1
|
Weidemann S, Gorbokon N, Lennartz M, Hube-Magg C, Fraune C, Bernreuther C, Clauditz TS, Jacobsen F, Jansen K, Schmalfeldt B, Wölber L, Paluchowski P, Berkes E, Heilenkötter U, Sauter G, Uhlig R, Wilczak W, Steurer S, Simon R, Krech T, Marx A, Burandt E, Lebok P. High Homogeneity of Mesothelin Expression in Primary and Metastatic Ovarian Cancer. Appl Immunohistochem Mol Morphol 2023; 31:77-83. [PMID: 36728364 PMCID: PMC9928564 DOI: 10.1097/pai.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2022] [Indexed: 02/03/2023]
Abstract
To study the extent of heterogeneity of mesothelin overexpression in primary ovarian cancers and their peritoneal and lymph node metastases, a tissue microarray (TMA) was constructed from multiple sites of 220 ovarian cancers and analyzed by immunohistochemistry. One tissue core each was taken from up to 18 different tumor blocks per cancer, resulting in a total of 2460 tissue spots from 423 tumor sites (188 primary cancers, 162 peritoneal carcinosis, and 73 lymph node metastases). Positive mesothelin expression was found in 2041 of the 2342 (87%) arrayed tissue spots and in 372 of the 392 (95%) tumor sites that were interpretable for mesothelin immunohistochemistry. Intratumoral heterogeneity was found in 23% of 168 primary cancer sites interpretable for mesothelin and decreased to 12% in 154 peritoneal carcinosis and to 6% in 71 lymph node metastases ( P <0.0001). Heterogeneity between the primary tumor and matched peritoneal carcinosis was found in 16% of 102 cancers with interpretable mesothelin results. In these cancers, the mesothelin status switched from positive in the primary tumor to negative in the peritoneal carcinosis (3 cancers) in or vice versa (2 cancers), or a mixture of positive and negative peritoneal carcinoses was found (11 cancers). No such switch was seen between the mesothelin-interpretable primary tumors and their nodal metastases of 59 cancers, and only 1 mesothelin-positive tumor had a mixture of positive and negative lymph node metastases. In conclusion, mesothelin expression is frequent and highly homogeneous in ovarian cancer.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Kristina Jansen
- General, Visceral and Thoracic Surgery Department and Clinic
| | | | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf
| | | | - Enikö Berkes
- Department of Gynecology, Regio Clinic Itzehoe, Itzehoe
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Clinical Center Osnabrueck, Institute of Pathology, Osnabrueck
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| |
Collapse
|
2
|
Mesothelin Expression in Human Tumors: A Tissue Microarray Study on 12,679 Tumors. Biomedicines 2021; 9:biomedicines9040397. [PMID: 33917081 PMCID: PMC8067734 DOI: 10.3390/biomedicines9040397] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mesothelin (MSLN) represents an attractive molecule for targeted cancer therapies. To identify tumors that might benefit from such therapies, tissue microarrays including 15,050 tumors from 122 different tumor types and 76 healthy organs were analyzed for MSLN expression by immunohistochemistry. Sixty-six (54%) tumor types showed at least occasional weak staining, including 50 (41%) tumor types with at least one strongly positive sample. Highest prevalence of MSLN positivity had ovarian carcinomas (serous 97%, clear cell 83%, endometrioid 77%, mucinous 71%, carcinosarcoma 65%), pancreatic adenocarcinoma (ductal 75%, ampullary 81%), endometrial carcinomas (clear cell 71%, serous 57%, carcinosarcoma 50%, endometrioid 45%), malignant mesothelioma (69%), and adenocarcinoma of the lung (55%). MSLN was rare in cancers of the breast (7% of 1138), kidney (7% of 807), thyroid gland (1% of 638), soft tissues (0.3% of 931), and prostate (0 of 481). High expression was linked to advanced pathological tumor (pT) stage (p < 0.0001) and metastasis (p < 0.0001) in 1619 colorectal adenocarcinomas, but unrelated to parameters of malignancy in 1072 breast-, 386 ovarian-, 174 lung-, 757 kidney-, 171 endometrial-, 373 gastric-, and 925 bladder carcinomas. In summary, numerous important cancer types with high-level MSLN expression might benefit from future anti-MSLN therapies, but MSLN’s prognostic relevance appears to be limited.
