Open
Abstract
Nanomicelles are self‐assembling nanosized (usually with particle size within a range of 10 to 100 nm) colloidal dispersions with a hydrophobic core and hydrophilic shell. Owing to its size, solubility, customised surface or its exposure to the environment, nanomicelles show some unique or novel characteristics, which makes it multifunctional and thus makes its use indispensable in biomedical application and various other fields. This review presents the unique properties of nanomicelles that makes it different from other particles and paves its way to be used as drug delivery agent and many other biological uses or applications. It also emphasises on the drug encapsulation ability of the nanomicelles and different technique of drug loading and delivery along with its advantages and disadvantages.
Collapse
Affiliation(s)
- Anamika Bose
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | | | - Bismayan Sikdar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Prasun Patra
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Eskandari Z, Bahadori F, Yapaoz MA, Yenigun VB, Celikten M, Kocyigit A, Onyuksel H. Targeting breast cancer using pirarubicin-loaded vasoactive intestinal peptide grafted sterically stabilized micelles. Eur J Pharm Sci 2021; 162:105830. [PMID: 33819623 DOI: 10.1016/j.ejps.2021.105830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
In this study the chemotherapeutic agent Pirarubicin (PRB) which is known for its serious side effects was actively targeted to the breast cancer cells by uploading it to the biocompatible and biodegradable Sterically Stabilized Micelles (SSMs) made of 1,2- Distearoyl- sn- glycero‑3- phosphoethanolamine- N- methoxy‑ polyethylene glycol 2000 (DSPE-PEG2000) to enhance efficacy and reduce toxicity. Vasoactive intestinal peptide (VIP), the receptors of which are overexpressed on the breast cancer cells, was grafted on the surface of the micelles. To the best of our knowledge this is the first report on active targeting of PRB to tumor site. For this purpose, PRB loaded VIP grafted SSMs (PRB-SSM-VIP) were synthesized and characterized. The in vitro efficiency of PRB-SSM-VIP along with SSM and free PRB was investigated on the MCF-7 breast cancer cells and the in vivo effects were studied on the 4T1 breast cancer bearing nude mice. Solubilizing 300 µg of PRB using 2.81 mg of DSPE-PEG2000 resulted in obtaining monodispersed particles of 12.16 ± 2.7 nm with slow drug release profile. Incorporation of PRB within the hydrophobic DSPE core of SSM was confirmed using differential scanning calorimetry (DSC) and the spherical shape of the synthesized particles was demonstrated using atomic force microscope (AFM). Both in vitro and in vivo studies showed significantly higher activity of PRB-SSM-VIP compared to free PRB. In vivo imaging showed successful accumulation of PRB-SSM-VIP at the tumor site and 98.8% tumor eradication was obtained with no signs of side effects. Current study suggests that SSM-VIP could be used as new drug delivery system for targeting PRB to the breast cancer cells.
Collapse
Affiliation(s)
- Zahra Eskandari
- Department of Chemistry, Biochemistry Division, Faculty of Sciences and Arts, Yildiz Technical University, Istanbul, Turkey; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey.
| | - Melda Altıkatoglu Yapaoz
- Department of Chemistry, Biochemistry Division, Faculty of Sciences and Arts, Yildiz Technical University, Istanbul, Turkey.
| | - Vildan Betul Yenigun
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mert Celikten
- Experimental Application and Research Center, Bezmialem Vakif University, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hayat Onyuksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Li Y, Zhang T, Liu Q, He J. PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy. Front Pharmacol 2019; 10:808. [PMID: 31379579 PMCID: PMC6659352 DOI: 10.3389/fphar.2019.00808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Polymeric micelles have attracted considerable attention for effective delivery of poorly water-soluble cancer drugs. Polyethylene glycol (PEG), which has been approved for human use by the US Food and Drug Administration, is the most commonly used hydrophilic component of polymeric micelles because it is biocompatible and biodegradable. One disadvantage of traditional polymeric micelles is that they include a large amount of inert carrier materials, which do not contribute to therapeutic activity but increase cost and toxicity risk. A better alternative may be "dual-functional" micellar carriers, in which the hydrophobic carrier material (conjugated to PEG) has intrinsic therapeutic activity that complements, or even synergizes with, the antitumor activity of the drug cargo. This review summarizes recent progress in the development of PEG-derivatized dual-functional nanomicelles and surveys the evidence of their feasibility and promise for cancer therapy.
