1
|
Gupta S, Kaur R, Bhardwaj A, Parashar D. Multifunctional Nanomaterials: Recent Advancements in Cancer Therapeutics and Vaccines. Indian J Microbiol 2025; 65:51-68. [PMID: 40371018 PMCID: PMC12069785 DOI: 10.1007/s12088-024-01274-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2025] Open
Abstract
Nanotechnology has revolutionized cancer detection and treatment, overcoming limitations of conventional methods. Imaging, targeting, and therapy moieties can all be combined in multifunctional nanoparticle systems to deliver the imaging or treatment modalities to the tumor in a targeted manner. These nanostructures can be engineered to create smart drug delivery systems for effective distribution and combinatorial therapy. Nanostructures made of biomolecules are naturally multifunctional and have a variety of biological functions that can be investigated for use in cancer nanomedicine. The supramolecular characteristics of biomolecules can be carefully engineered to create smart drug delivery systems that enable effective drug distribution to specific areas of the body as well as combinatorial therapy in a single design. Nanotechnology has also increased the efficiency of cancer vaccines, highlighting the future of tumor immunotherapy. Nanomaterials are often used as anti-cancer drugs or anti-inflammatory drugs due to their biosafety potential and enhanced bioavailability. By delivering targeted antigens and adjuvants, nanomaterials can improve vaccination efficacy and safety, preventing rapid degradation and prolonging antigen retention in lymphoid and tumor cells. We examine both organic and inorganic multifunctional nanomaterials in this review, emphasizing particular multifunctional properties in the context of cancer targeting, therapy, and vaccinations.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406 India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406 India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406 India
| | - Deepak Parashar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226 United States
| |
Collapse
|
2
|
Cai W, Zhang M, Echegoyen L, Lu X. Recent advances in endohedral metallofullerenes. FUNDAMENTAL RESEARCH 2025; 5:767-781. [PMID: 40242547 PMCID: PMC11997591 DOI: 10.1016/j.fmre.2023.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 04/18/2025] Open
Abstract
Fullerenes are a collection of closed polycyclic polymers consisting exclusively of carbon atoms. Recent remarkable advancements in the fabrication of metal-fullerene nanocatalysts and polymeric fullerene layers have significantly expanded the potential applications of fullerenes in various domains, including electrocatalysis, transistors, energy storage devices, and superconductors. Notably, the interior of fullerenes provides an optimal environment for stabilizing a diverse range of metal ions or clusters through electron transfer, resulting in the formation of a novel class of hybrid molecules referred to as endohedral metallofullerenes (EMFs). The utilization of advanced synthetic methodologies and the progress achieved in separation techniques have played a pivotal role in expanding the diversity of the encapsulated metal constituents, consequently leading to distinctive structural, electronic, and physicochemical properties of novel EMFs that surpass conventional ones. Intriguing phenomena, including regioselective dimerization between EMFs, direct metal-metal bonding, and non-classical cage preferences, have been unveiled, offering valuable insights into the coordination interactions between metallic species and carbon. Of particular importance, the recent achievements in the comprehensive characterization of EMFs based on transition metals and actinide metals have generated a particular interest in the exploration of new metal clusters possessing long-desired bonding features within the realm of coordination chemistry. These clusters exhibit a remarkable affinity for coordinating with non-metal atoms such as carbon, nitrogen, oxygen, and sulfur, thus making them highly intriguing subjects of systematic investigations focusing on their electronic structures and physicochemical properties, ultimately leading to a deeper comprehension of their unparalleled bonding characteristics. Moreover, the versatility conferred by the encapsulated species endows EMFs with multifunctional properties, thereby unveiling potential applications in various fields including biomedicine, single-molecule magnets, and electronic devices.
Collapse
Affiliation(s)
- Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Luis Echegoyen
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona 43007, Spain
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Nacka-Aleksić M, Vilotić A, Pirković A, Živanović M, Ljujić B, Jovanović Krivokuća M. Nano-scale dangers: Unravelling the impact of nanoplastics on human trophoblast invasion. Chem Biol Interact 2025; 405:111317. [PMID: 39580066 DOI: 10.1016/j.cbi.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Utilizing HTR-8/SVneo cells for in vitro modeling of human trophoblast invasion, we examined how different concentrations of 40 nm and 200 nm carboxylated polystyrene particles affect early-pregnancy trophoblast phenotype and function. We focused on migration and invasion, as critical processes in placental development. Our findings revealed disruptions in extravillous trophoblast mesenchymal phenotype and invasive behavior, following acute exposure to a higher concentration of the smaller sized particles. Specifically, differential uptake of the particles by trophoblast cells was observed, as well as cytotoxicity and concentration-dependent DNA damage after 72 h of exposure. In addition, a 24 h exposure to 100 μg/ml of 40 nm particles correlated with downregulated protein expression of α5 and α1 integrin subunits, N-cadherin, matrix metalloproteinase-2 and macrophage migration inhibitory factor, alongside upregulated protein expression of the epithelial marker E-cadherin. These changes likely contributed to the diminished migration of HTR-8/SVneo cells and the invasive potential of HTR-8/SVneo spheroids. Understanding these interactions is paramount for assessing the broader implications of nanoplastics on reproductive outcomes and maternal-fetal well-being and informing public health measures.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia.
| | - Aleksandra Vilotić
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| | - Andrea Pirković
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| | - Marko Živanović
- University of Kragujevac, Institute of Information Technologies, Laboratory for Bioengineering, Kragujevac, Serbia
| | - Biljana Ljujić
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Kragujevac, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| |
Collapse
|
4
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
5
|
Mandot S, Zannoni EM, Cai L, Nie X, Riviere PJL, Wilson MD, Meng LJ. A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography (XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a Compound-Eye Collimation Aperture. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1782-1791. [PMID: 38696285 PMCID: PMC11129545 DOI: 10.1109/tmi.2023.3348791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The advent of metal-based drugs and metal nanoparticles as therapeutic agents in anti-tumor treatment has motivated the advancement of X-ray fluorescence computed tomography (XFCT) techniques. An XFCT imaging modality can detect, quantify, and image the biodistribution of metal elements using the X-ray fluorescence signal emitted upon X-ray irradiation. However, the majority of XFCT imaging systems and instrumentation developed so far rely on a single or a small number of detectors. This work introduces the first full-ring benchtop X-ray fluorescence emission tomography (XFET) system equipped with 24 solid-state detectors arranged in a hexagonal geometry and a 96-pinhole compound-eye collimator. We experimentally demonstrate the system's sensitivity and its capability of multi-element detection and quantification by performing imaging studies on an animal-sized phantom. In our preliminary studies, the phantom was irradiated with a pencil beam of X-rays produced using a low-powered polychromatic X-ray source (90kVp and 60W max power). This investigation shows a significant enhancement in the detection limit of gadolinium to as low as 0.1 mg/mL concentration. The results also illustrate the unique capabilities of the XFET system to simultaneously determine the spatial distribution and accurately quantify the concentrations of multiple metal elements.