Collapse
|
3
|
Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2020; 21:473-486. [PMID: 33176519 DOI: 10.1080/14712598.2021.1843628] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Mesothelin (MSLN) is a tumor differentiation antigen normally restricted to the body's mesothelial surfaces, but significantly overexpressed in a broad range of solid tumors. For this reason, MSLN has emerged as an important target for the development of novel immunotherapies. This review focuses on anti-MSLN chimeric antigen receptor (CAR) T cell immunotherapy approaches.Areas covered: A brief overview of MSLN as a therapeutic target and existing anti-MSLN antibody-based drugs and vaccines is provided. A detailed account of anti-MSLN CAR-T cell approaches utilized in preclinical models is presented. Finally, a comprehensive summary of currently ongoing and completed anti-MSLN CAR-T cell clinical trials is discussed.Expert opinion: Initial trials using anti-MSLN CAR-T cells have been safe, but efficacy has been limited. Employing regional routes of delivery, introducing novel modifications leading to enhanced tumor infiltration and persistence, and improved safety profiles and combining anti-MSLN CAR-T cells with standard therapies, could render them more efficacious in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Astero Klampatsa
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vivian Dimou
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Moentenich V, Comut E, Gebauer F, Tuchscherer A, Bruns C, Schroeder W, Buettner R, Alakus H, Loeser H, Zander T, Quaas A. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies. Ther Adv Med Oncol 2020; 12:1758835920917571. [PMID: 32547645 PMCID: PMC7249595 DOI: 10.1177/1758835920917571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mesothelin is expressed at very low levels by normal mesothelial cells but is overexpressed in several human cancers. This makes mesothelin a promising target for immunotherapy. Limited data exist about mesothelin expression in esophageal carcinoma. In a current clinical trial, the highly potent anti-mesothelin antibody anetumab ravtansine is used in patients with mesothelin-positive tumors. Response rates are correlated with mesothelin expression (using the Ventana antibody) in tumor cells. No data are available on expression levels using the Ventana antibody. Most data have been generated using the Novocastra antibody. As patients are selected for clinical trials based on antibody staining of tumor samples, a comparison of these two available antibodies is crucial. Methods We analyzed 481 esophageal carcinomas [373 esophageal adenocarcinomas (EACs), 108 esophageal squamous cell carcinomas (ESCCs)] using two different monoclonal antibodies (Novocastra and Ventana) for mesothelin expression (low-mid and high-level expression, as used in one clinical trial). We also checked for the correlation of these results with clinical and molecular data. Results We revealed different staining results for both antibodies in EACs: Ventana: 53.6% (low expression: 25.3%; high expression: 28.3%) and Novocastra: 35.7% (low expression: 21.2%; high expression 14.5%). In ESCC we found comparable staining results: Ventana: 13.3% (low expression: 9.5%; high expression: 3.8%) and Novocastra: 13% (low expression: 11.1%; high expression: 1.9%). ARID1a-deficient EAC patients demonstrated significantly higher rates of mesothelin-positive tumors than ARID1a intact EAC patients. No correlations were found with other molecular alterations (TP53 mutation, ERBB2 amplification) or survival rates. Conclusion To the best of our knowledge, this is the largest study analyzing the importance of mesothelin expression in esophageal carcinoma. This study revealed a significant number of mesothelin-positive esophageal carcinomas, especially adenocarcinomas. New therapeutic targets are urgently required to improve the outcome of patients with locally advanced or metastasized esophageal carcinoma. The inhibition of mesothelin can be a new attractive target.