Collapse
Affiliation(s)
- Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z. Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: Multi-functionalization as an emerging strategy to optimize therapeutic efficacy. J Control Release 2019; 303:181-208. [DOI: 10.1016/j.jconrel.2019.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
|
13
|
Ansari Asl A, Rahmani S. Synthesis, characterization and self-assembly investigation of novel PEG-g-PCL copolymers by combination of ROP and ‘‘click’’ chemistry method as a sustained release formulation for hydrophobic drug. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Afshin Ansari Asl
- Department of Chemistry, Faculty of Science, Laboratory of Polymer Synthesis, University of Zanjan, Zanjan, Iran
| | - Sohrab Rahmani
- Department of Chemistry, Faculty of Science, Laboratory of Polymer Synthesis, University of Zanjan, Zanjan, Iran
| |
Collapse
|
14
|
Hu W, Mao A, Wong P, Larsen A, Yazaki PJ, Wong JYC, Shively JE. Characterization of 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[Methoxy(polyethylene glycerol)-2000] and Its Complex with Doxorubicin Using Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics. Bioconjug Chem 2017; 28:1777-1790. [PMID: 28520406 PMCID: PMC8802905 DOI: 10.1021/acs.bioconjchem.7b00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyethylene glycol (PEG) lipid nanoparticles (LNPs) spontaneously assemble in water, forming uniformly sized nanoparticles incorporating drugs with prolonged blood clearance compared to drugs alone. Previously, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] (DSPE-PEG2000) and several drug adducts, including doxorubicin, were analyzed by a combination of physical and molecular dynamic (MD) studies. In this study, a complete chemical shift assignment of DSPE-PEG2000 plus or minus doxorubicin was achieved using nuclear magnetic resonance (NMR), one-dimensional selective nuclear Overhauser spectroscopy (1D-selNOESY), NOESY, correlation spectroscopy (COSY), total correlated spectroscopy (TOCSY), heteronuclear single quantum coherence (HSQC), and HSQC-TOCSY. Chemical shift perturbation, titration, relaxation enhancement, and NOESY analysis combined with MD reveal detailed structural information at the atomic level, including the location of doxorubicin in the micelle, its binding constant, the hydrophilic shell organization, and the mobility of the PEG2000 tail, demonstrating that NMR spectroscopy can characterize drug-DSPE-PEG2000 micelles with molecular weights above 180 kDa. The MD study revealed that an initial spherical organization led to a more-disorganized oblate structure in an aqueous environment and agreed with the NMR study in the details of the fine structure, in which methyl group(s) of the stearic acid in the hydrophobic core of the micelle are in contact with the phosphate headgroup of the lipid. Although the molecular size of the LNP drug complex is about 180 kDa, atomic resolution can be achieved by NMR-based methods that reveal distinct features of the drug-lipid interactions. Because many drugs have unfavorable blood clearance that may benefit from incorporation into LNPs, a thorough knowledge of their physical and chemical properties is essential to moving them into a clinical setting. This study provides an advanced basic approach that can be used to study a wide range of drug-LNP interactions.
Collapse
Affiliation(s)
| | | | - Patty Wong
- Department of Radiation Oncology, City of Hope National Medical Center , Duarte, California 91010, United States
| | | | | | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center , Duarte, California 91010, United States
| | | |
Collapse
|
15
|
Pentak D, Maciążek-Jurczyk M, Zawada ZH. The role of nanoparticles in the albumin-cytarabine and albumin-methotrexate interactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:388-397. [DOI: 10.1016/j.msec.2016.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/15/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
16
|
Kim H, Lee Y, Kang S, Choi M, Lee S, Kim S, Gujrati V, Kim J, Jon S. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy. NANOTECHNOLOGY 2016; 27:48LT01. [PMID: 27804918 DOI: 10.1088/0957-4484/27/48/48lt01] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.
Collapse
Affiliation(s)
- Hyungjun Kim
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Barros SM, Whitaker SK, Sukthankar P, Avila LA, Gudlur S, Warner M, Beltrão EIC, Tomich JM. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys 2016; 596:22-42. [PMID: 26926258 PMCID: PMC4841695 DOI: 10.1016/j.abb.2016.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
Various strategies are being developed to improve delivery and increase the biological half-lives of pharmacological agents. To address these issues, drug delivery technologies rely on different nano-sized molecules including: lipid vesicles, viral capsids and nano-particles. Peptides are a constituent of many of these nanomaterials and overcome some limitations associated with lipid-based or viral delivery systems, such as tune-ability, stability, specificity, inflammation, and antigenicity. This review focuses on the evolution of bio-based drug delivery nanomaterials that self-assemble forming vesicles/capsules. While lipid vesicles are preeminent among the structures; peptide-based constructs are emerging, in particular peptide bilayer delimited capsules. The novel biomaterial-Branched Amphiphilic Peptide Capsules (BAPCs) display many desirable properties. These nano-spheres are comprised of two branched peptides-bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK, designed to mimic diacyl-phosphoglycerides in molecular architecture. They undergo supramolecular self-assembly and form solvent-filled, bilayer delineated capsules with sizes ranging from 20 nm to 2 μm depending on annealing temperatures and time. They are able to encapsulate different fluorescent dyes, therapeutic drugs, radionuclides and even small proteins. While sharing many properties with lipid vesicles, the BAPCs are much more robust. They have been analyzed for stability, size, cellular uptake and localization, intra-cellular retention and, bio-distribution both in culture and in vivo.