Collapse
|
6
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Lebedev VT, Charykov NA, Shemchuk OS, Murin IV, Nerukh DA, Petrov AV, Maystrenko DN, Molchanov OE, Sharoyko VV, Semenov KN. Endometallofullerenes and their derivatives: Synthesis, Physicochemical Properties, and Perspective Application in Biomedicine. Colloids Surf B Biointerfaces 2023. [DOI: 10.1016/j.colsurfb.2023.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Nanomodulation and nanotherapeutics of tumor-microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Fernandes NB, Shenoy RUK, Kajampady MK, DCruz CEM, Shirodkar RK, Kumar L, Verma R. Fullerenes for the treatment of cancer: an emerging tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58607-58627. [PMID: 35790637 PMCID: PMC9399030 DOI: 10.1007/s11356-022-21449-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cancer is a most common cause of mortality globally. Available medicines possess severe side effects owing to their non-specific targeting. Hence, there is a need of an alternative in the healthcare system that should have high efficacy with the least side effects, also having the ability to achieve site-specific targeting and be reproducible. This is possible with the help of fullerenes. Fullerenes are having the unique physicochemical and photosensitizer properties. This article discusses the synthesis, functionalization, mechanism, various properties, and applications of C60 fullerenes in the treatment of cancer. The review article also addresses the various factors influencing the activity of fullerenes including the environmental conditions, toxicity profile, and future prospective.
Collapse
Affiliation(s)
- Neha Benedicta Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Udupi, Karnataka, India
| | - Raghavendra Udaya Kumar Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Udupi, Karnataka, India
| | - Mandira Kashi Kajampady
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Udupi, Karnataka, India
| | - Cleona E M DCruz
- Department of Pharmaceutics, Goa College of Pharmacy, 18th June Road, Panaji, 403 001, Goa, India
| | - Rupesh K Shirodkar
- Department of Pharmaceutics, Goa College of Pharmacy, 18th June Road, Panaji, 403 001, Goa, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Udupi, Karnataka, India.
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Udupi, Karnataka, India
| |
Collapse
|
10
|
Nano-bio interactions: A major principle in the dynamic biological processes of nano-assemblies. Adv Drug Deliv Rev 2022; 186:114318. [PMID: 35533787 DOI: 10.1016/j.addr.2022.114318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Controllable nano-assembly with stimuli-responsive groups is emerging as a powerful strategy to generate theranostic nanosystems that meet unique requirements in modern medicine. However, this prospective field is still in a proof-of-concept stage due to the gaps in our understanding of complex-(nano-assemblies)-complex-(biosystems) interactions. Indeed, stimuli-responsive assembly-disassembly is, in and of itself, a process of nano-bio interactions, the key steps for biological fate and functional activity of nano-assemblies. To provide a comprehensive understanding of these interactions in this review, we first propose a 4W1H principle (Where, When, What, Which and How) to delineate the relevant dynamic biological processes, behaviour and fate of nano-assemblies. We further summarize several key parameters that govern effective nano-bio interactions. The effects of these kinetic parameters on ADMET processes (absorption, distribution, metabolism, excretion and transformation) are then discussed. Furthermore, we provide an overview of the challenges facing the evaluation of nano-bio interactions of assembled nanodrugs. We finally conclude with future perspectives on safe-by-design and application-driven-design of nano-assemblies. This review will highlight the dynamic biological and physicochemical parameters of nano-bio interactions and bridge discrete concepts to build a full spectrum understanding of the biological outcomes of nano-assemblies. These principles are expected to pave the way for future development and clinical translation of precise, safe and effective nanomedicines with intelligent theranostic features.
Collapse
|
11
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
12
|
Grebowski J, Litwinienko G. Metallofullerenols in biomedical applications. Eur J Med Chem 2022; 238:114481. [PMID: 35665690 DOI: 10.1016/j.ejmech.2022.114481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Metallofullerenols (MFs) are functionalized endohedral fullerenes connecting at least three levels of organization of matter: atomic, molecular, and supramolecular, resulting in their unique activity at the nanoscale. Biomedical applications of MFs started from gadolinium-containing contrasting agents, but today their potential medical applications go far beyond diagnostics and magnetic resonance imaging. In many cases, preclinical studies have shown a great therapeutic value of MFs, and here we provide an overview of interactions of MFs with high-energy radiation and with reactive oxygen species generated during radiation as a ground for potential applications in modern therapy of cancer patients. We also present the current knowledge on interactions of MFs with proteins and with other components of cells and tissues. Due to their antioxidant properties, as well as their ability to regulate the expression of genes involved in apoptosis, angiogenesis, and stimulation of the immune response, MFs can contribute to inhibition of tumor growth and protection of normal cells. MFs with enclosed gadolinium act as inhibitors of tumor growth in targeted therapy along with imaging techniques, but we hope that the data gathered in this review will help to accelerate further progress in the implementation of MFs, also the ones containing rare earth metals other than gadolinium, in a broad range of bioapplications covering not only diagnostics and bioimaging but also radiation therapy and cancer treatment by not-cytotoxic agents.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland; The Military Medical Training Center, 6-Sierpnia 92, 90-646, Lodz, Poland.
