1
|
Kulkarni B, AlOtaiby S, Khashab NM, Hadjichristidis N. Redox-Responsive PEO- b-PCL-Based Block Copolymers for Synergistic Drug Delivery and Bioimaging in Cancer Cells. Biomacromolecules 2025; 26:3032-3043. [PMID: 40265982 DOI: 10.1021/acs.biomac.5c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Stimuli-responsive polymer-based nanocarriers enhance the drug delivery efficiency by enabling targeted release at tumor sites. However, integrating therapeutic and diagnostic functions into a single nanoplatform while maintaining control over both remains a significant challenge. This study presents a stimuli-responsive, multifunctional poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) nanocarrier for combination cancer therapy and bioimaging. The system codelivers chlorambucil (CHL) and methotrexate (MTX) to enhance therapeutic efficacy and overcome multidrug resistance. A redox-responsive disulfide linker enables CHL release in the tumor's glutathione-rich environment, ensuring selective drug activation. Additionally, an aggregation-induced emission (AIE) fluorophore, tetraphenylethylene (TPE), facilitates the monitoring of cellular uptake and drug release. The resulting TPE-(PEO-b-PCL)-S-S-CHL (P3) micelles encapsulated with MTX (P3-MTX) exhibited favorable size, morphology, and enhanced cytotoxicity, demonstrating a synergistic effect in combination therapy. Confocal laser scanning microscopy (CLSM) confirmed intracellular uptake by using TPE-based fluorescence. Thus, these nanocarriers offer a promising theranostic platform for simultaneous cancer treatment and monitoring.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shahad AlOtaiby
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Rasoulianboroujeni M, Kang RH, Klukas M, Kwon GS. Crystallization of supersaturated PEG-b-PLA for the production of drug-loaded polymeric micelles. J Control Release 2025; 380:457-468. [PMID: 39921034 PMCID: PMC11908913 DOI: 10.1016/j.jconrel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In this study, we propose the "crystallization from supersaturated solution" method for producing drug-loaded polymeric micelles. This method involves the formation of solid drug-encapsulating crystals of a diblock copolymer through isothermal crystallization from a supersaturated solution of the copolymer in low molecular weight PEGs containing the drug, followed by dissolution of the crystals to obtain drug-loaded micelles. We fabricated and characterized micelles loaded with several model drugs (paclitaxel, rapamycin, and docetaxel) and their oligo(lactic acid)8-prodrugs using PEG4kDa-b-PLA2.2kDa as the micelle-forming copolymer and PEGs of varying molecular weights (200, 400, and 600 Da) as solvents. Our findings indicate that the molecular weight of the solvent PEG and the target drug loading significantly influence the physicochemical properties of the resulting micelles, including loading efficiency and particle size distribution. Micelles produced with PEG200 as the solvent exhibited the highest loading efficiency, followed by those made with PEG600 and PEG400 for all the drugs and prodrugs tested. Increasing the target drug loading enhanced both the loading efficiency and average particle size across all formulations. Furthermore, prodrug-loaded micelles showed higher loading efficiency and improved stability in aqueous solutions compared to their parent drug counterparts. Crystals encapsulating both parent drugs and prodrugs could be stored at room temperature for extended periods, producing micelles with no significant differences in loading efficiency and particle size distribution compared to freshly prepared micelles. Additionally, the crystals demonstrated a rapid dissolution rate, forming uniform micelles after just 5 s of hydration and agitation. Cytotoxicity studies against 4 T1 and MDA-MB-231 breast cancer cell lines revealed that the molecular weight of the PEG used as the solvent impacts the cytotoxicity of the resulting micelles, with those produced using PEG200 displaying the highest cytotoxicity, followed by PEG400 and PEG600. Overall, the crystallization from supersaturated solution method proves to be an effective platform for prolonged storage and rapid formation of stable, drug-loaded polymeric micelles. It has the potential to eliminate the need for freeze-drying in the formulation and storage of drug-loaded polymeric micelles. These findings highlight the method's potential for advancing drug delivery systems, particularly for the solubilization of hydrophobic drugs using micellar formulations.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rae Hyung Kang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Maraya Klukas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States.
| |
Collapse
|
3
|
Yang X, Huang C, Wang H, Yang K, Huang M, Zhang W, Yu Q, Wang H, Zhang L, Zhao Y, Zhu D. Multifunctional Nanoparticle-Loaded Injectable Alginate Hydrogels with Deep Tumor Penetration for Enhanced Chemo-Immunotherapy of Cancer. ACS NANO 2024; 18:18604-18621. [PMID: 38952130 DOI: 10.1021/acsnano.4c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Chemo-immunotherapy has become a promising strategy for cancer treatment. However, the inability of the drugs to penetrate deeply into the tumor and form potent tumor vaccines in vivo severely restricts the antitumor effect of chemo-immunotherapy. In this work, an injectable sodium alginate platform is reported to promote penetration of the chemotherapeutic doxorubicin (DOX) and delivery of personalized tumor vaccines. The injectable multifunctional sodium alginate platform cross-links rapidly in the presence of physiological concentrations of Ca2+, forming a hydrogel that acts as a drug depot and releases loaded hyaluronidase (HAase), DOX, and micelles (IP-NPs) slowly and sustainedly. By degrading hyaluronic acid (HA) overexpressed in tumor tissue, HAase can make tumor tissue "loose" and favor other components to penetrate deeply. DOX induces potent immunogenic cell death (ICD) and produces tumor-associated antigens (TAAs), which could be effectively captured by polyethylenimine (PEI) coated IP-NPs micelles and form personalized tumor vaccines. The vaccines efficaciously facilitate the maturation of dendritic cells (DCs) and activation of T lymphocytes, thus producing long-term immune memory. Imiquimod (IMQ) loaded in the core could further activate the immune system and trigger a more robust antitumor immune effect. Hence, the research proposes a multifunctional drug delivery platform for the effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xinyu Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hanyong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kaiyue Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mingyang Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Weijia Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hai Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
4
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
6
|
Wang N, Zuo Y, Wu S, Huang C, Zhang L, Zhu D. Spatio-temporal delivery of both intra- and extracellular toll-like receptor agonists for enhancing antigen-specific immune responses. Acta Pharm Sin B 2022; 12:4486-4500. [PMID: 36561992 PMCID: PMC9764069 DOI: 10.1016/j.apsb.2022.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
For cancer immunotherapy, triggering toll-like receptors (TLRs) in dendritic cells (DCs) can potentiate antigen-based immune responses. Nevertheless, to generate robust and long-lived immune responses, a well-designed nanovaccine should consider different locations of TLRs on DCs and co-deliver both antigens and TLR agonist combinations to synergistically induce optimal antitumor immunity. Herein, we fabricated lipid-polymer hybrid nanoparticles (LPNPs) to spatio-temporally deliver model antigen ovalbumin (OVA) on the surface of the lipid layer, TLR4 agonist monophosphoryl lipid A (MPLA) within the lipid layer, and TLR7 agonist imiquimod (IMQ) in the polymer core to synergistically activate DCs by both extra- and intra-cellular TLRs for enhancing adaptive immune responses. LPNPs-based nanovaccines exhibited a narrow size distribution at the mean diameter of 133.23 nm and zeta potential of -2.36 mV, showed a high OVA loading (around 70.83 μg/mg) and IMQ encapsulation efficiency (88.04%). Our data revealed that LPNPs-based nanovaccines showed great biocompatibility to immune cells and an excellent ability to enhance antigen internalization, thereby promoting DCs maturation and cytokines production. Compared to Free OVA, OVA-LPNPs promoted antigen uptake, lysosome escape, depot effect and migration to secondary lymphatic organs. In vivo immunization showed that IMQ-MPLA-OVA-LPNPs with dual agonists induced more powerful cellular and humoral immune responses. Moreover, prophylactic vaccination by IMQ-MPLA-OVA-LPNPs effectively suppressed tumor growth and increased survival efficacy. Hence, the nanovaccines we fabricated can effectively co-deliver antigens and different TLR agonists and realize coordinated stimulation of DCs in a spatio-temporal manner for enhanced immune responses, which provides a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Nannan Wang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yueyue Zuo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