Collapse
Affiliation(s)
- Sheila M Barros
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA; Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Pinakin Sukthankar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - L Adriana Avila
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sushanth Gudlur
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Matt Warner
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eduardo I C Beltrão
- Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
18
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
19
|
Subha V, Ramadoss P, Renganathan S. Incorporation of biotransformed silver nanoparticles in plant polysaccarides resin and their effect on sustained drug release. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Liu YS, Cheng RY, Lo YL, Hsu C, Chen SH, Chiu CC, Wang LF. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles. NANOSCALE 2016; 8:3510-3522. [PMID: 26796318 DOI: 10.1039/c5nr08345a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:579-601. [PMID: 26800431 DOI: 10.1002/wnan.1384] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Nanosponges (NSs) are a new age branched cyclodextrin (CD) polymeric systems exhibiting tremendous potential in pharmaceutical, agro science, and biomedical applications. Over the past decade, different varieties of NS based on the type of CD and the crosslinker have been developed tailored for specific applications. NS technology has been instrumental in achieving solubilization, stabilization, sustained release, enhancement of activity, permeability enhancement, protein delivery, ocular delivery, stimuli sensitive drug release, enhancement of bioavailability, etc. There is a major explosion of research in the area of NS-aided cancer therapeutics. A wide of anticancer molecules both from a pharmacological and physicochemical perspective have been developed as NS formulations by several groups including ours. Our objective in this review is to capture a systematic and comprehensive snapshot of the state-of-the-art of NS-aided cancer therapeutics reported so far. This review will provide an ideal platform for both the formulation scientists working on new polymeric/drug development and cancer biologists/scientists to understand the current nanotechnologies in CD-based NS-aided cancer therapeutics. The scope of the review is limited to small molecules and CD-based NS. The review covers in detail the problems associated with anticancer small molecules, and the solution provided by CD-based NS specifically for camptothecin, curcumin, paclitaxel, tamoxifen, resveratrol, quercetin, oxygen-NS, temozolomide, doxorubicin, and 5-Fluorouracil. WIREs Nanomed Nanobiotechnol 2016, 8:579-601. doi: 10.1002/wnan.1384 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shankar Swaminathan
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | | |
Collapse
|
22
|
Alphandéry E, Grand-Dewyse P, Lefèvre R, Mandawala C, Durand-Dubief M. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev Anticancer Ther 2015; 15:1233-55. [DOI: 10.1586/14737140.2015.1086647] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Gülçür E, Thaqi M, Khaja F, Kuzmis A, Önyüksel H. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Deliv Transl Res 2015; 3. [PMID: 24363979 DOI: 10.1007/s13346-013-0167-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Breast cancer is a leading cause of cancer deaths among women in the US, with 40 % chance of relapse after treatment. Recent studies outline the role of cancer stem cells (CSCs) in tumor initiation, propagation, and regeneration of cancer. Moreover, it has been established that breast CSCs reside in a quiescent state that makes them more resistant to conventional cancer therapies than bulk cancer cells resulting in tumor relapse. In this study, we establish that CSCs are associated with the overexpression of vasoactive intestinal peptide (VIP) receptors which can be used to actively target these cells. We investigated the potential of using a novel curcumin nanomedicine (C-SSM) surface conjugated with VIP to target and hinder breast cancer with CSCs. Here, we formulated, characterized, and evaluated the feasibility of C-SSM nanomedicine in vitro. We investigated the cytotoxicity of C-SSM on breast cancer cells and CSCs by tumorsphere formation assay. Our results suggest that curcumin can be encapsulated in SSM up to 200 μg/ml with 1 mM lipid concentration. C-SSM nanomedicine is easy to prepare and maintains its original physicochemical properties after lyophilization, with an IC50 that is significantly improved from that of free curcumin (14.2±1.2 vs. 26.1±3.0 μM). Furthermore, C-SSM-VIP resulted in up to 20 % inhibition of tumorsphere formation at a dose of 5 μM. To this end, our findings demonstrate the feasibility of employing our actively targeted nanomedicine as a potential therapy for CSCs-enriched breast cancer.
Collapse
Affiliation(s)
- Ece Gülçür
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mentor Thaqi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Fatima Khaja
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Antonina Kuzmis
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hayat Önyüksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biopharmaceutical Sciences (M/C 865) College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USA
| |
Collapse
|
24
|
Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. Int J Pharm 2014; 473:194-202. [DOI: 10.1016/j.ijpharm.2014.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/27/2023]
|
25
|
Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014; 9:589-613. [PMID: 24489467 PMCID: PMC3904834 DOI: 10.2147/ijn.s50941] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
Collapse
Affiliation(s)
- Derusha Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lomas Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Medical Oncology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Tang Q, Cao B, Cheng G. Co-delivery of small interfering RNA using a camptothecin prodrug as the carrier. Chem Commun (Camb) 2014; 50:1323-5. [DOI: 10.1039/c3cc47970f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Dong H, Dong C, Xia W, Li Y, Ren T. Self-assembled, redox-sensitive, H-shaped pegylated methotrexate conjugates with high drug-carrying capability for intracellular drug delivery. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00267e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Vuković L, Madriaga A, Kuzmis A, Banerjee A, Tang A, Tao K, Shah N, Král P, Onyuksel H. Solubilization of therapeutic agents in micellar nanomedicines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15747-15754. [PMID: 24283508 PMCID: PMC3962120 DOI: 10.1021/la403264w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈11 small bexarotene molecules or ≈6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water-soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate headgroups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines.