| | | |
Collapse
|
13
|
Ren J, Andrikopoulos N, Velonia K, Tang H, Cai R, Ding F, Ke PC, Chen C. Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. J Am Chem Soc 2022; 144:9184-9205. [PMID: 35536591 DOI: 10.1021/jacs.2c02277] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An inconvenient hurdle in the practice of nanomedicine is the protein corona, a spontaneous collection of biomolecular species by nanoparticles in living systems. The protein corona is dynamic in composition and may entail improved water suspendability and compromised delivery and targeting to the nanoparticles. How much of this nonspecific protein ensemble is determined by the chemistry of the nanoparticle core and its surface functionalization, and how much of this entity is dictated by the biological environments that vary spatiotemporally in vivo? How do we "live with" and exploit the protein corona without significantly sacrificing the efficacy of nanomedicines in diagnosing and curing human diseases? This article discusses the chemical and biophysical signatures of the protein corona and ponders challenges ahead for the field of nanomedicine.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| |
Collapse
|
14
|
Zhao Y, Chen C, Feng W, Zhang Z, Xu D, Shi W, Wang S, Li YF. Professor Zhifang Chai: Scientific Contributions and Achievements. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
The Molecular Mechanism of Human Voltage-Dependent Anion Channel 1 Blockade by the Metallofullerenol Gd@C82(OH)22: An In Silico Study. Biomolecules 2022; 12:biom12010123. [PMID: 35053271 PMCID: PMC8773804 DOI: 10.3390/biom12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
The endohedral metallofullerenol Gd@C82(OH)22 has been identified as a possible antineoplastic agent that can inhibit both the growth and metastasis of cancer cells. Despite these potentially important effects, our understanding of the interactions between Gd@C82(OH)22 and biomacromolecules remains incomplete. Here, we study the interaction between Gd@C82(OH)22 and the human voltage-dependent anion channel 1 (hVDAC1), the most abundant porin embedded in the mitochondrial outer membrane (MOM), and a potential druggable target for novel anticancer therapeutics. Using in silico approaches, we observe that Gd@C82(OH)22 molecules can permeate and form stable interactions with the pore of hVDAC1. Further, this penetration can occur from either side of the MOM to elicit blockage of the pore. The binding between Gd@C82(OH)22 and hVDAC1 is largely driven by long-range electrostatic interactions. Analysis of the binding free energies indicates that it is thermodynamically more favorable for Gd@C82(OH)22 to bind to the hVDAC1 pore when it enters the channel from inside the membrane rather than from the cytoplasmic side of the protein. Multiple factors contribute to the preferential penetration, including the surface electrostatic landscape of hVDAC1 and the unique physicochemical properties of Gd@C82(OH)22. Our findings provide insights into the potential molecular interactions of macromolecular biological systems with the Gd@C82(OH)22 nanodrug.
Collapse
|
16
|
Huang J, Guo J, Zou X, Zhu J, Wu S, Zhang T. Bioinspired Heteromultivalent Chitosan- α-Fe₂O₃/Gadofullerene Hybrid Composite for Enhanced Antibiotic-Resistant Bacterial Pneumonia. J Biomed Nanotechnol 2021; 17:1217-1228. [PMID: 34167634 DOI: 10.1166/jbn.2021.3093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we have designed and developed a heteromultivalent chitosan base α-Fe₂O₃/Gadofullerene (GdF) hybrid composite through a simple chemical precipitation method. Unlike other methods, the addition of external stabilizing agents to generate GdF nanoparticles (NPs) was not necessary herein. The prepared chitosan-α-Fe₂O₃/GdF hybrid nanocomposites were characterized using UV, FT-IR, XRD and morphological microscopic analyses. The results showed that α-Fe₂O₃ and GdF hybrid nanocomposites were successfully grown on the surface of chitosan. The FT-IR vibration peaks showed the formation of Fe₂O₃ NPs, and the vibration peak for Fe-O was 568 cm-1. The broad absorption peak observed in the range of 250-350 nm and a sharp absorption peak at 219 nm represents the UV absorption of the synthesized hybrid composites. XRD pattern showed sharp peaks of crystallinity and purity of α-Fe₂O₃ nanoparticles. Finally, the synthesized chitosan-α-Fe₂O₃/GdF hybrid composites were screened for their antibacterial resistance against the Escherichia coli, Pseudomonas aeruginosa, Bacilus subtilis, and Staphylococcus aereus. In addition, in vitro biocompatibility results exhibited that developed hybrid samples have provided high cell compatibility with fibroblast (L929) cell line. The in vivo bio inspired nanotherapeutics have the potential action to effective inhibition ability on antibiotic-resistant P. aeruginosa, which has been main factor of inducing pneumonia. In conclusion, we expect biomimicking systems combined with the effective antibacterial agent could be the suitable next generation therapeutic potential factors for prevention and treatment of antibiotic-resistant pneumonia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiquan Guo
- Department of Pulmonary and Critical Care Medicine, Guangdon Provincial Peoples Hospital/Guangdon Academy of Medical Sciences/Guangdon Provincial Geriatrics Institute, Guangzhou 510000, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Shaozhu Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| |
Collapse
|
17
|
Ye L, Kollie L, Liu X, Guo W, Ying X, Zhu J, Yang S, Yu M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021; 26:molecules26113252. [PMID: 34071369 PMCID: PMC8198614 DOI: 10.3390/molecules26113252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.
Collapse
Affiliation(s)
- Lianjie Ye
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
| | - Larwubah Kollie
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xing Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xiangxian Ying
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jun Zhu
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Shengjie Yang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Correspondence:
| |
Collapse
|
18
|
Shi Y, Ma X, Fang G, Tian X, Ge C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NANOIMPACT 2021; 21:100293. [PMID: 35559782 DOI: 10.1016/j.impact.2021.100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinase (MMP) plays an essential role in many physiological and pathological processes. An increase in MMP activity contributes to excessive degradation and remodeling of the extracellular matrix (ECM), which has been correlated with invasion and metastasis of tumors. Matrix metalloproteinase inhibitor (MMPI) has been developed as an attractive therapeutic target for decades, suggesting inspiring therapeutic effects in preclinical studies. However, achieving specificity remains an important challenge in the development of MMPIs, limiting their clinical application and bringing about the risk of biosafety. Nanomaterials can be used as alternative candidates for MMPI design, providing a new strategy for this problem. This report reviewed the research about MMPIs, summarized their MMPs activity regulation mechanisms, and discussed their failures in clinical trials. Furthermore, we outlined several schemes of MMPIs screening and design. Finally, we reviewed the therapeutic application prospects of MMPIs and discussed the remaining challenges and solutions, which may offer new insights for the development of MMPIs studies.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ge Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
19
|
Li J, Burgess DJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 2020; 10:2110-2124. [PMID: 33304781 PMCID: PMC7714990 DOI: 10.1016/j.apsb.2020.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
The complex tumor microenvironment is a most important factor in cancer development. The biological microenvironment is composed of a variety of barriers including the extracellular matrix and associated cells such as endothelia cells, pericytes, and cancer-associated fibroblasts. Different strategies can be utilized to enhance nanoparticle-based drug delivery and distribution into tumor tissues addressing the extracellular matrix or cellular components. In addition to the biological microenvironment, the immunological conditions around the tumor tissue can be very complicated and cancer cells have various ways of evading immune surveillance. Nanoparticle drug delivery systems can enhance cancer immunotherapy by tuning the immunological response and memory of various immune cells such as T cells, B cells, macrophages, and dendritic cells. In this review, the main components in the tumor biological and immunological environment are discussed. The focus is on recent advances in nanoparticle-based drug delivery systems towards targets within the tumor microenvironment to improve cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