7
|
Rasoulianboroujeni M, Repp L, Lee HJ, Kwon GS. Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying. J Control Release 2022; 350:350-359. [PMID: 35988780 PMCID: PMC9841601 DOI: 10.1016/j.jconrel.2022.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
A new approach named PEG-assist is introduced for the production of drug-loaded polymeric micelles. The method is based on the use of PEG as the non-selective solvent for PEG-b-PLA in the fabrication procedure. Both hydration temperature and PEG molecular weight are shown to have a significant effect on the encapsulation efficiency of PTX in PEG4kDa-b-PLA2kDa micelles. The optimal procedure for fabrication includes the use of PEG1kDa as the solvent at 60 °C, cooling the mixture to 40 °C, hydration at 40 °C, freezing at -80 °C and freeze-drying at -35 °C, 15 Pa. No significant difference (p > 0.05) in PTX encapsulation, average particle size and polydispersity index is observed between the samples before freeze-drying and after reconstitution of the freeze-dried cake. The prepared PTX formulations are stable at room temperature for at least 8 h. Scaling the batch size to 25× leads to no significant change (p > 0.05) in PTX encapsulation, average particle size and polydispersity index. PEG-assist method is applicable to other drugs such as 17-AAG, and copolymers of varied molecular weights. The use of no organic solvent, simplicity, cost-effectiveness, and efficiency makes PEG-assist a very promising approach for large scale production of drug-loaded polymeric micelles.
Collapse
|
8
|
Kulkarni B, Qutub S, Ladelta V, Khashab NM, Hadjichristidis N. AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules 2021; 22:5243-5255. [PMID: 34852198 DOI: 10.1021/acs.biomac.1c01165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent drug delivery systems have received increasing attention in cancer therapy because they combine drug delivery and bioimaging into a single platform. For example, polymers with aggregation-induced emission (AIE) fluorophores, such as tetraphenylethylene (TPE), have emerged as an elegant choice for drug delivery/bioimaging applications. In this work, we report one-pot sequential organocatalytic ring-opening polymerization of ε-caprolactone (CL) and ethylene oxide (EO) using TPE-(OH)2 as a difunctional initiator, in the presence of a t-BuP2/TEB Lewis pair (catalyst), in THF at room temperature. Two well-defined triblock copolymers with inverse block sequences, TPE-(PCL-b-PEO)2 and TPE-(PEO-b-PCL)2, were synthesized by altering the sequential addition of CL and EO. The physicochemical properties, including hydrodynamic diameter, morphology, and AIE properties of the synthesized amphiphilic triblock copolymers were investigated in aqueous media. The block copolymer micelles were loaded with anticancer drugs doxorubicin and curcumin to serve as drug delivery vehicles. In vitro studies revealed the accelerated drug release at lower pH (5.5), which mimics the tumor microenvironment, different from the physiological pH (7.4). In vitro cytotoxicity studies demonstrated that the neat block copolymer micelles are biocompatible, while drug-loaded micelles exhibited a significant cytotoxic effect in cancer cells. Cellular uptake, examined by confocal laser scanning microscopy, showed that the block copolymer micelles were rapidly internalized by the cells with simultaneous emission of TPE fluorophore. These results suggest that these triblock copolymers can be utilized for intracellular bioimaging.
Collapse
Affiliation(s)
- Bhagyashree Kulkarni
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Peled S, Livney YD. Oligosaccharide-lactoferrin shell-crosslinked particles for selective targeting of proteins to probiotic bacteria in the colon. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Zahiri M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo. Expert Opin Drug Deliv 2021; 18:1309-1322. [PMID: 33970721 DOI: 10.1080/17425247.2021.1928631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hybrid vesicular systems (lipopolymersomes) are promising platforms for minimizing the liposomes and polymersomes disadvantages in terms of chemotherapeutic transportation. In this regard, lipopolymersome has been designed to integrate the advantage of both polymersomes and liposomes to enable better structural integrity of the bilayer after encapsulation of hydrophobic drugs while maintaining the soft nature of liposomes, superior serum stability, and high encapsulation efficiency of cargos in the bilayer segment. RESEARCH DESIGN AND METHODS In the present study, we reported preparation and characterization of five camptothecin (CPT)-loaded lipopolymersomal formulations composed of poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) and dipalmitoylphosphatidylcholine (DPPC) at different molar ratios using film rehydration method. Afterward, the preferred formulation was tagged with AS1411 DNA aptamer in order to evaluate the therapeutic index using nucleolin-positive colon cancer cell lines (HT29 and C26). RESULTS The obtained data indicated that the prepared CPT-loaded lipopolymersome at a PEG-PLA: DPPC ratio of 75:25 exhibited superior stability and high loading capacity compared to other systems. Moreover, high cytotoxicity of the aptamer-targeted lipopolymersome and increased tumor accumulation were observed in comparison with non-targeted one. CONCLUSIONS The designed polymer-rich lipopolymersomal platform offers bright future for the development of potent nanomedicine against cancer.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Alven S, Aderibigbe BA. The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. Pharmaceutics 2020; 12:E1212. [PMID: 33333778 PMCID: PMC7765183 DOI: 10.3390/pharmaceutics12121212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
12
|
Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Xiong K, Zhang Y, Wen Q, Luo J, Lu Y, Wu Z, Wang B, Chen Y, Zhao L, Fu S. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 2020; 589:119875. [PMID: 32919003 DOI: 10.1016/j.ijpharm.2020.119875] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Multi-drug chemotherapy has been one of the most popular strategies for the treatment of malignant tumors, and has achieved desirable therapeutic outcomes. The objective of the present study is to develop biodegradable PCEC nanoparticles (NPs) for the co-delivery of paclitaxel (PTX) and curcumin (CUR), and investigate the antitumor effect of the drug delivery system (DDS: PTX-CUR-NPs) against breast cancer both in vitro and in vivo. The prepared PTX-CUR-NPs had a small size of 27.97 ± 1.87 nm with a low polydispersity index (PDI, 0.197 ± 0.040). The results exhibited slow release of PTX and CUR from the DDS without any burst effect. Further, the PTX-CUR-NPs displayed a dose-dependent cytotoxicity in MCF-7 cells with a higher apoptosis rate (64.29% ± 1.97%) as compared to that of free drugs (PTX + CUR, 34.21% ± 0.81%). The cellular uptake study revealed that the drug loaded PCEC polymeric nanoparticles were more readily uptaken by tumor cells in vitro. To evaluate the in vivo anti-tumor effect, the PTX-CUR-NPs were intravenously administered to BALB/c nude mouse xenografted with MCF-7 cells and the results exhibited significant inhibition of tumor growth with prolonged survival time and reduced side effect when compared with free drugs (PTX + CUR). Moreover, the administration of PTX-CUR-NPs treatment led to lower Ki67 expression (p < 0.05), and enhanced TUNEL positivity (higher apoptosis, p < 0.01) in tumor cells as compared to other treatment groups, suggesting the therapeutic efficacy of the DDS. Altogether, the present study suggests that the DDS PTX-CUR-NPs could be employed for the effective treatment of breast cancers in near future.