Collapse
Affiliation(s)
- Lela Vuković
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Antonett Madriaga
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Antonina Kuzmis
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Alan Tang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Kevin Tao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Neil Shah
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hayat Onyuksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| |
Collapse
|
29
|
Barua S, Mitragotri S. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS NANO 2013; 7:9558-70. [PMID: 24053162 PMCID: PMC4128961 DOI: 10.1021/nn403913k] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Design of carriers for effective delivery and targeting of drugs to cellular and subcellular compartments is an unmet need in medicine. Here, we report pure drug nanoparticles comprising camptothecin (CPT), trastuzumab (TTZ), and doxorubicin (DOX) to enable cell-specific interactions, subcellular accumulation, and growth inhibition of breast cancer cells. CPT is formulated in the form of nanorods which are coated with TTZ. DOX is encapsulated in the TTZ corona around the CPT nanoparticle. Our results show that TTZ/DOX-coated CPT nanorods exhibit cell-specific internalization in BT-474 breast cancer cells, after which TTZ is recycled to the plasma membrane, leaving CPT nanorods in the perinuclear region and delivering DOX into the nucleus of the cells. The effects of CPT-TTZ-DOX nanoparticles on growth inhibition are synergistic (combination index = 0.17 ± 0.03) showing 10-10 000-fold lower inhibitory concentrations (IC50) compared to those of individual drugs. The design of antibody-targeted pure drug nanoparticles offers a promising design strategy to facilitate intracellular delivery and therapeutic efficiency of anticancer drugs.
Collapse
Affiliation(s)
| | - Samir Mitragotri
- To whom correspondence should be addressed. Prof. Samir Mitragotri, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106. Phone: 805-893-7532, Fax: 805-893-4731,
| |
Collapse
|
30
|
Development of plumbagin-loaded phospholipid–Tween® 80 mixed micelles: formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther Deliv 2013; 4:1247-59. [DOI: 10.4155/tde.13.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Phospholipid and Tween® 80 mixed micelles were investigated as injectable nanocarriers for the natural anticancer compound, plumbagin (PBG), with the aim to improve anticancer efficiency. PBG-loaded mixed micelles were fabricated by self-assembly; composition being optimized using 32 factorial design. Results & discussion: Optimized mixed micelles were spherical and 46 nm in size. Zeta potential, drug loading and encapsulation efficiency were 5.04 mV, 91.21 and 98.38% respectively. Micelles demonstrated sustained release of PBG. Micelles caused a 2.1-fold enhancement in vitro antitumor activity of PBG towards MCF-7 cells. Micelles proved safe for intravenous injection as PBG was stable at high pH; micelle size and encapsulation efficiency were retained upon dilution. Conclusion: Developed mixed micelles proved potential nanocarriers for PBG in cancer chemotherapy.
Collapse
|
31
|
Facile synthesis of camptothecin intercalated layered double hydroxide nanohybrids via a coassembly route. Int J Pharm 2013; 454:453-61. [DOI: 10.1016/j.ijpharm.2013.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/11/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022]
|
32
|
Abstract
AbstractThe solubilisation of poorly soluble antineoplastic drug camptothecin by nonionic surfactants (polysorbates and octylphenol ethoxylates) and alkyldimethylamine oxide surfactants with the alkyl chain length 8 to 16 carbon atoms was investigated. The hydrophobicity of the solubilising agent turned out to be the primary structural parameter controlling the solubility efficiency of camptothecin in an aqueous solution. The quantitative parameter of solubilisation (drug loading coefficient) provided values in the range of 0.1–1.2% and 0.1–1.0% for alkyldimethylamine oxides and nonionic surfactants, respectively. The decreasing number of oxyethylene units and the extension of the hydrophobic part of nonionic surfactant molecule resulted in the increase of camptothecin solubility. From the dynamic light scattering measurements, the hydrodynamic diameter values of camptothecin-loaded alkyldimethylamine oxide and nonionic micelles were found in the range of 4–42 nm and 5–120 nm, respectively. The experimental values confirmed the increase in micellar size with the increasing alkyl chain length. The values of the packing parameter of camptothecin-loaded dodecyldimethylamine oxide micelles indicate their spherical shape at all the investigated surfactant concentrations. A simple computer model of camptothecin-loaded dodecyldimethylamine oxide micelle provided the diameter of the structure cross section which is consistent with the experimental values.
Collapse
|
33
|
Gombotz WR, Hoffman AS. Polymeric Micelles. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm 2012; 439:49-62. [PMID: 23046667 DOI: 10.1016/j.ijpharm.2012.09.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 02/05/2023]
Abstract
For the purpose of brain delivery upon intravenous injection, formulations of camptothecin-loaded solid lipid nanoparticles (SLN), prepared by hot high pressure homogenisation, were designed. Incorporation of camptothecin in the hydrophobic and acidic environment of SLN matrix was chosen to stabilise the lactone ring, which is essential for its antitumour activity, and for avoiding premature loss of drug on the way to target camptothecin to the brain. A multivariate approach was used to assess the influence of the qualitative and quantitative composition on the physicochemical properties of camptothecin-loaded SLN in comparison to plain SLN. Mean particle sizes of ≤200 nm, homogenous size distributions and high encapsulation efficiencies (>90%) were achieved for the most suitable formulations. In vitro release studies in plasma, showed a prolonged release profile of camptothecin from SLN, confirming the physical stability of the particles under physiological pH. A higher affinity of the SLN to the porcine brain capillary endothelial cells (BCEC) was shown in comparison to macrophages. MTT studies in BCEC revealed a moderate decrease in the cell viability of camptothecin, when incorporated in SLN compared to free camptothecin in solution. In vivo studies in rats showed that fluorescently labelled SLN were detected in the brain after i.v. administration. This study indicates that the camptothecin-loaded SLN are a promising drug brain delivery system worth to explore further for brain tumour therapy.