20
|
Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020; 41:970-985. [PMID: 32424240 PMCID: PMC7470849 DOI: 10.1038/s41401-020-0424-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has received extensive attention due to its ability to activate the innate or adaptive immune systems of patients to combat tumors. Despite a few clinical successes, further endeavors are still needed to tackle unresolved issues, including limited response rates, development of resistance, and immune-related toxicities. Accumulating evidence has pinpointed the tumor microenvironment (TME) as one of the major obstacles in cancer immunotherapy due to its detrimental impacts on tumor-infiltrating immune cells. Nanomedicine has been battling with the TME in the past several decades, and the experience obtained could be exploited to improve current paradigms of immunotherapy. Here, we discuss the metabolic features of the TME and its influence on different types of immune cells. The recent progress in nanoenabled cancer immunotherapy has been summarized with a highlight on the modulation of immune cells, tumor stroma, cytokines and enzymes to reverse the immunosuppressive TME.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyesun Hyun
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lian-Tao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Andrew Z Wang
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
21
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
23
|
Li X, Wang C. The potential biomedical platforms based on the functionalized Gd@C
82
nanomaterials. VIEW 2020. [DOI: 10.1002/viw2.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
24
|
Tang J, Zhang R, Guo M, Zhou H, Zhao Y, Liu Y, Wu Y, Chen C. Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. J Control Release 2020; 320:293-303. [PMID: 32004584 DOI: 10.1016/j.jconrel.2020.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Treatment of solid tumors by chemotherapy is usually failed in clinical because of its low effectiveness and side effects. Stimulation of immune system in vivo to fight cancer has been proved to be a pleasant complementary to systemic chemotherapy. Herein, we have developed a combination cancer therapy strategy by using polymer nanoparticles to deliver Gd-metallofullerenol and doxorubicin simultaneously. The Gd-metallofullerenol provoked the Th1 immune response by regulating the M1 macrophage polarization and the doxorubicin realized direct tumor cells killing by its cytotoxic effect. Also, the Gd-metallofullerenol as part of component in delivery system enhances the encapsulation efficiency of doxorubicin in polymer cargo for potential passive tumor target. The biocompatible and reliable method by combining nanoparticle-induced immune modulation and chemotherapy triggers systemic antitumor immune responses for the synergistic inhibition of tumor growth in vivo. The integration of Gd-metallofullerenol and doxorubicin with potentially complementary functions in one nanoplatform may provide new opportunities to improve cancer treatments.
Collapse
Affiliation(s)
- Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; School of Public Health, Qingdao University, Qingdao 226021, China
| | - Ruirui Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
25
|
Potential of Matrix Metalloproteinase Inhibitors for the Treatment of Local Tissue Damage Induced by a Type P-I Snake Venom Metalloproteinase. Toxins (Basel) 2019; 12:toxins12010008. [PMID: 31861940 PMCID: PMC7020480 DOI: 10.3390/toxins12010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Snake bite envenoming is a public health problem that was recently included in the list of neglected tropical diseases of the World Health Organization. In the search of new therapies for the treatment of local tissue damage induced by snake venom metalloproteinases (SVMPs), we tested the inhibitory activity of peptidomimetic compounds designed as inhibitors of matrix metalloproteinases on the activities of the SVMP Batx-I, from Bothrops atrox venom. The evaluated compounds show great potential for the inhibition of Batx-I proteolytic, hemorrhagic and edema-forming activities, especially the compound CP471474, a peptidomimetic including a hydroxamate zinc binding group. Molecular dynamics simulations suggest that binding of this compound to the enzyme is mediated by the electrostatic interaction between the hydroxamate group and the zinc cofactor, as well as contacts, mainly hydrophobic, between the side chain of the compound and amino acids located in the substrate binding subsites S1 and S1′. These results show that CP471474 constitutes a promising compound for the development of co-adjuvants to neutralize local tissue damage induced by snake venom metalloproteinases.
Collapse
|
26
|
Gao G, Jiang YW, Jia HR, Sun W, Guo Y, Yu XW, Liu X, Wu FG. From perinuclear to intranuclear localization: A cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance. Biomaterials 2019; 223:119443. [DOI: 10.1016/j.biomaterials.2019.119443] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
|
27
|
Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Indexed: 05/25/2023]
Abstract
The marriage of nanotechnology and medicine offers new opportunities to fight against human diseases. Benefiting from their unique optical, thermal, magnetic, or redox properties, a wide range of nanomaterials have shown potential in applications such as diagnosis, drug delivery, or tissue repair and regeneration. Despite the considerable success achieved over the past decades, the newly emerging nanomedicines still suffer from an incomplete understanding of their safety risks, and of the relationships between their physicochemical characteristics and safety profiles. Herein, the most important categories of nanomaterials with clinical potential and their toxicological mechanisms are summarized, and then, based on this available information, an overview of the principles in developing safe-by-design nanomaterials for medical applications and of the recent progress in this field is provided. These principles may serve as a starting point to guide the development of more effective safe-by-design strategies and to help identify the major knowledge and skill gaps.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
28
|
Wang T, Wang C. Functional Metallofullerene Materials and Their Applications in Nanomedicine, Magnetics, and Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901522. [PMID: 31131986 DOI: 10.1002/smll.201901522] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Endohedral metallofullerenes exhibit combined properties from carbon cages as well as internal metal moieties and have great potential in a wide range of applications as molecule materials. Along with the breakthrough of mass production of metallofullerenes, their applied research has been greatly developed with more and more new functions and practical applications. For gadolinium metallofullerenes, their water-soluble derivatives have been demonstrated with antitumor activity and unprecedented tumor vascular-targeting therapy. Metallofullerene water-soluble derivatives also can be applied to treat reactive oxygen species (ROS)-induced diseases due to their high antioxidative activity. For magnetic metallofullerenes, the internal electron spin and metal species bring about spin sensitivity, molecular magnets, and spin quantum qubits, which have many promising applications. Metallofullerenes are significant candidates for fabricating useful electronic devices because of their various electronic structures. This Review provides a summary of the metallofullerene studies reported recently, in the fields of tumor inhibition, tumor vascular-targeting therapies, antioxidative activity, spin probes, single-molecule magnets, spin qubits, and electronic devices. This is not an exhaustive summary and there are many other important study results regarding metallofullerenes. All of this research has revealed the irreplaceable role of metallofullerene materials.