Collapse
Affiliation(s)
- Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Zhang
- Department of Oncology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jia Luo
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
14
|
Ozturk N, Kara A, Gulyuz S, Ozkose UU, Tasdelen MA, Bozkir A, Yilmaz O, Vural I. Exploiting ionisable nature of PEtOx- co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul 2020; 37:467-480. [PMID: 32627670 DOI: 10.1080/02652048.2020.1792566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS This study was conducted to evaluate block copolymers containing two different poly(ethyleneimine) (PEI) amounts, as new pH-sensitive micellar delivery systems for doxorubicin. METHODS Micelles were prepared with block copolymers consisting of poly(2-ethyl-2-oxazoline)-co-poly(ethyleneimine) (PEtOx-co-PEI) and poly(ε-caprolactone) (PCL) as hydrophilic and hydrophobic blocks, respectively. Doxorubicin loading, micelle size, pH-dependent drug release, and in vitro cytotoxicity on MCF-7 cells were investigated. RESULTS The average size of drug-loaded micelles was under 100 nm and drug loading was between 10.7% and 48.3% (w/w). pH-sensitive drug release was more pronounced (84.7% and 68.9% (w/w) of drug was released at pH 5.0 and pH 7.4, respectively) for the micelles of the copolymer with the lowest PEI amount. The cell viability of doxorubicin-loaded micelles which were prepared by the copolymer with the lowest PEI amount was 28-33% at 72 h. CONCLUSIONS PEtOx-co-PEI-b-PCL micelles of this copolymer were found to be stable and effective pH-sensitive nano-sized carriers for doxorubicin delivery.
Collapse
Affiliation(s)
- Naile Ozturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Asli Kara
- Department of Medical Services and Techniques, Sungurlu Vocational High School, Hitit University, Corum, Turkey.,Department of Nanotechnology and Nanomedicine, Hacettepe University Institute of Science, Ankara, Turkey
| | - Sevgi Gulyuz
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Umut Ugur Ozkose
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Asuman Bozkir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ozgur Yilmaz
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Architecture based selectivity of Amphiphilic block copolymers of poly(ethylene oxide) and poly(ε-caprolactone) for drug delivery. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kareem F, Abdul‐Karim R, Maharjan R, Shah MR, Simjee SU, Khan KM, Malik MI. Enhanced Anti‐Bacterial Activity of Non‐Antibacterial Drug Candesartan Cilexetil by Delivery through Polymeric Micelles. ChemistrySelect 2020. [DOI: 10.1002/slct.201904758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faheem Kareem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Rubina Abdul‐Karim
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Rukesh Maharjan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Muhammad Raza Shah
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Shabana U. Simjee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| | - Khalid M. Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University P.O. Box 31441 Dammam Saudi Arabia
| | - Muhammad Imran Malik
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
17
|
Engelberg S, Netzer E, Assaraf YG, Livney YD. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis 2019; 10:702. [PMID: 31541073 PMCID: PMC6754387 DOI: 10.1038/s41419-019-1870-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
Targeted cancer therapy is currently the leading modality to enhance treatment selectivity and efficacy, as well as to minimize untoward toxicity to healthy tissues. Herein, we devised and studied nanoparticles (NPs) composed of the biocompatible block-copolymer PEG-PCL entrapping the hydrophobic chemotherapeutic drug paclitaxel (PTX), which are targeted to human non-small cell lung cancer (NSCLC) cells. To achieve selective NSCLC targeting, these NPs were decorated with single-stranded oligonucleotide-based S15 aptamers (S15-APTs), which we have recently shown to serve as efficient tumor cell targeting ligands. Prepared without using surfactants, these 15 nm PEG-PCL/PTX NPs entered NSCLC cells via clathrin-mediated endocytosis. These NPs demonstrated efficient encapsulation of PTX, high selectivity to- and potent eradication of human A549 NSCLC cells, with a remarkable half maximal inhibitory concentration (IC50) of 0.03 μM PTX. In contrast, very high IC50 values of 1.7, 4.2, 43, 87, and 980 µM PTX were obtained towards normal human bronchial epithelial BEAS2B, cervical carcinoma HeLa, colon adenocarcinoma CaCo-2, neonatal foreskin fibroblast FSE, and human embryonic kidney HEK-293 cells, respectively. These results demonstrate 2–5 orders of magnitude difference in the selective cytotoxicity towards NSCLCs, reflecting a potentially outstanding therapeutic window. Moreover, the dual utility of aptamer-decorated NPs for both drug stabilization and selective tumor targeting was studied by increasing APT concentrations during NP “decoration”. The optimal aptamer density on the surface of NPs for selective targeting, for high fluorescence diagnostic signal and for maintaining small particle size to enable endocytosis, was achieved by using 30 nM APTs during NP decoration. Collectively, our findings suggest that these APT-decorated NPs hold great preclinical promise in selective targeting and eradication of human NSCLC cells without harming normal tissues.
Collapse
Affiliation(s)
- Shira Engelberg
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel
| | - Einat Netzer
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, 3200000, Haifa, Israel.
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel.
| |
Collapse
|
18
|
PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
A novel triblock amphiphilic copolymer (PAL-PEG-Birinapant) was designed and synthesized as a dual-functional micellar carrier utilizing birinapant (an inhibitor of inhibitor-of-apoptosis proteins) as a pH-sensitive segment and inhibitor-of-apoptosis proteins-targeting ligand. The mixed micelles comprised of PAL-PEG-Birinapant (PPB) and mPEG2k-PDLLA2k (MPP), named as PPB/MPP (2/1,w/w) micelles were developed for enhanced solubility and antitumor potency of hydrophobic drugs as paclitaxel (PTX). In vitro cell viability and cytotoxicity studies revealed that the PTX-loaded PPB/MPP micelles were more potent than the commercial PTX formulation (Taxol®), as well as the in vitro cell apoptosis study. Clear differences in the intracellular uptake of free coumarin-6 (C6) solution and C6-loaded PPB/MPP micelles were observed and indicated that the PPB/MPP micelles could efficiently deliver chemical compound into tumor cells. PPB copolymer and PTX-loaded PPB/MPP micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of above 1.2 g copolymer/kg and above 100 mg PTX/kg in mice respectively in contrast to 20˜24 mg/kg of Taxol®. The near infrared (NIR) fluorescence imaging showed that PPB/MPP micelles persisted for a relatively long time in the circulation and accumulated preferentially in tumor tissue. Moreover, PTX loaded PPB/MPP micelles significantly inhibited the tumor growth both in MDA-MB-231 and Ramos cancer xenograft mice models without obvious toxicity. Collectively, our study presents a new dual-functional micelles that improve the therapeutic efficacy of PTX in vitro and in vivo.
