1
|
Dhayalan M, Wang W, Riyaz SUM, Dinesh RA, Shanmugam J, Irudayaraj SS, Stalin A, Giri J, Mallik S, Hu R. Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications. 3 Biotech 2024; 14:57. [PMID: 38298556 PMCID: PMC10825110 DOI: 10.1007/s13205-023-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Since Doxil's first clinical approval in 1995, lipid nanoparticles have garnered great interest and shown exceptional therapeutic efficacy. It is clear from the licensure of two RNA treatments and the mRNA-COVID-19 vaccination that lipid nanoparticles have immense potential for delivering nucleic acids. The review begins with a list of lipid nanoparticle types, such as liposomes and solid lipid nanoparticles. Then it moves on to the earliest lipid nanoparticle forms, outlining how lipid is used in a variety of industries and how it is used as a versatile nanocarrier platform. Lipid nanoparticles must then be functionally modified. Various approaches have been proposed for the synthesis of lipid nanoparticles, such as High-Pressure Homogenization (HPH), microemulsion methods, solvent-based emulsification techniques, solvent injection, phase reversal, and membrane contractors. High-pressure homogenization is the most commonly used method. All of the methods listed above follow four basic steps, as depicted in the flowchart below. Out of these four steps, the process of dispersing lipids in an aqueous medium to produce liposomes is the most unpredictable step. A short outline of the characterization of lipid nanoparticles follows discussions of applications for the trapping and transporting of various small molecules. It highlights the use of rapamycin-coated lipid nanoparticles in glioblastoma and how lipid nanoparticles function as a conjugator in the delivery of anticancer-targeting nucleic acids. High biocompatibility, ease of production, scalability, non-toxicity, and tailored distribution are just a meager of the enticing allowances of using lipid nanoparticles as drug delivery vehicles. Due to the present constraints in drug delivery, more research is required to utterly realize the potential of lipid nanoparticles for possible clinical and therapeutic purposes.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- College of Public Health Sciences (CPHS), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330 Thailand
| | - Wei Wang
- Beidahuang Industry Group General Hospital, Harbin, 150001 China
| | - S. U. Mohammed Riyaz
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu 635752 India
| | - Rakshi Anuja Dinesh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072 Australia
| | - Jayashree Shanmugam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| | | | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA USA
| | - Ruifeng Hu
- Department of Neurology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
2
|
Fan M, Huang Y, Zhu X, Zheng J, Du M. Octreotide and Octreotide-derived delivery systems. J Drug Target 2023; 31:569-584. [PMID: 37211679 DOI: 10.1080/1061186x.2023.2216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Pharmaceutical peptide Octreotide is a somatostatin analog with targeting and therapeutic abilities. Over the last decades, Octreotide has been developed and approved to treat acromegaly and neuroendocrine tumours, and Octreotide-based radioactive conjugates have been leveraged clinically to detect small neuroendocrine tumour sites. Meanwhile, variety of Octreotide-derived delivery strategies have been proposed and explored for tumour targeted therapeutics or diagnostics in preclinical or clinical settings. In this review, we especially focus on the preclinical development and applications of Octreotide-derived drug delivery systems, diagnostic nanosystems, therapeutic nanosystems and multifunctional nanosystems, we also briefly discuss challenges and prospects of these Octreotide-derived delivery systems.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
3
|
Nanoparticles and Radioisotopes: A Long Story in a Nutshell. Pharmaceutics 2022; 14:pharmaceutics14102024. [DOI: 10.3390/pharmaceutics14102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this narrative review was to assess the use of nanoparticles (NPs) to deliver radionuclides to targets, focusing on systems that have been tested in pre-clinical and, when available, clinical settings. A literature search was conducted in PubMed and Web of Science databases using the following terms: “radionuclides” AND “liposomes” or “PLGA nanoparticles” or “gold nanoparticles” or “iron oxide nanoparticles” or “silica nanoparticles” or “micelles” or “dendrimers”. No filters were applied, apart from a minimum limit of 10 patients enrolled for clinical studies. Data from some significant studies from pre-clinical and clinical settings were retrieved, and we briefly describe the information available. All the selected seven classes of nanoparticles were highly tested in clinical trials, but they all present many drawbacks. Liposomes are the only ones that have been tested for clinical applications, though they have never been commercialized. In conclusion, the application of NPs for imaging has been the object of much interest over the years, albeit mainly in pre-clinical settings. Thus, we think that, based on the current state, radiolabeled NPs must be investigated longer before finding their place in nuclear medicine.