Collapse
Affiliation(s)
- Taishan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
29
|
Li J, Chen L, Su H, Yan L, Gu Z, Chen Z, Zhang A, Zhao F, Zhao Y. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. NANOSCALE 2019; 11:14528-14539. [PMID: 31364651 DOI: 10.1039/c9nr04129j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a "particulate medicine" to highlight its distinctions from conventional "molecular medicine", with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ren J, Cai R, Wang J, Daniyal M, Baimanov D, Liu Y, Yin D, Liu Y, Miao Q, Zhao Y, Chen C. Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. NANO LETTERS 2019; 19:4692-4701. [PMID: 31244235 DOI: 10.1021/acs.nanolett.9b01774] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
When a nanomedicine is administrated into the human body, biomolecules in biological fluids, particularly proteins, form a layer on the surface of the nanoparticle known as a "personalized protein corona". An understanding of the formation and behavior of the personalized protein corona not only benefits the nanotherapy treatment efficacy but also can aid in disease diagnosis. Here we used Gd@C82(OH)22 nanoparticles, a nanomedicine effective against several types of cancer, as a model nanomedicine to investigate the natural protein fingerprint of the personalized protein corona formed in 10 human lung squamous cell carcinoma patients. Our analysis revealed a specific biomarker, complement component C1q, in lung cancer personalized protein coronas, abundantly bound to Gd@C82(OH)22 NPs. This binding altered the secondary structure of C1q protein and led to the activation of an innate immune response, which could be exploited for cancer immune therapy. On the basis of this finding, we provide a new strategy for the development of precision nanomedicine derived from opsonization of a unique protein fingerprint within patients. This approach overcomes the common pitfall of protein corona formation and exploits the corona proteins to generate a precision nanomedicine and diagnostic tool.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Muhammad Daniyal
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Dongtao Yin
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Yang Liu
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
31
|
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C 82(OH) 22. Molecules 2019; 24:molecules24132387. [PMID: 31252662 PMCID: PMC6650816 DOI: 10.3390/molecules24132387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer remains a major threat to human health worldwide. Cytotoxicity has imposed restrictions on the conventional cytotoxic drug-based chemotherapy. The rapidly-developing nanomedicine has shown great promise in revolutionizing chemotherapy with improved efficiency and reduced toxicity. Gd@C82(OH)22, a novel endohedral metallofullerenol, was first reported by our research group to suppress tumor growth and metastasis efficiently without obvious toxicity. Gd@C82(OH)22 imprisons tumors by facilitating the formation of surrounding fibrous layers which is different from chemotherapeutics that poison tumor cells. In this review, the authors first reported the antineoplastic activity of metallofullerenol Gd@C82(OH)22 followed by further discussions on its new anti-cancer molecular mechanism—tumor encaging. On this basis, the unparalleled advantages of nanomedicine in the future drug design are discussed. The unique interaction modes of Gd@C82(OH)22 with specific targeted biomolecules may shed light on a new avenue for drug design. Depending on the surface characteristics of target biomolecules, nanomedicine, just like a transformable and dynamic key, can self-assemble into suitable shapes to match several locks for the thermodynamic stability, suggesting the target-tailoring ability of nanomedicine.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Linlin Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Zhaofang Chen
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
32
|
Chen D, Zhou Y, Yang D, Guan M, Zhen M, Lu W, Van Dort ME, Ross BD, Wang C, Shu C, Hong H. Positron Emission Tomography/Magnetic Resonance Imaging of Glioblastoma Using a Functionalized Gadofullerene Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21343-21352. [PMID: 31140277 DOI: 10.1021/acsami.9b03542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-soluble gadofullerene nanomaterials have been extensively investigated as magnetic resonance imaging (MRI) contrast agents, radical scavengers, sensitizers for photodynamic therapy, and inherent antineoplastic agents. Most recently, an alanine-modified gadofullerene nanoparticle (Gd@C82-Ala) with excellent anticancer activity has been reported; however, the absolute tumor uptake of Gd@C82-Ala is still far from being satisfactory, and its dynamic pharmacokinetics and long-term metabolic behaviors remain to be elucidated. Herein, Gd@C82-Ala was chemically modified with eight-arm polyethylene glycol amine to improve its biocompatibility and provide the active sites for the attachment of a tumor-homing ligand (cRGD) and positron emission tomography (PET) isotopes (i.e., 64Cu or 89Zr). The physical and chemical properties (e.g., size, surface functionalization condition, radiochemical stability, etc.) of functionalized Gd@C82-Ala were properly characterized. Also, its glioblastoma cell targeting capacity was evaluated in vitro by flow cytometry, confocal fluorescence microscopy, and dynamic cellular interaction assays. Because of the presence of gadolinium ions, the gadofullerene conjugates can act simultaneously as T1* MRI contrast agents and PET probes. Thus, the pharmacokinetic behavior of functionalized Gd@C82-Ala was investigated by PET/MRI, which combines the merits of high resolution and excellent sensitivity. The functionalized Gd@C82-Ala-PEG-cRGD-NOTA-64Cu (NOTA stands for 1,4,7-triazacyclononane-triacetic acid) demonstrated much higher accumulation in U87-MG tumor than its counterpart without cRGD attachment from in vivo PET observation, consistent with observation at the cellular level. In addition, Gd@C82-Ala-PEG-Df-89Zr (Df stands for desferrioxamine) was employed to investigate the metabolic behavior of gadofullerene conjugates in vivo for up to 30 days. It was estimated that nearly 70% of Gd@C82-Ala-PEG-Df-89Zr was excreted from the test subjects primarily through renal pathways within 24 h. With proper surface engineering, functionalized Gd@C82-Ala nanoparticles can show an improved accumulation in glioblastoma. Pharmacokinetic studies also confirmed the safety of this nanoplatform, which can be used as an image-guidable therapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Daiqin Chen
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Dongzhi Yang
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu 221004 , China
| | - Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Mingming Zhen
- Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Weifei Lu
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
- College of Animal Sciences and Veterinary Medicine , Henan Agricultural University , Zhengzhou , Henan 450002 , China
| | - Marcian E Van Dort
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
- University of Michigan Comprehensive Cancer Center , Ann Arbor , Michigan 48109-0944 , United States
| | - Brian D Ross
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
- University of Michigan Comprehensive Cancer Center , Ann Arbor , Michigan 48109-0944 , United States
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hao Hong
- Department of Radiology, Center for Molecular Imaging , University of Michigan , Ann Arbor , Michigan 48109-2200 , United States
- University of Michigan Comprehensive Cancer Center , Ann Arbor , Michigan 48109-0944 , United States
| |
Collapse
|
33
|
Guan M, Zhou Y, Liu S, Chen D, Ge J, Deng R, Li X, Yu T, Xu H, Sun D, Zhao J, Zou T, Wang C, Shu C. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials 2019; 213:119218. [PMID: 31136911 DOI: 10.1016/j.biomaterials.2019.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Efficient treatment of primary tumor and preventing cancer metastasis present intriguing alternatives to cancer therapy. Herein, for the first time, we reported the photo-triggered nano-gadofullerene (Gd@C82-Ala, abbreviated Gd-Ala) induced malignant tumor vascular disruption by shortening the light interval between Gd-Ala administration and light illumination, where oxygen in blood vessels was employed efficiently to produce cytotoxic reactive oxygen species (ROS). The produced ROS could not only destroy the tumor cells but also devastate the vascular endothelial cells corresponding to the loss of intercellular junctions and vessels disruption. Notably, the irradiated Gd-Ala could enhance dendritic cells (DCs) maturation, which further secreted tumor necrosis factor-α (TNF-α) and interleukin-12 (IL)-12, and then activated T lymphocytes by up-regulation of cluster of differentiation CD4+ and CD8+ T lymphocytes. Furthermore, the down-regulation of matrix metalloprotein 2 (MMP2) and MMP9 also reduce the rate of tumor metastasis. This work explored a new biomedical application of gadofullerene, thereby providing a smart carbon nanomaterial candidate for tumor ablation and inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ruijun Deng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Sun
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajia Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
34
|
Cogo F, Williams R, Burden RE, Scott CJ. Application of nanotechnology to target and exploit tumour associated proteases. Biochimie 2019; 166:112-131. [PMID: 31029743 DOI: 10.1016/j.biochi.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Proteases are hydrolytic enzymes fundamental for a variety of physiological processes, but the loss of their regulation leads to aberrant functions that promote onset and progression of many diseases including cancer. Proteases have been implicated in almost every hallmark of cancer and whilst widely investigated for tumour therapy, clinical adoption of protease inhibitors as drugs remains a challenge due to issues such as off-target toxicity and inability to achieve therapeutic doses at the disease site. Now, nanotechnology-based solutions and strategies are emerging to circumvent these issues. In this review, preclinical advances in approaches to enhance the delivery of protease drugs and the exploitation of tumour-derived protease activities to promote targeting of nanomedicine formulations is examined. Whilst this field is still in its infancy, innovations to date suggest that nanomedicine approaches to protease targeting or inhibition may hold much therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Francesco Cogo
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, 97 Lisburn Road, BT9 7AE, UK
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | | |
Collapse
|
35
|
Tang J, Guo M, Wang P, Liu J, Xiao Y, Cheng W, Gao J, Hu W, Miao QR. Gd-Metallofullerenol nanoparticles cause intracellular accumulation of PDGFR-α and morphology alteration of fibroblasts. NANOSCALE 2019; 11:4743-4750. [PMID: 30604821 DOI: 10.1039/c8nr08667b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gadolinium-metallofullerenols (Gd@C82(OH)22) are a promising agent for cancer therapy and have shown beneficial effects in regulating the tumor microenvironment with low toxicity. However, the underlying mechanism by which Gd@C82(OH)22 interacts with fibroblasts remains unclear. In order to explore the critical role that activated fibroblasts play in tumorigenesis and fibrosis, we investigated the regulatory effect of Gd@C82(OH)22 in fibroblast activation and oncogenic transformation, and found that the PDGFR-α is an essential molecule in modulating the morphology and functional changes in fibroblasts after Gd@C82(OH)22 treatment. Apart from increasing the PDGFR-α protein level, Gd@C82(OH)22 nanoparticles also significantly increased the protein level of Rab5, which is required for regulating PDGFR-α endosomal recycling. The Rab5-mediated recycling of PDGFR-α maybe attributed to the Gd@C82(OH)22 regulated inhibition of fibroblast activation. Overall, our work demonstrated that Gd@C82(OH)22 nanoparticles can attenuate the PDGF-stimulated phosphorylation of PDGFR-α in fibroblasts and suppress the fibroblast activation by interrupting endosomal recycling. These findings may be contributed to the collagen accumulation for encaging cancer.
Collapse
Affiliation(s)
- Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018; 7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Cancer remains one of the major health problems all over the world and conventional therapeutic approaches have failed to attain an effective cure. Tumor microenvironments (TME) present a unique challenge in tumor therapy due to their complex structures and multiple components, which also serve as the soil for tumor growth, development, invasion, and migration. The complex TME includes immune cells, fibrous collagen structures, and tortuous blood vessels, in which conventional therapeutic approaches are rendered useless. State-of-the-art nanotechnologies have potential to cope with the threats of malignant tumors. With unique physiochemical properties, carbon nanomaterials (CNMs), including graphene, fullerenes, carbon nanotubes, and carbon quantum dots, offer opportunities to resolve the hurdles, by targeting not only cancer cells but also the TME. This review summarizes the progress about CNM-based cancer therapy strategies, which mainly focuses on both the treatment for cancer cells and TME-targeted modulation. In the last, the challenges for TME-based therapy via CNMs are discussed, which will be important in guiding current basic research to clinical translation in the future.