Collapse
Affiliation(s)
- Valeska Moentenich
- Department of Oncology and Hematology, University of Cologne, Kerpener Strasse 62, Cologne 50937, Germany
| | - Erdem Comut
- Institute of Pathology, Pammukale University, Turkey
| | - Florian Gebauer
- Department of Visceral Surgery, University of Cologne, Germany
| | - Armin Tuchscherer
- Department of Oncology and Hematology, University of Cologne, Germany
| | | | | | | | - Hakan Alakus
- Department of Visceral Surgery, University of Cologne, Germany
| | - Heike Loeser
- Institute of Pathology, University of Cologne, Germany
| | - Thomas Zander
- Department of Oncology and Hematology, University of Cologne, Germany
| | | |
Collapse
|
5
|
Kim H, Chung Y, Paik SS, Jang K, Shin SJ. Mesothelin expression and its prognostic role according to microsatellite instability status in colorectal adenocarcinoma. Medicine (Baltimore) 2019; 98:e16207. [PMID: 31261569 PMCID: PMC6616341 DOI: 10.1097/md.0000000000016207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cell-surface glycoprotein, mesothelin, is normally present on mesothelial cells. Overexpression of mesothelin has been reported in many tumors and is correlated with poor outcome. We investigated the clinicopathologic significance of mesothelin expression in colorectal adenocarcinoma with microsatellites instability (MSI) status.Mesothelin expression was evaluated immunohistochemically in tissue microarray blocks from 390 colorectal adenocarcinoma samples. Mesothelin expression was interpreted according to the intensity and extent. A score of 2 was considered high expression. We analyzed the correlation between mesothelin expression and clinicopathologic characteristics.High mesothelin expression was observed in 177 (45.4%) out of 390 colorectal adenocarcinoma samples and was significantly associated with high histologic grade (P = .037), lymphatic invasion (P = .028), lymph node metastasis (P = .028), and high AJCC stage (P = .026). Kaplan-Meier survival curves revealed no significant difference between patients with high mesothelin expression and patients with low mesothelin expression in both recurrence-free survival (RFS) and cancer-specific survival (P = .609 and P = .167, respectively). In subgroup survival analyses, high mesothelin expression was associated with poor RFS in the MSI-High group of colorectal adenocarcinoma (P = .004).High mesothelin expression was significantly associated with aggressive phenotypes and poor patient outcome in MSI-High colorectal adenocarcinoma.
Collapse
|
6
|
Shiraishi T, Shinto E, Mochizuki S, Tsuda H, Kajiwara Y, Okamoto K, Einama T, Hase K, Ueno H. Mesothelin expression has prognostic value in stage ΙΙ/ΙΙΙ colorectal cancer. Virchows Arch 2019; 474:297-307. [DOI: 10.1007/s00428-018-02514-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
|
7
|
Hassan R, Thomas A, Alewine C, Le DT, Jaffee EM, Pastan I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J Clin Oncol 2016; 34:4171-4179. [PMID: 27863199 DOI: 10.1200/jco.2016.68.3672] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mesothelin is a tumor antigen that is highly expressed in many human cancers, including malignant mesothelioma and pancreatic, ovarian, and lung adenocarcinomas. It is an attractive target for cancer immunotherapy because its normal expression is limited to mesothelial cells, which are dispensable. Several antibody-based therapeutic agents as well as vaccine and T-cell therapies directed at mesothelin are undergoing clinical evaluation. These include antimesothelin immunotoxins (SS1P, RG7787/LMB-100), chimeric antimesothelin antibody (amatuximab), mesothelin-directed antibody drug conjugates (anetumab ravtansine, DMOT4039A, BMS-986148), live attenuated Listeria monocytogenes-expressing mesothelin (CRS-207, JNJ-64041757), and chimeric antigen receptor T-cell therapies. Two antimesothelin agents are currently in multicenter clinical registration trials for malignant mesothelioma: amatuximab in the first-line setting and anetumab ravtansine as second-line therapy. Phase II randomized clinical trials of CRS-207 as a boosting agent and in combination with immune checkpoint inhibition for pancreatic cancer are nearing completion. These ongoing studies will define the utility of mesothelin immunotherapy for treating cancer.