Collapse
|
4
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
5
|
Iqbal Z, Arafa ESA, Kanwal Z, Murtaza G. Smart solution of severe problems: Radiolabeled nanocarriers for cancer imaging and therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity. Molecules 2019; 24:molecules24173085. [PMID: 31450691 PMCID: PMC6749267 DOI: 10.3390/molecules24173085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022] Open
Abstract
The natural peptide somatostatin has hormonal and cytostatic effects exerted by the binding to specific receptors in various tissues. Therapeutic uses are strongly prevented by its very short biological half-life of 1–2 min due to enzymatic hydrolysis, therefore encapsulation methodologies are explored to overcome the need for continuous infusion regimes. Multilamellar liposomes made of natural phosphatidylcholine were used for the incorporation of a mixture of somatostatin and sorbitol dissolved in citrate buffer at pH = 5. Lyophilization and reconstitution of the suspension were carried out, showing the flexibility of this preparation. Full characterization of this suspension was obtained as particle size, encapsulation efficiency and retarded release properties in aqueous medium and human plasma. Liposomal somatostatin incubated at 37 °C in the presence of Fe(II) and (III) salts were used as a biomimetic model of drug-cell membrane interaction, evidencing the free radical processes of peroxidation and isomerization that transform the unsaturated fatty acid moieties of the lipid vesicles. This study offers new insights into a liposomal delivery system and highlights molecular reactivity of sulfur-containing drugs with its carrier or biological membranes for pharmacological applications.
Collapse
|
8
|
Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules 2019; 24:E351. [PMID: 30669445 PMCID: PMC6359574 DOI: 10.3390/molecules24020351] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.
Collapse
Affiliation(s)
- Diego Tesauro
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Vittoria Milano
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Jean Guillon
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Luisa Ronga
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-University of Pau, 64000 Pau, France.
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| |
Collapse
|
9
|
Hervella P, Dam JH, Thisgaard H, Baun C, Olsen BB, Høilund-Carlsen PF, Needham D. Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with 57Co-porphyrin: Oleylamine ensures stable chelation of cobalt in nanoparticles that accumulate in tumors. J Control Release 2018; 291:11-25. [PMID: 30291986 DOI: 10.1016/j.jconrel.2018.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND MOTIVATION While small molecules can be used in cancer diagnosis there is a need for imageable diagnostic NanoParticles (NPs) that act as surrogates for the therapeutic NPs. Many NPs are composed of hydrophobic materials so the challenge is to formulate hydrophobic imaging agents. To develop individualized medical treatments based on NP, a first step should be the selection of patients who are likely responders to the treatment as judged by imaging tumor accumulation of NPs. This requires NPs with the same size and structure as the subsequent therapeutic NPs but labelled with a long-lived radionuclide. Cobalt isotopes are good candidates for NP labelling since 55Co has half-life of 17.5 h and positron energy of 570 keV while 57Co (t1/2 271.6 d) is an isotope suited for preclinical single photon emission tomography (SPECT) to visualize biodistribution and pharmacokinetics of NPs. We used the hydrophobic octaethyl porphyrin (OEP) to chelate cobalt and to encapsulate it inside hydrophobic liquid NPs (LNPs). We hypothesized that at least two additional hydrophobic axial ligands (oleylamine, OA) must be provided to the OEP-Co complex in order to encapsulate and retain Co inside LNP. RESULTS 1. Cobalt chelation by OEP and OA. The association constant of cobalt to OEP was 2.49 × 105 M-1 and the formation of the hexacoordinate complex OEP-Co-4OA was measured by spectroscopy. 2. NP formulation and characterization: LNPs were prepared by the fast ethanol injection method and were composed of a liquid core (triolein) surrounded by a lipid monolayer (DSPC:Cholesterol:DSPE-PEG2000). The size of the LNPs loaded with the cobalt complex was 40 ± 5 nm, 3. Encapsulation of OEP-Co-OA: The loading capacity of OEP-Co-OA in LNP was 5 mol%. 4. Retention of OEP-57Co-4OA complex in the LNPs: the positive effect of the OA ligands was demonstrated on the stability of the OEP-57Co-4OA complex, providing a half-life for retention in PBS of 170 h (7 days) while in the absence of the axial OA ligands was only 22 h. 5 Biodistribution Study: the in vivo biodistribution of LNP was studied in AR42J pancreatic tumor-bearing mice. The estimated half-life of LNPs in blood was about 7.2 h. Remarkably, the accumulation of LNPs in the tumor was as high as 9.4% ID/g 24 h after injection with a doubling time for tumor accumulation of 3.22 h. The most important result was that the nanoparticles could indeed accumulate in the AR42J tumors up to levels greater than those of other NPs previously measured in the same tumor model, and at about half the values reported for the molecular agent 57Co-DOTATATE. CONCLUSIONS The additional hydrophobic chelator OA was indeed needed to obtain a stable octahedral OEP-Co-4OA. Cobalt was actually well-retained inside LNP in the OEP-Co-4OA complex. The method described in the present work for the core-labelling of LNPs with cobalt is now ready for labeling of NPs with 55Co, or indeed other hexadentate radionuclides of interest for preclinical in vivo PET-imaging and radio-therapeutics.