Collapse
|
19
|
Synthesis and Statistical Optimization of Poly (Lactic-Co-Glycolic Acid) Nanoparticles Encapsulating GLP1 Analog Designed for Oral Delivery. Pharm Res 2019; 36:99. [PMID: 31087188 PMCID: PMC6513835 DOI: 10.1007/s11095-019-2620-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/01/2019] [Indexed: 01/21/2023]
Abstract
Purpose To design and stabilize Liraglutide loaded poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) proper for oral administration. Methods PLGA NPs were prepared by means of double emulsion solvent evaporation method and optimized by applying 7-factor 2-level Plackett-Burman screening design. Results Spherical shaped NPs with homogeneous distribution, 188.95 nm particle size and 51.81% encapsulation efficiency were obtained. Liraglutide was successfully entrapped in the NPs while maintaining its native amorphous nature, and its structural integrity as well. Conclusion Lira-PLGA NPs with the required Critical Quality Attributes (CQAs) were successfully designed by implementing a 7-factor 8-run Plackett Burman design into the extended Quality by Design (QbD) model, to elucidate the effect of formulation and process variables on the particle size, size-distribution, encapsulation efficiency and surface charge. As the developed nanoparticles maintained the native structure of the active pharmaceutical ingredient (API), they are promising compositions for the further development for the oral delivery of Lira. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11095-019-2620-9) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Edelman R, Assaraf YG, Slavkin A, Dolev T, Shahar T, Livney YD. Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics 2019; 11:E216. [PMID: 31060303 PMCID: PMC6572588 DOI: 10.3390/pharmaceutics11050216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer mortality is the highest among gynecologic malignancies. Hence, the major challenges are early diagnosis and efficient targeted therapy. Herein, we devised model theranostic nanoparticles (NPs) for combined diagnostics and delivery of chemotherapeutics, targeted to ovarian cancer cells. These NPs were made of natural biocompatible and biodegradable body components: hyaluronic acid (HA) and serum albumin (SA). The hydrophilic HA served as the targeting ligand for cancer cells overexpressing CD44, the HA receptor. SA, the natural carrier of various ligands through the blood, served as the hydrophobic block of the self-assembling block copolymeric Maillard-conjugates. We show the successful construction of fluorescently-labeled SA-HA conjugate-based theranostic NPs, their loading with paclitaxel (PTX) (association constant (8.6 ± 0.8) × 103 M-1, maximal loading capacity of 4:1 PTX:BSA, and 96% encapsulation efficiency), selective internalization and cytotoxicity to CD44-overexpressing ovarian cancer cells (IC50: 26.4 ± 2.3 nM, compared to 115.0 ± 17.4 of free PTX, and to 58.6 ± 19.7 nM for CD44-lacking cognate ovarian cancer cells). Fluorescein isothiocyanate (FITC) was used for in vitro imaging, whereas long wavelength fluorophores or other suitable tracers would be used for future in vivo diagnostic imaging. Collectively, our findings demonstrate that fluorescent HA-SA NPs harboring a cytotoxic drug cargo can specifically target, label CD44-expressing ovarian cancer cells and efficiently eradicate them.
Collapse
Affiliation(s)
- Ravit Edelman
- The Lab of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Anton Slavkin
- The Lab of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Tamar Dolev
- The Lab of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Tal Shahar
- The Lab of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Yoav D Livney
- The Lab of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| |
Collapse
|
21
|
Lather V, Saini V, Pandita D. Polymeric Micelles of Modified Chitosan Block Copolymer as Nanocarrier for Delivery of Paclitaxel. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2468187308666180426120050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Polymeric micelles are being used as successful nanocarriers for
the delivery of diverse drug molecules due to properties like solubilization, selective targeting,
P-glycoprotein inhibition, altered drug internalization route and subcellular localization
etc.
Objective:
The present investigation was planned to prepare and characterize novel polymeric
micelles derived from self assembly of amphiphilic chitosan-bile salt derivative
(CS-mPEG-DA) as nanocarrier and evaluate their potential in delivery of an anticancer
drug, paclitaxel.
Method:
Paclitaxel, a diterpenoid compound, useful in clinical treatment of several solid
tumors such as ovarian cancer, breast cancer and lung cancer suffers from limitations like
low aqueous solubility and bioavailability and subsequently was used as the model drug.
Results:
Paclitaxel was successfully incorporated into polymeric micelles using dialysis
and emulsion method with encapsulation efficiency up to 95% having particle size in
nanometer range (<200 nm). Paclitaxel loaded micelles were found to release the drug in
a sustained manner up to 96 h in PBS containing 0.1% (w/v) tween 80 at 37°C. The micelles
powders subjected to stability studies for a period of 90 days were found to be stable
at 4 ± 2°C with respect to particle size and drug content. In vivo cytotoxicity assay
confirmed that paclitaxel encapsulated in polymeric micelles showed higher cytotoxicity
against cultured MCF-7 breast cancer cells than paclitaxel alone.
Conclusion:
Polymeric micellar systems derived from copolymerization of chitosan exhibit
a great potential in successful delivery of poorly water soluble or low bioavailable
drugs like paclitaxel.
Collapse
Affiliation(s)
- V. Lather
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - V. Saini
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| | - D. Pandita
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa-125055, Haryana, India
| |
Collapse
|
22
|
Abriata JP, Turatti RC, Luiz MT, Raspantini GL, Tofani LB, do Amaral RLF, Swiech K, Marcato PD, Marchetti JM. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:347-355. [DOI: 10.1016/j.msec.2018.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/11/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
|
23
|
Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Miguel Espinoza
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Harshal Indrabhan Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Eduardo San Martin Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Rocio Casañas Pimentel
- CONACYT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
24
|
Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: Mixture-design optimization, micellization, and solubilization behavior. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Cong Z, Yang F, Cao L, Wen H, Fu T, Ma S, Liu C, Quan L, Liao Y. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int J Nanomedicine 2018; 13:8549-8560. [PMID: 30587977 PMCID: PMC6296692 DOI: 10.2147/ijn.s185726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study proposes the utilization of multispectral optoacoustic tomography (MSOT) to investigate the intratumoral distribution of polymeric micelles and effect of size on the biodistribution and antitumor efficacy (ATE). MATERIALS AND METHODS Docetaxel and/or optoacoustic agent-loaded polymeric micelles (with diameters of 22, 48, and 124 nm) were prepared using amphiphilic block copolymers poly (ethylene glycol) methyl ether-block-poly (D,L lactide) (PEG2000-PDLLAx). Subcutaneous 4T1 tumor-bearing mice were monitored with MSOT imaging and IVIS® Spectrum in vivo live imaging after tail vein injection of micelles. The in vivo results and ex vivo confocal imaging results were then compared. Next, ATE of the three micelles was found and compared. RESULTS We found that MSOT imaging offers spatiotemporal and quantitative information on intratumoral distribution of micelles in living animals. All the polymeric micelles rapidly extravasated into tumor site after intravenous injection, but only the 22-nm micelle preferred to distribute into the inner tumor tissues, leading to a superior ATE than that of 48- and 124-nm micelles. CONCLUSION This study demonstrated that MSOT is theranostically a powerful imaging modality, offering quantitative information on size-dependent spatiotemporal distribution patterns after the extravasation of nanomedicine from tumor blood vessels.