Collapse
Affiliation(s)
- Raffit Hassan
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Anish Thomas
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Christine Alewine
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Dung T Le
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Elizabeth M Jaffee
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Ira Pastan
- Raffit Hassan, Anish Thomas, Christine Alewine, and Ira Pastan, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda; and Dung T. Le and Elizabeth M. Jaffee, Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
He X, Despeaux E, Stueckle TA, Chi A, Castranova V, Dinu CZ, Wang L, Rojanasakul Y. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L538-49. [PMID: 27422997 PMCID: PMC5142212 DOI: 10.1152/ajplung.00139.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies.
Collapse
Affiliation(s)
- Xiaoqing He
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Emily Despeaux
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Todd A Stueckle
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Alexander Chi
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| |
Collapse
|
9
|
Rhoda K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Potential nanotechnologies and molecular targets in the quest for efficient chemotherapy in ovarian cancer. Expert Opin Drug Deliv 2014; 12:613-34. [PMID: 25300775 DOI: 10.1517/17425247.2015.970162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Ovarian cancer, considered one of the most fatal gynecological cancers, goes largely undiagnosed until metastasis presents itself, usually once the patient is in the final stages and thus, too late for worthwhile therapy. Targeting this elusive disease in its early stages would improve the outcome for most patients, while the information generated thereof would increase the possibility of preventative mechanisms of therapy. AREAS COVERED This review discusses various molecular targets as possible moieties to be incorporated in a holistic drug delivery system or the more aptly termed 'theranostic' system. These molecular targets can be used for targeting, visualizing, diagnosing, and ultimately, treating ovarian cancer in its entirety. Currently implemented nanoframeworks, such as nanomicelles and nanoliposomes, are described and the effectiveness of nanostructures in tumor targeting, treatment functions, and overcoming the drug resistance challenge is discussed. EXPERT OPINION Novel nanotechnology strategies such as the development of nanoframeworks decorated with targeted ligands of a molecular nature may provide an efficient chemotherapy, especially when instituted in combination with imaging, diagnostic, and ultimately, therapeutic moieties. An imperative aspect of utilizing nanotechnology in the treatment of ovarian cancer is the flexibility of the drug delivery system and its ability to overcome standard obstacles such as: i) successfully treating the desired cells through direct targeting; ii) reducing toxicity levels of treatment by achieving direct targeting; and iii) delivery of targeted therapy using an efficient vehicle that is exceptionally degradable in response to a particular stimulus. The targeting of ovarian cancer in its early stages using imaging and diagnostic nanotechnology is an area that can be improved upon by combining therapeutic moieties with molecular biomarkers. The nanotechnology and molecular markers mentioned in this review have generally been used for either imaging or diagnostics, and have not yet been successfully implemented into bi-functional tools, which it is hoped, should eventually include a therapeutic aspect.