Collapse
Affiliation(s)
- Pablo Hervella
- Center for Single Particle Science and Engineering (SPSE), Institute for Molecular Medicine, Health Sciences, University Southern Denmark, Campusvej 55, Odense DK-5230, Denmark; Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark
| | | | - David Needham
- Center for Single Particle Science and Engineering (SPSE), Institute for Molecular Medicine, Health Sciences, University Southern Denmark, Campusvej 55, Odense DK-5230, Denmark; Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708,USA; School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
10
|
Paramonov VM, Desai D, Kettiger H, Mamaeva V, Rosenholm JM, Sahlgren C, Rivero-Müller A. Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home? Nanotheranostics 2018; 2:320-346. [PMID: 30148051 PMCID: PMC6107779 DOI: 10.7150/ntno.23826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/25/2018] [Indexed: 12/02/2022] Open
Abstract
The concept of delivering nanoformulations to desired tissues by means of targeting membrane receptors of high local abundance by ligands anchored to the nanocarrier has gained a lot of attention over the last decade. Currently, there is no unanimous opinion on whether surface functionalization of nanocarriers by targeting ligands translates into any real benefit in terms of pharmacokinetics or treatment outcomes. Having examined the published nanocarriers designed to engage with somatostatin receptors, we realized that in the majority of cases targetability claims were not supported by solid evidence of targeting ligand-targeted receptor coupling, which is the very crux of a targetability concept. Here, we present an approach to characterize targetability of mesoporous silica-based nanocarriers functionalized with ligands of somatostatin receptors. The targetability proof in our case comes from a functional assay based on a genetically-encoded cAMP probe, which allows for real-time capture of receptor activation in living cells, triggered by targeting ligands on nanoparticles. We elaborate on the development and validation of the assay, highlighting the power of proper functional tests in the characterization pipeline of targeted nanoformulations.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Finland
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Finland
| | - Helene Kettiger
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Finland
| | - Veronika Mamaeva
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Finland
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Finland.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| |
Collapse
|
11
|
Prakash Upputuri RT, Azad Mandal AK. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:277-283. [PMID: 29845080 DOI: 10.15171/ijb.1322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/30/2017] [Accepted: 10/08/2017] [Indexed: 01/16/2023]
Abstract
Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro, antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL-1. In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.
Collapse
Affiliation(s)
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
12
|
Affiliation(s)
- Kıvılcım Öztürk-Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Front Pharmacol 2017; 8:1. [PMID: 28149278 PMCID: PMC5241315 DOI: 10.3389/fphar.2017.00001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Guan Huang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Zuanguang Chen
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Yuanqing Zhang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| |
Collapse
|
14
|
Banerjee I, De K, Mukherjee D, Dey G, Chattopadhyay S, Mukherjee M, Mandal M, Bandyopadhyay AK, Gupta A, Ganguly S, Misra M. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater 2016; 38:69-81. [PMID: 27109765 DOI: 10.1016/j.actbio.2016.04.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in glioma. By taking advantage of the specific expression of SSTR2 on both glioma neovasculature endothelial cells and glioma cells, we constructed Tyr-3-octreotide (TOC)-modified solid lipid nanoparticles (SLN) loaded with paclitaxel (PTX) to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. In this work, a TOC-polyethylene glycol-lipid (TOC-PEG-lipid) was successfully synthesized and used as a targeting molecule to enhance anticancer efficacy of PTX loaded sterically stabilized lipid nanoparticles. The prepared PTX-loaded SLN modified with TOC (PSM) was characterized by standard methods. In rat C6 glioma cells, PSM improved PTX induced apoptosis. Both tube formation assay and CD31 staining of treated orthotopic glioma tissues confirmed that PSM significantly improved the antiangiogenic ability of PTX in vitro and in vivo, respectively. Radiolabelled PSM achieved a much higher and specific accumulation within the glioma as suggested by the biodistribution and imaging studies. Furthermore, PSM exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol in both subcutaneous and orthotopic tumor models. These findings collectively indicate that PSM holds great potential in improving the efficacy of anti-glioma therapy. STATEMENT OF SIGNIFICANCE Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in various mammalian cancer cells. Proliferating endothelial cells of neovasculature also express SSTR2. Tyr-3-octreotide (TOC) is a known ligand for SSTR2. We have successfully prepared paclitaxel-loaded solid lipid nanoparticles modified with TOC (PSM) having diameter less than 100nm. We found that PSM improved anti-cancer efficacy of paclitaxel in SSTR2 positive glioma of rats. This improved anti-glioma efficiency of PSM can be attributed to dual-targeting (i.e. tumor cell and neovasculature targeting) efficiency of PSM and promoted anti-cancer drug accumulation at tumor site due to TOC modification of solid lipid nanoparticles. This particular study aims at widening the scope of octreotide-derivative modified nanocarrier by exploring dual-targeting potential of PSM.