Collapse
Affiliation(s)
- Zhaoqing Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Feifei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Li Cao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Han Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Taotao Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Siqi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Chunyu Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Lihui Quan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Yonghong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| |
Collapse
|
26
|
Almeida A, Silva D, Gonçalves V, Sarmento B. Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery. Drug Deliv Transl Res 2018; 8:387-397. [PMID: 28116655 DOI: 10.1007/s13346-017-0357-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, self-assembled amphiphilic micelles based on chitosan (CS) and polycaprolactone (PCL) were produced and used as carriers of paclitaxel (PTX) to improve its intestinal pharmacokinetic profile. Chitosan-grafted-polycaprolactone (CS-g-PCL) was synthesized through a carbodiimide reaction by amidation and confirmed by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance analysis (1H NMR), and contact angle evaluation. Micelles were produced by solvent evaporation method, and the critical micelle concentration was investigated by conductimetry. The obtained micelles were of 408-nm mean particle size, narrow size distribution (polydispersity index of 0.335) and presented positive surface charge around 30 mV. The morphology of micelles assessed by transmission electron microscopy (TEM) revealed round and smooth surface, in agreement with dynamic light scattering measurements. The association efficiency determined by high-performance liquid chromatography (HPLC) was as high as 82%. The in vitro cytotoxicity of the unloaded and PTX-loaded micelles was tested against Caco-2 and HT29-MTX intestinal epithelial cells, resulting in the absence of cell toxicity for all formulations. Moreover, the permeability of PTX-loaded micelles in Caco-2 monolayer and Caco-2/HT29-MTX co-culture model was determined. Results showed that the permeability of PTX was higher in Caco-2/HT29-MTX co-culture model compared with Caco-2 monolayer due to the mucoadhesive character of micelles, acting as a platform to deliver PTX at the sites of absorption. Therefore, it can be concluded that the PTX-loaded CS-g-PCL micelles, employed for the first time as PTX carriers, may be a potential drug carrier for the intestinal delivery of hydrophobic drugs, particularly anticancer agents.
Collapse
Affiliation(s)
- Andreia Almeida
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal
| | - Daniella Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, São Carlos, SP, 400-13560-970, Brazil
| | - Virginia Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4200-393, Porto, Portugal. .,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
27
|
Ghaffari F, Bahmanzadeh M, Nili-Ahmadabadi A, Firozian F. Cytotoxicity Enhancement of Paclitaxel by Loading on Stearate-g-dextran Micelles on Breast Cancer Cell Line MCF-7. Asian Pac J Cancer Prev 2018; 19:2651-2655. [PMID: 30256563 PMCID: PMC6249484 DOI: 10.22034/apjcp.2018.19.9.2651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Paclitaxel (PTX) is a chemotherapeutic agent used for treating breast cancer. The study aimed to prepare PTX loaded dextran stearate (Dex-SA) and evaluate its efficacy against human breast cancer cell line MCF-7. Methods: Dex-SA/PTX micelles were prepared by dialysis method. The micelles size, zeta potential and particle size distribution were measured by dynamic laser light scattering method. Amount of loaded PTX on the polymer measured by HPLC. Release profiles of the drug from the micelles were obtained in buffer (phosphate pH=7.4). Then the cytotoxicity of blank micelles, Dex-SA/PTX micelles and free PTX were evaluated in the MCF-7 cells by MTT method. Result: Loading efficiency of PTX on the Dex-SA was measured about 84.24±9.07%. The smallest particles size was about 193.9±7.1 nm but the other formulation with larger particle size had better zeta potential (-33.5±6.74 mV). The drug release from the micelles was slowly and reached steady state after about 12 hours. The cytotoxicity experiment showed that Dex-SA/PTX micelles have more cytotoxicity compared to free PTX against MCF7 cell lines. Conclusions: Dex-SA polymeric micelle is a suitable carrier for hydrophobic cytotoxic drugs such as PTX.
Collapse
Affiliation(s)
- Fatemeh Ghaffari
- Department of Biology, College of Basic Science, Hamedan Branch, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
| | | | | | | |
Collapse
|
28
|
Zhu D, Fan F, Huang C, Zhang Z, Qin Y, Lu L, Wang H, Jin X, Zhao H, Yang H, Zhang C, Yang J, Liu Z, Sun H, Leng X, Kong D, Zhang L. Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy. Acta Biomater 2018; 75:386-397. [PMID: 29793073 DOI: 10.1016/j.actbio.2018.05.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/20/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
Abstract
The combination of chemotherapy and photothermaltherapy (PTT) via stimuli-responsive nanovesicles has great potential in tumor treatment. In the present study, bubble-generating polymersomes, which can generate bubbles in response to low pH or hyperthermia, were fabricated to simultaneously encapsulate chemotherapeutic drug and photosensitizing agent for the synergistic chemo-photothermal tumor therapy. Photosensitizer indocyanine green (ICG) was encapsulated into the bilayer of polymersomes formed by amphiphilic triblock copolymer PCL8000-PEG8000-PCL8000 through thin film re-hydration method, while chemotherapeutic doxorubicin (DOX) was loaded into the hydrophilic lumen using a transmembrane ammonium bicarbonate gradient loading procedure. Under acidic condition or laser irradiation, the ammonium bicarbonate (NH4HCO3) encapsulated in the bubble-generating DOX-ICG-co-delivery polymersomes (BG-DIPS) would decompose to produce CO2 bubbles, resulting in destruction of vesicle structure and rapid drug release. In vitro drug release study confirmed that acidic environment and NIR laser irradiation could accelerate DOX release from the BG-DIPS. Cellular uptake study indicated that laser-induced hyperthermia highly enhanced endocytosis of BG-DIPS into 4T1-Luc cancer cells. In vitro cytotoxicity study demonstrated that BG-DIPS exhibited much higher cytotoxicity than free drugs under laser irradiation. In vivo biodistribution study indicated that BG-DIPS could accumulate in the tumor region, prolong drug retention, and increase photothermal conversion efficiency. Furthermore, in vivo antitumor study showed that BG-DIPS with laser irradiation efficiently inhibited 4T1-Luc tumor growth with reduced systemic toxicity. Hence, the formulated bubble-generating polymersomes system was a superior multifunctional nanocarrier for stimuli-response controlled drug delivery and combination chemo-photothermal tumor therapy. STATEMENT OF SIGNIFICANCE The combination of chemotherapy and photothermaltherapy via stimuli-responsive nanovesicles has great potential in tumor treatment. Herein, bubble-generating polymersomes, which can generate bubbles in response to low pH or hyperthermia, were fabricated to simultaneously encapsulate chemotherapeutic drug (DOX) and photosensitizing agent (ICG) for the synergistic chemo-photothermal tumor therapy. The results in vitro and in vivo demonstrated that bubble-generating DOX-ICG-co-delivery polymersomes (BG-DIPS) would accelerate DOX release from the BG-DIPS and accumulate in the tumor region, prolong drug retention, and increase photothermal conversion efficiency. BG-DIPS with laser irradiation could efficiently inhibited 4T1-Luc tumor growth with reduced systemic toxicity. Hence, the formulated bubble-generating polymersomes system was a superior multifunctional nanocarrier for stimuli-response controlled drug delivery and combination chemo-photothermal tumor therapy.