Collapse
Affiliation(s)
- Khadija Rhoda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | | | |
Collapse
|
10
|
Ito T, Kajino K, Abe M, Sato K, Maekawa H, Sakurada M, Orita H, Wada R, Kajiyama Y, Hino O. ERC/mesothelin is expressed in human gastric cancer tissues and cell lines. Oncol Rep 2013; 31:27-33. [PMID: 24146039 PMCID: PMC3868502 DOI: 10.3892/or.2013.2803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022] Open
Abstract
ERC/mesothelin is expressed in mesothelioma and other malignancies. The ERC/mesothelin gene (MSLN) encodes a 71-kDa precursor protein, which is cleaved to yield 31-kDa N-terminal (N-ERC/mesothelin) and 40-kDa C-terminal (C-ERC/mesothelin) proteins. N-ERC/mesothelin is a soluble protein and has been reported to be a diagnostic serum marker of mesothelioma and ovarian cancer. Gastric cancer tissue also expresses C-ERC/mesothelin, but the significance of serum N-ERC levels for diagnosing gastric cancer has not yet been studied. We examined the latter issue in the present study as well as C-ERC/mesothelin expression in human gastric cancer tissues and cell lines. We immunohistochemically examined C-ERC/mesothelin expression in tissue samples from 50 cases of gastric cancer, and we also assessed the C-ERC/mesothelin expression in 6 gastric cancer cell lines (MKN-1, MKN-7, MKN-74, NUGC-3, NUGC-4 and TMK-1) using reverse transcription-polymerase chain reaction, flow cytometry, immunohistochemistry and immunoblotting. We also examined the N-ERC/mesothelin concentrations in the supernatants of cultured cells and in the sera of gastric cancer patients using an enzyme-linked immunosorbent assay (ELISA). N-ERC/mesothelin was detected in the supernatants of 3 gastric cancer cell lines (MKN-1, NUGC-4 and TMK-1) by ELISA, but its concentration in the sera of gastric cancer patients was almost same as that observed in the sera of the normal controls. In the gastric cancer tissues, C-ERC/mesothelin expression was associated with lymphatic invasion. N-ERC/mesothelin was secreted into the supernatants of gastric cancer cell lines, but does not appear to be a useful serum marker of gastric cancer.
Collapse
Affiliation(s)
- Tomoaki Ito
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brakmane G, Winslet M, Seifalian AM. Systematic review: the applications of nanotechnology in gastroenterology. Aliment Pharmacol Ther 2012; 36:213-21. [PMID: 22686286 DOI: 10.1111/j.1365-2036.2012.05179.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/19/2012] [Accepted: 05/20/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Over the past 30 years, nanotechnology has evolved dramatically. It has captured the interest of variety of fields from computing and electronics to biology and medicine. Recent discoveries have made invaluable changes to future prospects in nanomedicine; and introduced the concept of theranostics. This term offers a patient specific 'two in one' modality that comprises of diagnostic and therapeutic tools. Not only nanotechnology has shown great impact on improvements in drug delivery and imaging techniques, but also there have been several ground-breaking discoveries in regenerative medicine. AIM Gastroenterology invites multidisciplinary approach owing to high complexity of gastrointestinal (GI) system; it includes physicians, surgeons, radiologists, pharmacologists and many more. In this article, we concentrate on current developments in nano-gastroenterology. METHODS Literature search was performed using Web of Science and Pubmed search engines with terms--nanotechnology, nanomedicine and gastroenterology. Article search was concentrated on developments since 2005. RESULTS We have described original and innovative approaches in gastrointestinal drug delivery, inflammatory disease and cancer-target treatments. Here, we have reviewed advances in GI imaging using nanoparticles as fluorescent contrast, and their potential for site-specific targeting. This review has also depicted various approaches and novel discoveries in GI regenerative medicine using nanomaterials for scaffold designs and induced pluripotent stem cells as cell source. CONCLUSIONS Developments in nanotechnology have opened new range of possibilities to help our patients. This includes novel drug delivery vehicles, diagnostic tools for early and targeted disease detection and nanocomposite materials for tissue constructs to overcome cosmetic or physical disabilities.