Collapse
Affiliation(s)
- Indranil Banerjee
- Department of Infectious Diseases and Immunology (Nuclear Medicine Division), CSIR-IICB, 4 Raja S C Mullick Road, Kolkata 700032, India.
| | - Kakali De
- Department of Infectious Diseases and Immunology (Nuclear Medicine Division), CSIR-IICB, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Dibyanti Mukherjee
- Department of Infectious Diseases and Immunology (Nuclear Medicine Division), CSIR-IICB, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sankha Chattopadhyay
- Radiopharmaceuticals Laboratory, Regional Centre, Board of Radiation and Isotope Technology, Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700064, India
| | | | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amal Kumar Bandyopadhyay
- Division of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Amit Gupta
- Regional Radiation Medicine Centre, Thakurpukur Cancer Research Centre, Kolkata 700063, India
| | - Santanu Ganguly
- Regional Radiation Medicine Centre, Thakurpukur Cancer Research Centre, Kolkata 700063, India
| | - Mridula Misra
- Department of Infectious Diseases and Immunology (Nuclear Medicine Division), CSIR-IICB, 4 Raja S C Mullick Road, Kolkata 700032, India.
| |
Collapse
|
15
|
Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2016; 16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
Abstract
Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called 'image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for the treatment of cancer but might also find utility in the management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
16
|
Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 2016; 92:173-86. [PMID: 26917443 DOI: 10.3109/09553002.2016.1144944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.
Collapse
Affiliation(s)
- Chandan Kumar
- a Radiopharmaceutical Chemistry Section , Bhabha Atomic Research Centre , Mumbai
| | - Neena Shetake
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai
| | - Sejal Desai
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Amit Kumar
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Grace Samuel
- c Isotope Production and Applications Division , Bhabha Atomic Research Centre , Mumbai
| | - Badri N Pandey
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| |
Collapse
|
17
|
Enrique MA, Mariana OR, Mirshojaei SF, Ahmadi A. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target 2014; 23:191-201. [DOI: 10.3109/1061186x.2014.988216] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2014; 95:307-22. [PMID: 25536109 DOI: 10.1016/j.ejpb.2014.12.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy (DR) is a consequence of diabetes mellitus at the ocular level, leading to vision loss, and contributing to the decrease of patient's life quality. The biochemical and anatomic abnormalities that occur in DR are discussed in this review to better understand and manage the development of new therapeutic strategies. The use of new drug delivery systems based on nanoparticles (e.g. liposomes, dendrimers, cationic nanoemulsions, lipid and polymeric nanoparticles) is discussed along with the current traditional treatments, pointing out the advantages of the proposed nanomedicines to target this ocular disease. Despite the multifactorial nature of DR, which is not entirely understood, some strategies based on nanoparticles are being exploited for a more efficient drug delivery to the posterior segment of the eye. On the other hand, the use of some nanoparticles also seems to contribute to the development of DR symptoms (e.g. retinal neovascularization), which are also discussed in light of an efficient management of this ocular chronic disease.
Collapse
|
19
|
Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem 2014; 2:69. [PMID: 25202689 PMCID: PMC4142601 DOI: 10.3389/fchem.2014.00069] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 01/31/2023] Open
Abstract
The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics, tumor accumulation, and biodistribution. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.