Collapse
|
35
|
Minelli R, Cavalli R, Ellis L, Pettazzoni P, Trotta F, Ciamporcero E, Barrera G, Fantozzi R, Dianzani C, Pili R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur J Pharm Sci 2012; 47:686-94. [PMID: 22917641 DOI: 10.1016/j.ejps.2012.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Abstract
Camptothecin (CPT) is a potent DNA Topoisomerase I inhibitor with anti-tumor activity in hematological and solid tumors. However, it did not reach clinical use because of its poor solubility and high degrability. β-Cyclodextrin nanosponge (CN) have been demonstrated to be able to increase the solubility of lipophilic compounds and to protect them from degradation. In the present study, we evaluated whether β-Cyclodextrin nanosponge carriers can overcome CPT chemical disadvantages and improve the in vitro anti-tumor efficacy in the androgen refractory models of prostate cancer DU145 and PC-3 and the androgen sensitive model LNCaP. Camptothecin-loaded β-Cyclodextrin nanosponge (CN-CPT) showed sizes of about 400 nm, spherical shape and a drug loading of 38%. HPLC analysis, performed on the cell pellet after treatment with CN-CPT revealed that CPT concentration increased over time indicating a prolonged release of the drug. Moreover, CN-CPT inhibited Topoisomerase I activity, and induced DNA damage, and cell cycle arrest more effectively than CPT, indicating that the CN-CPT formulation does not affect activity of the drug. Moreover, Annexin V/Propidium Iodide staining showed an induction of cell death at low concentrations that were not effective for CTP. LNCaP cells were less sensitive to CPT than PC-3 and DU145 cells, but CN-CPT still exerted higher anti-proliferative activity and DNA damage ability than CPT. The experiments performed in LNCaP cells demonstrated that CN-CPT treatment inhibited expression of the androgen receptor at doses where CPT was ineffective. Our results demonstrated the higher anti-tumor effectiveness of CN-CPT compare to CPT in prostate cancer cells, supporting the relevance of future studies for the use of the β-Cyclodextrin nanosponge to deliver anticancer drugs in vivo.
Collapse
Affiliation(s)
- Rosalba Minelli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Di Turi G, Riggio C, Vittorio O, Marconcini S, Briguglio F, Funel N, Campani D, Barone A, Raffa V, Covani U. Sub-micrometric liposomes as drug delivery systems in the treatment of periodontitis. Int J Immunopathol Pharmacol 2012; 25:657-670. [PMID: 23058016 DOI: 10.1177/039463201202500312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Periodontitis is a complex disease and bacterial infection is one of the most common factors involved in this disease. Current strategies for the local delivery of antibiotics do not allow a complete clearance of bacteria filling dentinal tubules and this limits their therapeutic efficacy. Therefore, there is a strong need for the development of new delivery strategies aimed at improving the efficacy of antibiotic therapy for periodontitis with special reference to their ability to penetrate into the tubules. The aim of the present study is to develop liposome-based delivery systems of sub-micron dimension, able to diffuse into the dentinal tubules. A further aim of the research is to develop a protocol for enhanced diffusion based on the use of magnetic liposomes and magnetic fields. Liposomes were produced by hydration of a pre-liposomal formulation. The vesicles were stabilised with PEG and their re-sizing was achieved by extrusion. Magnetite nanoparticles were synthesized inside the vesicles, i.e., the chemical reaction involving FeCl₂, FeCl₃ and NH₃ occurred within the core of the newly formed liposomes. Dynamic light scattering analysis was performed for size characterization. A mathematical model was implemented to predict the diffusion of the liposomes in dentinal tubules. Ex-vivo validation was performed on extracted human teeth. We produced PEG-ylated liposomes (average size 204.3 nm) and PEG-ylated magnetic liposomes (average size 286 nm) and an iron content of 4.2 μg/ml. Through mathematical modelling, we deduced that sub-micrometer vesicles are able to penetrate into dentinal tubules. This penetration is considerably more effective when the vesicles are magnetized and subjected to an external magnetic field which accelerates their movement within the tubules. The liposome-based delivery systems developed by the present study are able to penetrate deeply into the tubules, sometimes reaching their terminal ends.