Collapse
Affiliation(s)
- G Brakmane
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | | | | |
Collapse
|
12
|
Streppel MM, Vincent A, Mukherjee R, Campbell NR, Chen SH, Konstantopoulos K, Goggins MG, Van Seuningen I, Maitra A, Montgomery EA. Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Hum Pathol 2012; 43:1755-63. [PMID: 22542127 DOI: 10.1016/j.humpath.2012.01.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Mucin 16 (cancer antigen 125) is a cell surface glycoprotein that plays a role in promoting cancer cell growth in ovarian cancer. The aims of this study were to examine mucin 16 expression in a large number of digestive tract adenocarcinomas and precursors and to determine whether mucin 16 up-regulation is correlated with patient outcome. Tissue microarrays were constructed using surgical resection tissues and included pancreatic (115 normal, 29 precursors, 200 pancreatic ductal adenocarcinomas), esophageal (86 normal, 104 precursors, 95 esophageal adenocarcinomas, 35 lymph node metastases), gastric (211 normal, 8 precursors, 119 gastric adenocarcinomas, 62 lymph node metastases), and colorectal (34 normal, 17 precursors, 39 colorectal adenocarcinomas) tissues. Mucin 16 was detected in 81.5%, 69.9%, 41.2%, and 64.1% of the pancreatic ductal adenocarcinomas, esophageal adenocarcinomas, gastric adenocarcinomas, and colorectal adenocarcinomas, respectively. Mucin 16 was seen in a subset of the precursors. On multivariate analysis, moderate/diffuse mucin 16 in pancreatic ductal adenocarcinomas was strongly associated with poor survival (P < .001), independent of other prognosis predictors. A similar trend was observed for esophageal adenocarcinomas (P = .160) and gastric adenocarcinomas (P = .080). Focal mucin 16 in colorectal adenocarcinomas was significantly correlated (P = .044) with a better patient outcome, when compared with mucin 16-negative cases. Using Western blot analysis, we found mucin 16 expression in 3 of 6 pancreatic ductal adenocarcinoma and 1 of 2 esophageal adenocarcinoma cell lines. We conclude that most of the digestive tract adenocarcinomas and a subset of their precursors express mucin 16. Mucin 16 expression is an independent predictor of poor outcome in pancreatic ductal adenocarcinomas and potentially in esophageal adenocarcinomas and gastric adenocarcinomas. We propose that mucin 16 may function as a prognostic marker and therapeutic target in the future.
Collapse
Affiliation(s)
- Mirte M Streppel
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231-2410, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baba K, Ishigami S, Arigami T, Uenosono Y, Okumura H, Matsumoto M, Kurahara H, Uchikado Y, Kita Y, Kijima Y, Kitazono M, Shinchi H, Ueno S, Natsugoe S. Mesothelin expression correlates with prolonged patient survival in gastric cancer. J Surg Oncol 2012; 105:195-199. [PMID: 21780126 DOI: 10.1002/jso.22024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/16/2011] [Indexed: 12/28/2022]
Abstract
PURPOSE Mesothelin expression is found in normal mesothelium, and cancerous mesothelin has been recently reported in ovarian and pancreas cancer. The clinicopathological implications of mesothelin expression have been discussed with respect to antitumor immunological mechanisms. However, there is no information on mesothelin expression in gastric cancer. The purpose of the current study is to identify the clinical significance of mesothelin in gastric cancer. EXPERIMENTAL DESIGN A total of 212 gastric cancer patients who received R0 gastrectomy at Kagoshima University Hospital were enrolled in this study. Mesothelin was detected immunohistochemically and visualized by ABC method. Intensity of cancerous mesothelin was divided into two categories (0-50%: negative group and 51-100%: positive group). RESULTS Mesothelin expression was detected in the cellular membrane. In accordance with the previous evaluation, patients were divided into two groups [mesothelin-positive group: 124 (59%) and mesothelin-negative group: 88 (41%)]. The mesothelin-positive group had significantly more nodal involvement and significantly deeper tumor invasion than the mesothelin-negative group (P < 0.05). However, by analysis confined to the 117 advanced gastric cancer patients, the 5-year survival rate of the mesothelin-positive group was 55%, which was significantly better than that of the mesothelin-negative group. Multivariate analysis revealed that mesothelin expression is one of the independent prognostic factors of gastric cancer. CONCLUSION Cancerous mesothelin expression in gastric cancer may be a useful tool to predict patient survival.