Collapse
Affiliation(s)
- Jabran Saleem
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
| |
Collapse
|
38
|
Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018; 234:298-319. [PMID: 30078182 DOI: 10.1002/jcp.26899] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
One of the major components in the development of nanomedicines is the choice of the right biomaterial, which notably determines the subsequent biological responses. The popularity of carbon nanomaterials (CNMs) has been on the rise due to their numerous applications in the fields of drug delivery, bioimaging, tissue engineering, and biosensing. Owing to their considerably high surface area, multifunctional surface chemistry, and excellent optical activity, novel functionalized CNMs possess efficient drug-loading capacity, biocompatibility, and lack of immunogenicity. Over the past few decades, several advances have been made on the functionalization of CNMs to minimize their health concerns and enhance their biosafety. Recent evidence has also implied that CNMs can be functionalized with bioactive peptides, proteins, nucleic acids, and drugs to achieve composites with remarkably low toxicity and high pharmaceutical efficiency. This review focuses on the three main classes of CNMs, including fullerenes, graphenes, and carbon nanotubes, and their recent biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Qin Y, Chen K, Gu W, Dong X, Lei R, Chang Y, Bai X, Xia S, Zeng L, Zhang J, Ma S, Li J, Li S, Xing G. Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics. J Nanobiotechnology 2018; 16:54. [PMID: 29935539 PMCID: PMC6015447 DOI: 10.1186/s12951-018-0380-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tumor metastasis is the primary cause of mortality in cancer patients. Migratory breast cancer cells in lymphatic and blood vessels seek new sites and form metastatic colonies in the lung and bone, and then these cancer cells often wreak considerable havoc. With advances in nanotechnology, nanomaterials and nanotechnologies are widely applied in tumor therapy. In this paper, small size fullerenol nanoparticles, which are separated by isoelectric focusing electrophoresis (IFE) for discrepancy of isoelectric point (pI), are used in the study of tumor metastasis. RESULTS In this study, the commendable inhibition of tumor metastasis was uncovered by intravenous injection of purified fullerenol fraction with special surface charge and functional groups, which was separated by IFE for discrepancy of pI. By investigating the actin dynamics in several cancer cell lines, we found these small size fullerenol nanoparticles disturbed actin dynamics. Young's modulus detection and cell migration assays revealed that fullerenol lowered stiffness and restrained migration of breast cancer cells. Filopodia, the main supporting structures of actin bundles, are important for cell motility and adhesion. Scanning electron microscopy showed that fullerenol reduced the number and length of filopodia. Simultaneously, the inhibition of integrin to form clusters on filopodias, which was likely induced by reorganizing of actin cytoskeleton, impacted cancer cell adhesion and motility. CONCLUSIONS With intravenous injection of these fullerenol nanoparticles, tumor metastasis is well inhibited in vivo. The underlying mechanism most likely to be attributed to the effect of fullerenol nanoparticles on disturbing actin dynamics. With the disordered actin fiber, cell function is varied, including decreased cell stiffness, reduced filopodia formation, and inactivated integrin.
Collapse
Affiliation(s)
- Yanxia Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Ruihong Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Li Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Sihan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
40
|
RF-assisted gadofullerene nanoparticles induces rapid tumor vascular disruption by down-expression of tumor vascular endothelial cadherin. Biomaterials 2018; 163:142-153. [DOI: 10.1016/j.biomaterials.2018.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
|
41
|
Nasr R, Hasanzadeh H, Khaleghian A, Moshtaghian A, Emadi A, Moshfegh S. Induction of Apoptosis and Inhibition of Invasion in Gastric Cancer Cells by Titanium Dioxide Nanoparticles. Oman Med J 2018; 33:111-117. [PMID: 29657679 DOI: 10.5001/omj.2018.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objectives Nanoparticles induce oxidative stress in cells and damage them through the cell membrane and DNA damage, eventually resulting in cell death. This study aimed to evaluate the effect of titanium dioxide (TiO2) nanoparticles on apoptosis induction and invasion of gastric cancer cell line, MKN-45. Methods We used the MTT assay to assess proliferation of MKN-45 gastric cancer cells after exposure to different forms of TiO2 nanoparticles including amorph, brookite, anatase, and rutile coated with polyethylene glycol (PEG) and bovine serum albumin (BSA). Ethidium bromide and acridine orange staining were used to visualize cancer cell apoptosis, and the wound healing assay technique (migration test) was used to assay cancer cell invasion. Results Viability and proliferation of cancer cells in the presence of various forms of TiO2 nanoparticles were reduced (p ≤ 0.050). This reduction in cell proliferation and viability was directly related to concentration and duration of exposure to nanoparticles. Induction of cell death was seen in all groups (p ≤ 0.050). Increased cell invasion was seen in PEG-amorph TiO2 group compared to the control group. Cell invasion was decreased only in the brookite BSA group (p ≤ 0.050). Conclusions Various forms of TiO2 nanoparticles reduced cell proliferation and induced apoptosis in cancer cells. Some forms of TiO2 nanoparticles such as brookite BSA also inhibited cell invasion. PEG-amorph TiO2 nanoparticles increased cell invasion. These differences seem to be due to the effects of different configurations of TiO2 nanoparticles. TiO2 may provide a new strategy for cancer treatment and more studies are needed.
Collapse
Affiliation(s)
- Reza Nasr
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Hasanzadeh
- Cancer Research Center and Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shima Moshfegh
- Student Research Committee and Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
42
|
Yao S, Fan J, Chen Z, Zong Y, Zhang J, Sun Z, Zhang L, Tai R, Liu Z, Chen C, Jiang H. Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCRJ 2018; 5:141-149. [PMID: 29765603 PMCID: PMC5947718 DOI: 10.1107/s2052252517017912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
Knowledge of the interactions between nanomaterials and large-size mammalian cells, including cellular uptake, intracellular localization and translocation, has greatly advanced nanomedicine and nanotoxicology. Imaging techniques that can locate nanomaterials within the structures of intact large-size cells at nanoscale resolution play crucial roles in acquiring this knowledge. Here, the quantitative imaging of intracellular nanomaterials in three dimensions was performed by combining dual-energy contrast X-ray microscopy and an iterative tomographic algorithm termed equally sloped tomography (EST). Macrophages with a size of ∼20 µm that had been exposed to the potential antitumour agent [Gd@C82(OH)22] n were investigated. Large numbers of nanoparticles (NPs) aggregated within the cell and were mainly located in phagosomes. No NPs were observed in the nucleus. Imaging of the nanomedicine within whole cells advanced the understanding of the high-efficiency antitumour activity and the low toxicity of this agent. This imaging technique can be used to probe nanomaterials within intact large-size cells at nanometre resolution uniformly in three dimensions and may greatly benefit the fields of nanomedicine and nanotoxicology.
Collapse
Affiliation(s)
- Shengkun Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Jiadong Fan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Zhiyun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Yunbing Zong
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Jianhua Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Zhibin Sun
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, 239 Zhangheng Road, Pudong New District, Shanghai 201204, People’s Republic of China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People’s Republic of China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People’s Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People’s Republic of China
| |
Collapse
|
43
|
Manigandan A, Handi V, Sundaramoorthy NS, Dhandapani R, Radhakrishnan J, Sethuraman S, Subramanian A. Responsive Nanomicellar Theranostic Cages for Metastatic Breast Cancer. Bioconjug Chem 2018; 29:275-286. [DOI: 10.1021/acs.bioconjchem.7b00577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amrutha Manigandan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Vandhana Handi
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Niranjana Sri Sundaramoorthy
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Ramya Dhandapani
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Janani Radhakrishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
44
|
Lin J, Cai R, Sun B, Dong J, Zhao Y, Miao Q, Chen C. Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. J Mater Chem B 2018; 6:5802-5811. [DOI: 10.1039/c8tb01097h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gd@C82(OH)22 dose-dependently manipulates osteogenesis of MSCs in inflammatory microenvironment, which is capable for bone tissue engineering as an immunomodulatory nanoparticle.