Collapse
|
29
|
Davaran S, Fazeli H, Ghamkhari A, Rahimi F, Molavi O, Anzabi M, Salehi R. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1265-1286. [DOI: 10.1080/09205063.2018.1456026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Soodabeh Davaran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Fazeli
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Ommoleila Molavi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Anzabi
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Liu X, Wang Y, Yun P, Shen X, Su F, Chen Y, Li S, Song D. Self-assembled filomicelles prepared from polylactide-poly(ethylene glycol) diblock copolymers for sustained delivery of cycloprotoberberine derivatives. Saudi Pharm J 2018; 26:342-348. [PMID: 29556125 PMCID: PMC5856949 DOI: 10.1016/j.jsps.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Polylactide-poly(ethylene glycol) (PLA-PEG) block copolymers were synthesized by ring opening polymerization of l-lactide using a monomethoxy PEG (mPEG) as macroinitiator and zinc lactate as catalyst. The resulting diblock copolymers were characterized by 1H NMR and GPC. Polymeric micelles were prepared by self-assembly of copolymers in distilled water using co-solvent evaporation or membrane hydration methods. The resulting micelles are worm-like in shape as shown by TEM measurements. A hydrophobic anticancer drug, cycloprotoberberine derivative A35, was successfully loaded in PLA-PEG filomicelles with high encapsulation efficiency (above 88%). Berberine (BBR) was studied for comparison. In both methods, PLA-PEG filomicelles were prepared with a theoretical loading of 5%, 10% and 20%. Physical stability studies indicated that BBR/A35-loaded filomicelles were more stable when stored at 4 °C than at 25 °C. Compared with BBR-loaded filomicelles, A35-loaded filomicelles exhibited higher antitumor activity. Importantly, the in vitro cytotoxicity and stability of A35-loaded filomicelles evidenced the potential of drug-loaded filomicelles in the development of drug delivery systems.
Collapse
Affiliation(s)
- Xue Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Peng Yun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin Shen
- Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yangsheng Chen
- Qingdao Chiatai Haier Pharmaceutical Co., LTD, Qingdao 266103, China
| | - Suming Li
- Institut Europeen des Membranes, UMR CNRS 5635, Universite de Montpellier, 34095 Montpellier, France
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Kumar P, Choonara YE, Pillay V. Thermo-intelligent Injectable Implants: Intricate Mechanisms and Therapeutic Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-981-10-6080-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
32
|
Yang X, Li Z, Wu Q, Chen S, Yi C, Gong C. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv 2017; 24:1526-1536. [PMID: 28994313 PMCID: PMC8241104 DOI: 10.1080/10717544.2017.1384863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/05/2023] Open
Abstract
Active targeting nanoparticles were developed to simultaneously codeliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Curcumin (Cur). In the nanoparticles (TRAIL-Cur-NPs), TRAIL was used as both active targeting ligand and therapeutic agent, and Cur could upregulate death receptors (DR4 and DR5) to increase the apoptosis-inducing effects of TRAIL. Compared with corresponding free drugs, TRAIL-Cur-NPs group showed enhanced cellular uptake, cytotoxicity and apoptosis induction effect on HCT116 colon cancer cells. In addition, in vivo anticancer studies suggested that TRAIL-Cur-NPs had superior therapeutic effect on tumors without obvious toxicity, which was mainly due to the high tumor targeting and synergistic effect of TRAIL and Cur. The synergistic mechanism of improved antitumor efficacy was proved to be upregulation of DR4 and DR5 in tumor cells induced by Cur. Thus, the prepared codelivery nanoparticles may have potential applications in colorectal cancer therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaojun Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Hainan General Hospital, Haikou, China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co. Ltd, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Hu C, Chen Z, Wu S, Han Y, Wang H, Sun H, Kong D, Leng X, Wang C, Zhang L, Zhu D. Micelle or polymersome formation by PCL-PEG-PCL copolymers as drug delivery systems. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Zhu D, Wu S, Hu C, Chen Z, Wang H, Fan F, Qin Y, Wang C, Sun H, Leng X, Kong D, Zhang L. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017. [PMID: 28627436 DOI: 10.1016/j.actbio.2017.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In this study, folate (FA) receptor-targeted polymersomes with apparent bilayered lamellar structure were successfully developed to co-encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (PTX and DOX) in a single vesicle for enhancing the combination chemotherapeutic effect. Hydrophobic PTX was loaded into the thick hydrophobic lamellar membrane by the self-assembly of triblock copolymer PCL8000-PEG8000-PCL8000, while hydrophilic DOX was encapsulated into the hydrophilic reservoir using a trans-membrane ammonium sulfate gradient method. In vitro release study indicated that the drugs were released from the polymersomes in a controlled and sustained manner. Cellular uptake study indicated that FA-targeted Co-PS had higher internalization efficiency in FA receptor-overexpressing BEL-7404 cells than non-targeted Co-PS. In vitro cytotoxicity assay demonstrated that FA-targeted Co-PS exhibited less cytotoxic effect than free drug cocktail, but suppressed the growth of tumor cells more efficiently than non-targeted Co-PS. Ex vivo imaging biodistribution studies revealed that FA-targeted Co-PS led to highly efficient targeting and accumulation in the BEL-7404 xenograft tumor. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of polymersomes to BEL-7404 tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy. STATEMENT OF SIGNIFICANCE Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In our study, novel folate-targeted co-delivery polymersomes (Co-PS) were successfully developed to encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (paclitaxel and doxorubicin) into the different compartments of the vesicle. In vivo studies revealed that the combination chemotherapy of polymersomes to BEL-7404 xenograft tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy.
Collapse
Affiliation(s)
- Dunwan Zhu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chunyan Hu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Zhuo Chen
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Hai Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Fan
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yu Qin
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E, Minneapolis, MN 55455, USA
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
35
|
Erdoğar N, Esendağlı G, Nielsen TT, Esendağlı-Yılmaz G, Yöyen-Ermiş D, Erdoğdu B, Sargon MF, Eroğlu H, Bilensoy E. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J Drug Target 2017; 26:66-74. [PMID: 28581827 DOI: 10.1080/1061186x.2017.1339194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study is to test folate-conjugated cyclodextrin nanoparticles (FCD-1 and FCD-2) as a vehicle for reducing toxicity and increasing the antitumor efficacy of paclitaxel especially for metastatic breast cancer. METHODS For the evaluation of PCX-loaded FCD nanoparticles, animal studies were realised in terms of survival rate, tumour size, weight change, metastazis and histopathological examination. RESULTS FCD-1 displayed significant advantages such as efficient targeting of folate receptor positive breast cancer cells and having considerably lower toxicity compared to that of Cremophor®. When loaded with paclitaxel, FCD-1 nanoparticles, which have smaller particle size, neutral zeta potential, high encapsulation efficiency and better loading capacity for controlled release, emerged as an effective formulation in terms of cytotoxicity and high cellular uptake. In an experimental breast cancer model, anticancer activity of these nanoparticles were compatible with that of paclitaxel in Cremophor® however repeated administrations of FCD-1 nanoparticles were better tolerated by the animals. These nanoparticles were able to localise in tumour site. Both paclitaxel-loaded FCD-1 and FCD-2 significantly reduced tumour burden while FCD-1 significantly improved the survival. CONCLUSIONS Folate-conjugated amphiphilic cyclodextrin nanoparticles can be considered as promising Cremophor®-free, low-toxicity and efficient active drug delivery systems for paclitaxel.