Collapse
Affiliation(s)
- G Di Turi
- Department of Oncology, Transplantation and Advanced Technologies in Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sahib MN, Abdulameer SA, Darwis Y, Peh KK, Tan YTF. Solubilization of beclomethasone dipropionate in sterically stabilized phospholipid nanomicelles (SSMs): physicochemical and in vitro evaluations. DRUG DESIGN DEVELOPMENT AND THERAPY 2012; 6:29-42. [PMID: 22393583 PMCID: PMC3287410 DOI: 10.2147/dddt.s28265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The local treatment of lung disorders such as asthma and chronic obstructive pulmonary disease via pulmonary drug delivery offers many advantages over oral or intravenous routes of administration. This is because direct deposition of a drug at the diseased site increases local drug concentrations, which improves the pulmonary receptor occupancy and reduces the overall dose required, therefore reducing the side effects that result from high drug doses. From a clinical point of view, although jet nebulizers have been used for aerosol delivery of water-soluble compounds and micronized suspensions, their use with hydrophobic drugs has been inadequate. Aim: To evaluate the feasibility of sterically stabilized phospholipid nanomicelles (SSMs) loaded with beclomethasone dipropionate (BDP) as a carrier for pulmonary delivery. Methods 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 5000) polymeric micelles containing BDP (BDP-SSMs) were prepared by the coprecipitation and reconstitution method, and the physicochemical and in vitro characteristics of BDP-SSMs were investigated. Results BDP-SSMs were successfully prepared with a content uniformity and reproducibility suitable for pulmonary administration. The maximum solubility of BDP in SSMs was approximately 1300 times its actual solubility. The particle size and zeta potential of BDP-SSMs were 19.89 ± 0.67 nm and −28.03 ± 2.05 mV, respectively. The SSMs system slowed down the release of BDP and all of the aerodynamic values of the aerosolized rehydrated BDP-SSMs were not only acceptable but indicated a significant level of deposition in the lungs. Conclusion The SSM system might be an effective way of improving the therapeutic index of nebulized, poorly soluble corticosteroids.
Collapse
Affiliation(s)
- Mohanad Naji Sahib
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | | | | | | |
Collapse
|
38
|
Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Fung Tan YT. Incorporation of Beclomethasone Dipropionate into Polyethylene Glycol-Diacyl Lipid Micelles as a Pulmonary Delivery System. Drug Dev Res 2012. [DOI: 10.1002/ddr.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohanad Naji Sahib
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Kok Khiang Peh
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | | | - Yvonne Tze Fung Tan
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| |
Collapse
|
39
|
Banerjee A, Onyuksel H. Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res 2012; 29:1698-711. [PMID: 22399387 DOI: 10.1007/s11095-012-0718-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/20/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Pancreatic polypeptide (PP) has important glucoregulatory functions and thereby holds significance in the treatment of diabetes and obesity. However, short plasma half-life and aggregation propensity of PP in aqueous solution, limits its therapeutic application. To address these issues, we prepared and characterized a formulation of PP in sterically stabilized micelles (SSM) that protects and stabilizes PP in its active conformation. METHODS PP-SSM was prepared by incubating PP with SSM dispersion in buffer. Peptide-micelle association and freeze-drying efficacy of the formulation was characterized in phosphate buffers with or without sodium chloride using dynamic light scattering, fluorescence spectroscopy and circular dichroism. The degradation kinetics of PP-SSM in presence of proteolytic enzyme was determined using HPLC and bioactivity of the formulation was evaluated by in vitro cAMP inhibition study. RESULTS PP self-associated with SSM and this interaction was influenced by presence/absence of sodium chloride in the buffer. The formulation was effectively lyophilized, demonstrating feasibility for its long-term storage. The stability of peptide against proteolytic degradation was significantly improved and PP in SSM retained its bioactivity in vitro. CONCLUSIONS Self-association of PP with phospholipid micelles addressed the delivery issues of the peptide. This nanomedicine should be further developed for the treatment of diabetes.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
40
|
Wichit A, Tangsumranjit A, Pitaksuteepong T, Waranuch N. Polymeric micelles of PEG-PE as carriers of all-trans retinoic acid for stability improvement. AAPS PharmSciTech 2012; 13:336-43. [PMID: 22274760 DOI: 10.1208/s12249-011-9749-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022] Open
Abstract
The topical application of all-trans retinoic acid (ATRA) is an effective treatment for several skin disorders, including photo-aging. Unfortunately, ATRA is susceptible to light, heat, and oxidizing agents. Thus, this study aimed to investigate the ability of polymeric micelles prepared from polyethylene glycol conjugated phosphatidylethanolamine (PEG-PE) to stabilize ATRA under various storage conditions. ATRA entrapped in polymeric micelles with various PEG and PE structures was prepared. The critical micelle concentrations were 97-243 μM, depending on the structures of the PEG and PE molecules. All of the micelles had particle diameters of 6-20 nm and neutral charges. The highest entrapment efficiency (82.7%) of the tested micelles was exhibited by ATRA in PEG with a molecular weight of 750 Da conjugated to dipalmitoyl phosphatidylethanolamine (PEG(750)-DPPE) micelles. The PEG(750)-DPPE micelle could significantly retard ATRA oxidation compared to ATRA in 75% methanol/HBS solution. Up to 87% of ATRA remained in the PEG(750)-DPPE micelle solution after storage in ambient air for 28 days. This result suggests that PEG(750)-DPPE micelle can improve ATRA stability. Therefore, ATRA in PEG(750)-DPPE micelle is an interesting alternative structure for the development of cosmeceutical formulations.