Collapse
Affiliation(s)
- Charlene M Dawidczyk
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University Baltimore, MD, USA ; Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins University Baltimore, MD, USA ; Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
20
|
Azhdarinia A, Ghosh S. Nuclear Imaging with Nanoparticles. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Comparative in vitro stability and scintigraphic imaging for trafficking and tumor targeting of a directly and a novel 99mTc(I)(CO)3 labeled liposome. Int J Pharm 2014; 465:333-46. [DOI: 10.1016/j.ijpharm.2014.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
|
22
|
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9:1537-57. [PMID: 24741304 PMCID: PMC3970945 DOI: 10.2147/ijn.s53593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Antonella Accardo
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Luigi Aloj
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Michela Aurilio
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Giancarlo Morelli
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Diego Tesauro
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
23
|
Premature drug release of polymeric micelles and its effects on tumor targeting. Int J Pharm 2013; 445:117-24. [DOI: 10.1016/j.ijpharm.2013.01.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/22/2022]
|
24
|
Psimadas D, Oliveira H, Thevenot J, Lecommandoux S, Bouziotis P, Varvarigou AD, Georgoulias P, Loudos G. Polymeric micelles and vesicles: biological behavior evaluation using radiolabeling techniques. Pharm Dev Technol 2013; 19:189-93. [DOI: 10.3109/10837450.2013.763264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Accardo A, Ringhieri P, Tesauro D, Morelli G. Liposomes derivatized with tetrabranched neurotensin peptides via click chemistry reactions. NEW J CHEM 2013. [DOI: 10.1039/c3nj00596h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Rangger C, Helbok A, von Guggenberg E, Sosabowski J, Radolf T, Prassl R, Andreae F, Thurner GC, Haubner R, Decristoforo C. Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles. Int J Nanomedicine 2012; 7:5889-900. [PMID: 23226020 PMCID: PMC3512544 DOI: 10.2147/ijn.s36847] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Liposomes have been proposed to be a means of selectively targeting cancer sites for diagnostic and therapeutic applications. The focus of this work was the evaluation of radiolabeled PEGylated liposomes derivatized with varying amounts of a cyclic arginyl–glycyl–aspartic acid (RGD) peptide. RGD peptides are known to bind to αvβ3 integrin receptors overexpressed during tumor-induced angiogenesis. Methods Several liposomal nanoparticles carrying the RGD peptide targeting sequence (RLPs) were synthesized using a combination of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, cholesterol, diethylenetriaminepentaacetic acid-derivatized lipids for radiolabeling, a polyethylene glycol (PEG) building block, and a lipid-based RGD building block. Relative amounts of RGD and PEG building blocks were varied. In vitro binding affinities were determined using isolated αvβ3 integrin receptors incubated with different concentrations of RLPs in competition with iodine-125-labeled cyclo-(-RGDyV-). Binding of the indium-111-labeled RLPs was also evaluated. Biodistribution and micro single photon emission computed tomography/computed tomography imaging studies were performed in nude mice using different tumor xenograft models. Results RLPs were labeled with indium-111 with high radiochemical yields. In vitro binding studies of RLPs with different RGD/PEG loading revealed good binding to isolated receptors, which was dependent on the extent of RGD and PEG loading. Binding increased with higher RGD loading, whereas reduced binding was found with higher PEG loading. Biodistribution showed increased circulating time for PEGylated RLPs, but no dependence on RGD loading. Both biodistribution and micro single photon emission computed tomography/computed tomography imaging studies revealed low, nonspecific tumor uptake values. Conclusion In this study, RLPs for targeting angiogenesis were described. Even though good binding to αvβ3 integrin receptors was found in vitro, the balance between PEGylation and RGD loading clearly requires optimization to achieve targeting in vivo. These data form the basis for future development and provide a platform for the investigation of multimodal approaches.
Collapse
Affiliation(s)
- Christine Rangger
- Department of Nuclear Medicine, Innsbruck Medical University, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheng Z, Al Zaki A, Hui JZ, Tsourkas A. Simultaneous quantification of tumor uptake for targeted and nontargeted liposomes and their encapsulated contents by ICPMS. Anal Chem 2012; 84:7578-82. [PMID: 22882145 DOI: 10.1021/ac301852y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multistep process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and nonradiative method to quantify the tumor uptake of targeted and nontargeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and nontargeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously, and their tumor delivery was determined quantitatively via inductively coupled plasma mass spectroscopy (ICPMS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents was consistent with targeted and nontargeted liposome formulations that were injected individually.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
28
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|