Collapse
Affiliation(s)
- Nazlı Erdoğar
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Güneş Esendağlı
- b Department of Basic Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Thorbjorn T Nielsen
- c Department of Biotechnology, Chemistry and Environmental Engineering, Faculty of Engineering and Science , University of Aalborg , Aalborg , Denmark
| | | | - Diğdem Yöyen-Ermiş
- b Department of Basic Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Batuhan Erdoğdu
- e Department of Internal Medicine, Faculty of Medicine , Ankara University , Ankara , Turkey
| | - Mustafa F Sargon
- f Department of Anatomy , Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Hakan Eroğlu
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Erem Bilensoy
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| |
Collapse
|
36
|
Alibolandi M, Taghdisi SM, Ramezani P, Hosseini Shamili F, Farzad SA, Abnous K, Ramezani M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 2017; 519:352-364. [PMID: 28126548 DOI: 10.1016/j.ijpharm.2017.01.044] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/17/2022]
Abstract
In the current study camptothecin-loaded pegylated PAMAM dendrimer were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against colorectal cancer cells which over expresses nucleolin receptors. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using transmission electron microscope (TEM) and DLS. The drug-loading content and encapsulation efficiency were obtained 8.1% and 93.67% respectively. The in vitro release of camptothecin from the formulation was provided the sustained release of encapsulated camptothecin during 4days. Comparative in vitro cytotoxicity experiments demonstrated that the targeted camptothecin loaded-pegylated dendrimers had higher antiproliferation activity, towards nucleolin-positive HT29 and C26 colorectal cancer cells than nucleolin-negative CHO cell line. Fluorscence microscopy and flow cytometry also confirmed the enhanced cellular uptake of AS1411 targeted pegylated-dendrimer. In vivo study in C26 tumor-bearing BALB/C mice revealed that the AS1411-functionalized camptothecin loaded pegylated dendrimers improved antitumor activity and survival rate of the encapsulated camptothecin. Conjugation of AS1411 aptamer to the camptothecin loaded-pegylated dendrimer surface provides site-specific delivery of camptothecin, inhibit C26 tumor growth in vivo and significantly decrease systemic toxicity. These results suggested that the new nucleolin-targeted pegylated PAMAM dendrimer as a delivery system for camptothecin have the potential for the treatment of nucleolin-overexpressed colorectal cancer.
Collapse
Affiliation(s)
- Mona Alibolandi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Ramezani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fazileh Hosseini Shamili
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Ren L, Liu X, Wang Q, Zhang L, Deng G, Zhou F, Lu J. Facile fabrication of a magnetically smart PTX-loaded Cys–Fe3O4/CuS@BSA nano-drug for imaging-guided chemo-photothermal therapy. Dalton Trans 2017; 46:2204-2213. [DOI: 10.1039/c6dt04308a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A PTX-loaded Cys-Fe3O4/CuS@BSA nano-drug was synthesized for MR and NIR imaging-guided chemo-photothermal combination therapy of cancer via a facile fabrication method.
Collapse
Affiliation(s)
- Lanfang Ren
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Qian Wang
- Orthopedic Traumatology
- Trauma Center
- Shanghai First People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200080
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Guoying Deng
- Orthopedic Traumatology
- Trauma Center
- Shanghai First People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200080
| | - Feng Zhou
- Orthopedic Traumatology
- Trauma Center
- Shanghai First People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200080
| | - Jie Lu
- School of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
38
|
Synthesis, Structural Characterization, and Preclinical Efficacy of a Novel Paclitaxel-Loaded Alginate Nanoparticle for Breast Cancer Treatment. Int J Breast Cancer 2016; 2016:7549372. [PMID: 27660726 PMCID: PMC5021896 DOI: 10.1155/2016/7549372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose. The antitumor activity of a novel alginate (ALG) polymer-based particle that contained paclitaxel (PTX) was evaluated using human primary breast cancer cells. Materials and Methods. PTX was combined with ALG in a nanoparticle as a drug delivery system designed to improve breast cancer tumor cell killing. PTX-ALG nanoparticles were first synthesized by nanoemulsification polymer cross-linking methods that improved the aqueous solubility. Structural and biophysical properties of the PTX-ALG nanoparticles were then determined by transmission electron microscopy (TEM) and high performance liquid chromatography (HPLC) fluorescence. The effect on cell cycle progression and apoptosis was determined using flow cytometry. Results. PTX-ALG nanoparticles were prepared and characterized by ultraviolet (UV)/visible (VIS), HPLC fluorescence, and TEM. PTX-ALG nanoparticles demonstrated increased hydrophobicity and solubility over PTX alone. Synthetically engineered PTX-ALG nanoparticles promoted cell-cycle arrest, reduced viability, and induced apoptosis in human primary patient breast cancer cells superior to those of PTX alone. Conclusion. Taken together, our results demonstrate that PTX-ALG nanoparticles represent an innovative, nanoscale delivery system for the administration of anticancer agents that may avoid the adverse toxicities with enhanced antitumor effects to improve the treatment of breast cancer patients.
Collapse
|
39
|
Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep 2016; 6:27559. [PMID: 27278751 PMCID: PMC4899770 DOI: 10.1038/srep27559] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/20/2016] [Indexed: 02/04/2023] Open
Abstract
Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.
Collapse
|
40
|
Sanyakamdhorn S, Agudelo D, Bekale L, Tajmir-Riahi HA. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf B Biointerfaces 2016; 145:55-63. [PMID: 27137803 DOI: 10.1016/j.colsurfb.2016.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature.
Collapse
Affiliation(s)
- S Sanyakamdhorn
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - D Agudelo
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - L Bekale
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada.
| |
Collapse
|
41
|
Dionzou M, Morère A, Roux C, Lonetti B, Marty JD, Mingotaud C, Joseph P, Goudounèche D, Payré B, Léonetti M, Mingotaud AF. Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters? SOFT MATTER 2016; 12:2166-76. [PMID: 26754164 DOI: 10.1039/c5sm01863c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability to self-assemble was evaluated for a large variety of amphiphilic block copolymers, including poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), poly(ethyleneoxide-b-styrene), poly(ethyleneoxide-b-butadiene) and poly(ethyleneoxide-b-methylmethacrylate). Different methods of formation are discussed, such as cosolvent addition, film hydration or electroformation. The influence of experimental parameters and macromolecular structures on the size and morphology of the final self-assembled structures is investigated and critically compared with the literature. The same process is carried out regarding the characterization of these structures. This analysis demonstrates the great care that should be taken when dealing with such polymeric assemblies. If the morphology of such assemblies can be predicted to some extent by macromolecular parameters like the hydrophilic/hydrophobic balance, those parameters cannot be considered as universal. In addition, external experimental parameters (methods of preparation, use of co-solvent, …) appeared as critical key parameters to obtain a good control over the final structure of such objects, which are very often not at thermodynamic equilibrium but kinetically frozen. A principal component analysis is also proposed, in order to examine the important parameters for forming the self-assemblies. Here again, the hydrophilic/hydrophobic fraction is identified as an important parameter.
Collapse
Affiliation(s)
- M Dionzou
- Université de Toulouse, UPS/CNRS, IMRCP, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang L, Chen Z, Wang H, Wu S, Zhao K, Sun H, Kong D, Wang C, Leng X, Zhu D. Preparation and evaluation of PCL–PEG–PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv 2016. [DOI: 10.1039/c6ra04687h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DOX-loaded polymeric NPs based on PCL–PEG–PCL triblock copolymers were successfully prepared and showed highly efficient targeting and accumulation in tumor via EPR effect. The prepared NPs would be a promising nanosized DDS for cancer therapy.