Collapse
Affiliation(s)
- Kenji Baba
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rizk NP, Servais EL, Tang LH, Sima CS, Gerdes H, Fleisher M, Rusch VW, Adusumilli PS. Tissue and serum mesothelin are potential markers of neoplastic progression in Barrett's associated esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2012; 21:482-6. [PMID: 22237988 DOI: 10.1158/1055-9965.epi-11-0993] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mesothelin is overexpressed in several malignancies and is purportedly a specific marker of malignant transformation. In this pilot study, we investigated whether tissue and serum mesothelin are potential markers of neoplastic progression in Barrett's esophagus (BE) and in esophageal adenocarcinoma (EAC). METHODS Mesothelin expression was retrospectively evaluated in normal, BE, and EAC tissue from surgically resected esophageal specimens (n = 125). In addition, soluble mesothelin-related peptide (SMRP) levels were measured in serum. RESULTS Normal esophageal mucosa did not express mesothelin. BE tissue with high-grade dysplasia specifically expressed mesothelin, whereas BE tissue with low-grade or without dysplasia did not. Fifty-seven (46%) EAC tumors were positive for mesothelin. EAC tumors with BE expressed mesothelin more often than those without BE (58% vs. 35%, P = 0.01). SMRP levels were elevated in 70% of EAC patients (mean = 0.89 nmol/L; range: 0.03-3.77 nmol/L), but not in patients with acid reflux and/or BE. CONCLUSIONS Mesothelin is commonly expressed in BE-associated EAC. On the basis of this pilot study, a prospective study is under way to evaluate tissue and serum mesothelin which are potential markers of neoplastic progression in BE and in EAC (NCT01393483). IMPACT Current surveillance methods in Barrett's esophagus are invasive and neither cost-effective nor sensitive. This pilot study suggests that serum mesothelin is a marker of neoplastic transformation in BE and may provide a noninvasive method to improve identification of malignant transformation.
Collapse
Affiliation(s)
- Nabil P Rizk
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ding H, Yong KT, Roy I, Hu R, Wu F, Zhao L, Law WC, Zhao W, Ji W, Liu L, Bergey EJ, Prasad PN. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. NANOTECHNOLOGY 2011; 22:165101. [PMID: 21393821 DOI: 10.1088/0957-4484/22/16/165101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l( - 1). Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α(v)β(3) integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.
Collapse
Affiliation(s)
- Hong Ding
- Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ding H, Yong KT, Law WC, Roy I, Hu R, Wu F, Zhao W, Huang K, Erogbogbo F, Bergey EJ, Prasad PN. Non-invasive tumor detection in small animals using novel functional Pluronic nanomicelles conjugated with anti-mesothelin antibody. NANOSCALE 2011; 3:1813-1822. [PMID: 21365120 DOI: 10.1039/c1nr00001b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study QDs were encapsulated in carboxylated PluronicF127 (F127COOH) triblock polymeric micelles and conjugated with anti-mesothelin antibody for the purpose of alleviating potential toxicity, enhancing the stability and improving targeting efficiency of CdTe/ZnS quantum dots (QDs) in tumors. The amphiphilic triblock polymer of F127COOH contains hydrophilic carboxylated poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) units. After encapsulating QDs into carboxylated F127 (F127COOH-QD) micelles, the particles were conjugated with anti-mesothelin antibodies to allow targeting of cancerous areas. The size of the monodispersed spherical QD-containing micelles was determined to be ∼120 nm by dynamic light scattering (DLS). The critical micelle concentration (CMC) was estimated to be 4.7 × 10(-7) M. In an in vitro study, the anti-methoselin antibody conjugated F127COOH (Me-F127COOH-QD) nanomicelles showed negligible cytotoxicity to pancreatic cancer cells (Panc-1). Confocal microscopy demonstrated that the Me-F127COOH-QD nanomicelles were taken up more efficiently by Panc-1 cells, due to antibody mediated targeting. An in vivo imaging study showed that Me-F127COOH-QD nanomicelles accumulated at the pancreatic tumor site 15 min after intravenous injection. In addition, the low in vivo toxicity of the nanomicellar formulation was evaluated by pathological assays. These results suggest that anti-mesothein antibody conjugated carboxylated F127 nanomicelles may serve as a promising nanoscale platform for early human pancreatic cancer detection and targeted drug delivery.