Collapse
|
41
|
Qi N, Tang X, Lin X, Gu P, Cai C, Xu H, He H, Zhang Y. Sterilization stability of vesicular phospholipid gels loaded with cytarabine for brain implant. Int J Pharm 2012; 427:234-41. [PMID: 22349049 DOI: 10.1016/j.ijpharm.2012.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/19/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the sterilization stability of cytarabine (Ara-C) loaded vesicular phospholipid gels (VPGs). VPGs were prepared by high pressure homogenization method intended for the treatment of glioblastoma multiforme (GBM) in brain as injectable implant. The particle size of VPGs after redispersion was 119.6 ± 66.24 nm, and entrapment efficiency (EE) was 32.6 ± 2.1%. Drug release in vitro from VPGs sustained for 80 h with 48.1% initial release within 1h, and rheological studies demonstrated a gel-like behavior. Comparatively, after autoclaved sterilization, increased particle size and EE were obtained as 165.6 ± 71.89 nm and 62.6 ± 2.3%, respectively. Additionally, characteristics of drug release were significantly altered with obviously prolonged release time to 450 h and remarkable reduced initial release to 24.7%. Also, the viscoelasticity was reinforced with clearly decreased fluidity. This result could be explained by the fusion of small vesicles witnessed in TEM observation, which resulted in percentages change of vesicle groups with different size. However, reduced Ara-C and increased lysophosphatidylcholine (LPC) were observed. Among the stabilizers, addition of sodium sulfite showed best effects with high stability of Ara-C and phospholipids. This may be explained by the presence of SO(3)(-), free radicals produced by sodium sulfite. Being an hydroxyl radical scavenger, it can reduce the generation of HO free radicals. These results show that, with addition of appropriate stabilizers, VPGs can be autoclaved with high stability, and it is a promising dosage form for treatment of GBM after injection into resectable or nonresectable neoplasms with sustained release properties.
Collapse
Affiliation(s)
- Na Qi
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Inflammation is the body's natural defense mechanism in response to many diseases including infection, cancer, and autoimmune disease. Since the birth of nanotechnology at the end of the twentieth century, scientists have been utilizing the pathophysiologic features of inflammation, mainly leaky vasculature and the overexpression of biomarkers, to design nanomedicines that can deliver drugs with passive and active targeting mechanisms to inflamed tissue sites and achieve effective therapy. Recent advances in nanomedicine research have provided scientists with nanocarriers of many unique and tunable properties to match the specific requirements for the treatment of different inflammatory disease conditions. In this chapter, we describe some of the materials and methods used in the preparation and characterization of these nanomedicines, approaches used for the evaluation of their efficacy on a cellular and organ level, as well as available animal models. We also show how safety and biodistribution studies using anti-inflammatory nanomedicines are conducted in our laboratory for the treatment of rheumatoid arthritis animal models.
Collapse
Affiliation(s)
- Fatima A Khaja
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
43
|
Wang Y, Chen L, Ding Y, Yan W. Oxidized phospholipid based pH sensitive micelles for delivery of anthracyclines to resistant leukemia cells in vitro. Int J Pharm 2011; 422:409-17. [PMID: 22037443 DOI: 10.1016/j.ijpharm.2011.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
Abstract
A self-assembled micelle drug delivery system was constructed with an oxidized phospholipid for anthracycline anti-cancer drug delivery. An oxidized phospholipid, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazPC), was chosen to fabricate micelles via both electrostatic and hydrophobic interactions for delivery of doxorubicin (DOX) and idarubicin (IDA). The formation of ion-pair complexes between PazPC and DOX was first investigated under different pH conditions. Drug-loaded PazPC micelles at a 5:1 molar ratio of lipid/drug at pH 7.0 were then prepared by the solvent evaporation method. The empty and drug-loaded PazPC micelles exhibited a small particle size (∼10 nm) and high encapsulation efficiency. In vitro stability and release profile indicated that the micelles were stable at physiological conditions, but exhibited pH-sensitive behavior with accelerated release of DOX or IDA in an acidic endosome environment. Finally, in vitro uptake and cytotoxicity were evaluated for leukemia P388 and its resistant subline P388/ADR. The drug-loaded PazPC micelles enhanced drug uptake and exhibited higher cytotoxicity in both leukemia cells in comparison to free drugs. In conclusion, we developed a novel pH sensitive oxidized phospholipid-based micellar formulation which could potentially be useful in delivering anthracycline anti-cancer drugs and provide a novel strategy for increasing the therapeutic index while overcoming multidrug resistance for leukemia treatment.