Collapse
Affiliation(s)
- Jiao Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Baoyun Sun
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Key Laboratory for Nuclear Techniques, Institute of High Energy Physics
- Beijing
| | - Jinquan Dong
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Key Laboratory for Nuclear Techniques, Institute of High Energy Physics
- Beijing
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Science
- Beijing 100190
- P. R. China
| |
Collapse
|
45
|
Hu C, Zhu K, Li J, Wang C, Lai L. Molecular targets in aortic aneurysm for establishing novel management paradigms. J Thorac Dis 2017; 9:4708-4722. [PMID: 29268541 DOI: 10.21037/jtd.2017.10.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aortic aneurysm (AA) is a lethal disease and presents a large challenge for surgeons in the clinic. Although surgical management remains the major choice of AA, operative mortality remains high. With advances in understanding of the mechanisms of AAs, molecular targets, such as matrix metalloproteinases (MMPs), D-dimer, and inflammation markers, including C-reactive protein, interleukins and phagocytes, are important in the pathology of development of AA. These markers may become important for improving the diagnostic quality and provide more therapeutic choices for treatment of AA. Although these new markers require long-term trials before they can be translated into the clinic, they can still be helpful in determining new directions. The main aim of this review is to discuss the current findings of molecular targets in progression of AA and discuss the potential application of these new targets for managing this disease.
Collapse
Affiliation(s)
- Chengkai Hu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Lao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| |
Collapse
|
46
|
Liu J, Kang SG, Wang P, Wang Y, Lv X, Liu Y, Wang F, Gu Z, Yang Z, Weber JK, Tao N, Qin Z, Miao Q, Chen C, Zhou R, Zhao Y. Molecular mechanism of Gd@C 82(OH) 22 increasing collagen expression: Implication for encaging tumor. Biomaterials 2017; 152:24-36. [PMID: 29080421 DOI: 10.1016/j.biomaterials.2017.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Gadolinium-containing fullerenol Gd@C82(OH)22 has demonstrated low-toxicity and highly therapeutic efficacy in inhibiting tumor growth and metastasis through new strategy of encaging cancer, however, little is known about the mechanisms how this nanoparticle regulates fibroblast cells to prison (instead of poison) cancer cells. Here, we report that Gd@C82(OH)22 promote the binding activity of tumor necrosis factor (TNFα) to tumor necrosis factor receptors 2 (TNFR2), activate TNFR2/p38 MAPK signaling pathway to increase cellular collagen expression in fibrosarcoma cells and human primary lung cancer associated fibroblasts isolated from patients. We also employ molecular dynamics simulations to study the atomic-scale mechanisms that dictate how Gd@C82(OH)22 mediates interactions between TNFα and TNFRs. Our data suggest that Gd@C82(OH)22 might enhance the association between TNFα and TNFR2 through a "bridge-like" mode of interaction; by contrast, the fullerenol appears to inhibit TNFα-TNFR1 association by binding to two of the receptor's cysteine-rich domains. In concert, our results uncover a sequential, systemic process by which Gd@C82(OH)22 acts to prison tumor cells, providing new insights into principles of designs of cancer therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Seung-Gu Kang
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Peng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaonan Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fei Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zonglin Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Ning Tao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
47
|
Mikheev IV, Kareev IE, Bubnov VP, Volkov DS, Korobov MV, Proskurnin MA. Aqueous Dispersions of Unmodified Y@C82
(C2v
) Endohedral Metallofullerene. ChemistrySelect 2017. [DOI: 10.1002/slct.201701557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivan V. Mikheev
- Chemistry Department; Analytical Centre of Lomonosov Moscow State University / Agilent Technologies Authorized Partner Laboratory Moscow; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russia
| | - Vyacheslav P. Bubnov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences; 142432 Chernogolovka, Moscow Region Russia
| | - Dmitriy S. Volkov
- Chemistry Department; Analytical Centre of Lomonosov Moscow State University / Agilent Technologies Authorized Partner Laboratory Moscow; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Mikhail V. Korobov
- Chemistry Department; Analytical Centre of Lomonosov Moscow State University / Agilent Technologies Authorized Partner Laboratory Moscow; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Mikhail A. Proskurnin
- Chemistry Department; Analytical Centre of Lomonosov Moscow State University / Agilent Technologies Authorized Partner Laboratory Moscow; Lomonosov Moscow State University; 119991 Moscow Russia
| |
Collapse
|
48
|
Li J, Xing X, Sun B, Zhao Y, Wu Z. Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization. Chem Asian J 2017; 12:2646-2651. [PMID: 28815927 DOI: 10.1002/asia.201700910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Indexed: 12/24/2022]
Abstract
Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe3+ or transferrin (Tf). Gd@C82 (OH)22 or C60 (OH)22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl3 , GdCl3 , C60 (OH)22 or Gd@C82 (OH)22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl3 , GdCl3 or C60 (OH)22 , but associated into tetramers in the presence of Gd@C82 (OH)22 . The larger change of SAXS shapes between Tf+C60 (OH)22 and Tf+FeCl3 implies that C60 (OH)22 is bound to Tf, blocking the iron-binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C82 (OH)22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C82 (OH)22 and C60 (OH)22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy.
Collapse
Affiliation(s)
- Jinxia Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoyun Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Nie X, Tang J, Liu Y, Cai R, Miao Q, Zhao Y, Chen C. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1879-1890. [PMID: 28365417 DOI: 10.1016/j.nano.2017.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023]
Abstract
The interaction between bone marrow-derived mesenchymal stem cells (BDMSCs) and tumor cells promotes tumor proliferation and metastasis. We found that 4T1 breast cancer cells induced malignant differentiation of BDMSCs and that BDMSCs also affected the growth and metastasis of 4T1 cells. However, when the interaction between BDMSCs and 4T1 cells was attenuated or blocked by C60(OH)22 nanoparticles, tumor growth and metastasis were significantly suppressed. The suppression of metastasis depended on the activation of MAPK signals in the BDMSCs, whereas the underlying pathways were related to a broad range of extracellular responses and were modulated by the secretion of multiple cytokines. Interestingly, C60(OH)22 regulated the malignantly differentiated BDMSCs via the Erk- and p38-MAPK and its downstream NF-κB signal pathway, but in normal BDMSCs regulation occurred only through Erk- and p38-MAPK and not by NF-κB activation. This study may provide a novel mechanism for C60(OH)22 nanoparticles as an anti-tumor drug.
Collapse
Affiliation(s)
- Xin Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China; Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 822] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|