Collapse
Affiliation(s)
- Hong Ding
- The Institute for Lasers, Photonics and Biophotonics, Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hector A, Montgomery EA, Karikari C, Canto M, Dunbar KB, Wang JS, Feldmann G, Hong SM, Haffner MC, Meeker AK, Holland SJ, Yu J, Heckrodt TJ, Zhang J, Ding P, Goff D, Singh R, Roa JC, Marimuthu A, Riggins GJ, Eshleman JR, Nelkin BD, Pandey A, Maitra A. The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther 2010; 10:1009-18. [PMID: 20818175 DOI: 10.4161/cbt.10.10.13248] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) arises in the backdrop of reflux-induced metaplastic phenomenon known as Barrett esophagus. The prognosis of advanced EAC is dismal, and there is an urgent need for identifying molecular targets for therapy. Serial Analysis of Gene Expression (SAGE) was performed on metachronous mucosal biopsies from a patient who underwent progression to EAC during endoscopic surveillance. SAGE confirmed significant upregulation of Axl "tags" during the multistep progression of Barrett esophagus to EAC. In a cohort of 92 surgically resected EACs, Axl overexpression was associated with shortened median survival on both univariate (p < 0.004) and multivariate (p < 0.036) analysis. Genetic knockdown of Axl receptor tyrosine kinase (RTK) function was enabled in two EAC lines (OE33 and JH-EsoAd1) using lentiviral short hairpin RNA (shRNA). Genetic knockdown of Axl in EAC cell lines inhibited invasion, migration, and in vivo engraftment, which was accompanied by downregulation in the activity of the Ral GTPase proteins (RalA and RalB). Restoration of Ral activation rescued the transformed phenotype of EAC cell lines, suggesting a novel effector mechanism for Axl in cancer cells. Pharmacological inhibition of Axl was enabled using a small molecule antagonist, R428 (Rigel Pharmaceuticals). Pharmacological inhibition of Axl with R428 in EAC cell lines significantly reduced anchorage-independent growth, invasion and migration. Blockade of Axl function abrogated phosphorylation of ERBB2 (Her-2/neu) at the Tyr877 residue, indicative of receptor crosstalk. Axl RTK is an adverse prognostic factor in EAC. The availability of small molecule inhibitors of Axl function provides a tractable strategy for molecular therapy of established EAC.
Collapse
Affiliation(s)
- Alvarez Hector
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rodríguez-Carmona E, Villaverde A. Nanostructured bacterial materials for innovative medicines. Trends Microbiol 2010; 18:423-30. [PMID: 20674365 DOI: 10.1016/j.tim.2010.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/22/2010] [Accepted: 06/18/2010] [Indexed: 12/15/2022]
Abstract
The development of innovative medicines and personalized biomedical approaches require the identification and implementation of new biocompatible materials produced by methodologically simple and cheap fabrication methods. The biological fabrication of materials, mostly carried out by microorganisms, has historically provided organic compounds with wide-spectrum biomedical applications, including hyaluronic acid, poly(gamma-glutamic acid) and polyhydroxyalkanoates. Additionally, the implementation of new methodological platforms such as metabolic engineering and systems biology have facilitated the controlled production of natural nanoparticles produced by bacteria, including metallic deposits of Au, Ag, Cd, Zn or Fe, virus-like particles or other nanoscale protein-only entities. The unexpected potential of such self-organized and functional materials in nanomedical scenarios (especially in drug delivery, imaging and tissue engineering) prompts serious consideration of further exploitation of bacterial cell factories as convenient alternatives to chemical synthesis and as sources of novel bioproducts that could dramatically expand the existing catalog of biomedical materials.
Collapse
Affiliation(s)
- Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | |
Collapse
|