Collapse
Affiliation(s)
- Yongzhong Wang
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
44
|
Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Tan YTF. Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations. Int J Nanomedicine 2011; 6:2351-66. [PMID: 22072872 PMCID: PMC3205131 DOI: 10.2147/ijn.s25363] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization. METHODS PEG(5000)-DSPE polymeric micelles containing budesonide (BUD-SSMs) were prepared by the coprecipitation and reconstitution method, and the physicochemical and pharmacodynamic characteristics of BUD-SSMs were investigated. RESULTS The optimal concentration of solubilized budesonide at 5 mM PEG(5000)-DSPE was 605.71 ± 6.38 μg/mL, with a single-sized peak population determined by photon correlation spectroscopy and a particle size distribution of 21.51 ± 1.5 nm. The zeta potential of BUD-SSMs was -28.43 ± 1.98 mV. The percent entrapment efficiency, percent yield, and percent drug loading of the lyophilized formulations were 100.13% ± 1.09%, 97.98% ± 1.95%, and 2.01% ± 0.02%, respectively. Budesonide was found to be amorphous by differential scanning calorimetry, and had no chemical interaction with PEGylated polymer according to Fourier transform infrared spectroscopy. Transmission electron microscopic images of BUD-SSMs revealed spherical nanoparticles. BUD-SSMs exhibited prolonged dissolution behavior compared with Pulmicort Respules (P < 0.05). Aerodynamic characteristics indicated significantly higher deposition in the lungs compared with Pulmicort Respules. The mass median aerodynamic, geometric standard deviation, percent emitted dose, and the fine particle fraction were 2.83 ± 0.08 μm, 2.33 ± 0.04 μm, 59.13% ± 0.19%, and 52.31% ± 0.25%, respectively. Intratracheal administration of BUD-SSMs 23 hours before challenge (1 mg/kg) in an asthmatic/chronic obstructive pulmonary disease rat model led to a significant reduction in inflammatory cell counts (76.94 ± 5.11) in bronchoalveolar lavage fluid compared with administration of Pulmicort Respules (25.06 ± 6.91). CONCLUSION The BUD-SSMs system might be advantageous for asthma or chronic obstructive pulmonary disease and other inflammatory airway diseases.
Collapse
Affiliation(s)
- Mohanad Naji Sahib
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | | | | | |
Collapse
|
45
|
Fay F, McLaughlin KM, Small DM, Fennell DA, Johnston PG, Longley DB, Scott CJ. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials 2011; 32:8645-53. [PMID: 21875750 DOI: 10.1016/j.biomaterials.2011.07.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality.
Collapse
Affiliation(s)
- Francois Fay
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Zheng S, Chang S, Lu J, Chen Z, Xie L, Nie Y, He B, Zou S, Gu Z. Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo. PLoS One 2011; 6:e21064. [PMID: 21695227 PMCID: PMC3111480 DOI: 10.1371/journal.pone.0021064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 05/19/2011] [Indexed: 01/11/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third most common cause of cancer related mortality worldwide. 9-Nitrocamptothecin (9NC) is a potent topoisomerase-I inhibitor with strong anticancer effect. To increase the solubility and stability, we synthesized a novel 9NC loaded liposomes (9NC-LP) via incorporating 9NC into liposomes. In the present study, we determined the effects of 9NC and 9NC-LP on in vitro and in vivo, and the underlying mechanisms. Methodology/Principal Findings We first analyzed the characteristics of 9NC-LP. Then we compared the effects of 9NC and 9NC-LP on the proliferation and apoptosis of HepG2, Bel-7402, Hep3B and L02 cells in vitro. We also investigated their anticancer properties in nude mice bearing HCC xenograft in vivo. 9NC-LP has a uniform size (around 190 nm) and zeta potential (∼−11 mV), and exhibited a steady sustained-release pattern profile in vitro. Both 9NC and 9NC-LP could cause cell cycle arrest and apoptosis in a dose-dependent and p53-dependent manner. However, this effect was not ubiquitous in all cell lines. Exposure to 9NC-LP led to increased expression of p53, p21, p27, Bax, caspase-3, caspase-8, caspase-9 and apoptosis-inducing factor, mitochondrion-associated 1 and decreased expression of Bcl-2, cyclin E, cyclin A, Cdk2 and cyclin D1. Furthermore, 9NC-LP exhibited a more potent antiproliferative effect and less side effects in vivo. Western blot analysis of the xenograft tumors in nude mice showed similar changes in protein expression in vivo. Conclusions/Significance In conclusion, 9NC and 9NC-LP can inhibit HCC growth via cell cycle arrest and induction of apoptosis. 9NC-LP has a more potent anti-tumor effect and fewer side effects in vivo, which means it is a promising reagent for cancer therapy via intravenous administration.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Chang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Jinli Lu
- Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhihui Chen
- Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Shengquan Zou
- Department of General Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- * E-mail: (SZ); (ZG)
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
- * E-mail: (SZ); (ZG)
| |
Collapse
|
47
|
Galbiati A, Tabolacci C, Morozzo Della Rocca B, Mattioli P, Beninati S, Paradossi G, Desideri A. Targeting Tumor Cells through Chitosan-Folate Modified Microcapsules Loaded with Camptothecin. Bioconjug Chem 2011; 22:1066-72. [DOI: 10.1021/bc100546s] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Liang H, Yang Q, Deng L, Lu J, Chen J. Phospholipid–Tween 80 mixed micelles as an intravenous delivery carrier for paclitaxel. Drug Dev Ind Pharm 2011; 37:597-605. [DOI: 10.3109/03639045.2010.533276] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Abstract
In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody–nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.
Collapse
Affiliation(s)
- Francois Fay
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
50
|
Raffa V, Vittorio O, Riggio C, Cuschieri A. Progress in nanotechnology for healthcare. MINIM INVASIV THER 2011; 19:127-35. [PMID: 20497066 DOI: 10.3109/13645706.2010.481095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle disorders.
Collapse
Affiliation(s)
- V Raffa
- Scuola Superiore Sant'Anna di Studi Universitari, Pisa, Italy
| | | | | | | |
Collapse
|