Collapse
|
43
|
Cheng X, Qiu N, Yang J, Liu H, Wen J, Wang W, Wang Z, Chen L. Preparation, Characterization, and In Vivo Study of 7-Ethyl-14-Aminocamptothecin-Loaded Poly(Ethylene Glycol)2000-Poly(Lactic Acid)2000 Polymeric Micelles Against H460 Human Nonsmall Cell Lung Carcinoma. J Pharm Sci 2015; 104:3934-3942. [DOI: 10.1002/jps.24613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
|
44
|
Liang N, Sun S, Hong J, Tian J, Fang L, Cui F. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on α-tocopherol succinate-modified chitosan. Drug Deliv 2015; 23:2651-2660. [PMID: 26165423 DOI: 10.3109/10717544.2015.1045103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In our previous study, α-tocopherol succinate modified chitosan (CS-TOS) was synthesized and encapsulated paclitaxel (PTX) to form micelles. Preliminary study revealed that the CS-TOS was a potential micellar carrier for PTX. In this study, some further researches were done using Taxol formulation as the control to evaluate the micelle system deeply. In vitro cell experiments demonstrated that the cytotoxic effect of PTX-loaded CS-TOS micelles against MCF-7 cells was comparable with that of Taxol formulation, and the PTX-loaded micelles had excellent cellular uptake ability, which was in a time-dependent manner. The in vivo pharmacokinetic study in rats showed that the micelles prolonged the half-life and increased AUC of PTX than Taxol formulation. From biodistribution study, it was clear that for micelles, the drug concentrations in the liver and spleen were significantly higher than those of Taxol formulation, but much lower in the heart and kidney. Furthermore, the PTX-loaded micelles showed superior antitumor effect, but yielded less toxicity as indicated by the results of antitumor efficacy study and survival study in U14 tumor-bearing mice. These results suggested that CS-TOS micelles could be a potentially useful drug delivery system to improve the performance and safety of PTX.
Collapse
Affiliation(s)
- Na Liang
- a College of Chemistry & Chemical Engineering, Harbin Normal University , Harbin , China
| | - Shaoping Sun
- b Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Heilongjiang University , Harbin , China.,c School of Chemistry and Material Science, Heilongjiang University , Harbin , China , and
| | - Juan Hong
- d School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Jingzhuo Tian
- d School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Liang Fang
- d School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Fude Cui
- d School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
45
|
Saraf P, Li X, Wrischnik L, Jasti B. In Vitro and In Vivo Efficacy of Self-Assembling RGD Peptide Amphiphiles for Targeted Delivery of Paclitaxel. Pharm Res 2015; 32:3087-101. [PMID: 26063045 DOI: 10.1007/s11095-015-1689-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The objective of this work was to compare the efficacy of self-assembling cyclic and linear RGD peptide amphiphiles as carriers for delivering paclitaxel to αvβ3 integrin overexpressing tumors. METHODS Linear (C18-ADA5-RGD) and cyclic (C18-ADA5-cRGDfK) peptide amphiphiles were synthesized and characterized for CMC, aggregation number and micelle stability using fluorescence spectroscopy methods. Size and morphology of micelles was studied using TEM. Fluorescence polarization and confocal microscopy assays were established to compare binding and internalization of micelles. The targeting efficacy was studied in A2058 cells using cytotoxicity assay as well as in vivo in melanoma xenograft mouse model. RESULTS The linear and cyclic RGD amphiphiles exhibited CMC of 25 and 8 μM, respectively, formed nano-sized spherical micelles and showed competitive binding to αvβ3 integrin protein. FITC-loaded RGD micelles rapidly internalized into A2058 melanoma cells. Paclitaxel-loaded RGD micelles exhibited higher cytotoxicity compared with free drug in A2058 cells in vitro as well as in vivo. CONCLUSION Cyclic RGD micelles exhibited better targeting efficacy but were less effective compared to linear RGD micelles as drug delivery vehicle due to lower drug solubilization capacity and lesser kinetic stability. Results from the study proved the effectiveness of self-assembling low molecular weight RGD amphiphiles as carriers for targeted delivery of paclitaxel.
Collapse
Affiliation(s)
- Poonam Saraf
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | | | | | | |
Collapse
|
46
|
Liu P, Situ JQ, Li WS, Shan CL, You J, Yuan H, Hu FQ, Du YZ. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:855-66. [DOI: 10.1016/j.nano.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
|
47
|
Lollo G, Hervella P, Calvo P, Avilés P, Guillén MJ, Garcia-Fuentes M, Alonso MJ, Torres D. Enhanced in vivo therapeutic efficacy of plitidepsin-loaded nanocapsules decorated with a new poly-aminoacid-PEG derivative. Int J Pharm 2015; 483:212-9. [DOI: 10.1016/j.ijpharm.2015.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
|
48
|
Zhang L, Zhu D, Dong X, Sun H, Song C, Wang C, Kong D. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine 2015; 10:2101-14. [PMID: 25844039 PMCID: PMC4368035 DOI: 10.2147/ijn.s77667] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to develop a novel lipid-polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol(®), but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol(®). More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy.
Collapse
Affiliation(s)
- Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Xia Dong
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Cunxian Song
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| |
Collapse
|
49
|
Folated synperonic-cholesteryl hemisuccinate polymeric micelles for the targeted delivery of docetaxel in melanoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:746093. [PMID: 25839040 PMCID: PMC4370104 DOI: 10.1155/2015/746093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 02/06/2023]
Abstract
The objective of this study was the synthesis of folic acid- (FA-) targeted polymeric micelles of Synperonic PE/F 127-cholesteryl hemisuccinate (PF127-Chol) for specific delivery of docetaxel (DTX). Targeted or nontargeted micelles loaded with DTX were prepared via dialysis method. The effects of processing variables on the physicochemical properties of targeted micelles were evaluated using a full factorial design. After the optimization of the polymer/drug ratio, the organic solvent type used for the preparation of the micelles, and the temperature of dialyzing medium, the in vitro cytotoxicity and cellular uptake of the optimized micelles were studied on B16F10 melanoma cells by flow cytometry and fluorescent microscopy. The anticancer efficacy of DTX-loaded FA-PF127-Chol was evaluated in mice bearing melanoma tumor. Optimized targeted micelles had the particle size of 171.3 nm, zeta potential of −7.8 mV, PDI of 0.325, and a high encapsulation efficiency that released the drug within 144 h. The MTT assay indicated that targeted micelles carrying DTX were significantly more cytotoxic, had higher cellular uptake, and reduced the tumor volume significantly more than the nontargeted micelles and the free drug. FA-PF127-Chol could be, therefore, a promising biomaterial for tumors overexpressing folate receptors.
Collapse
|
50
|
Jeetah R, Bhaw-Luximon A, Jhurry D. Polymeric nanomicelles for sustained delivery of anti-cancer drugs. Mutat Res 2014; 768:47-59. [PMID: 24768976 DOI: 10.1016/j.mrfmmm.2014.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
In the first section of this paper, the existing and emerging nanotechnology-based cancer therapies--nanoparticles, drug conjugates, nanomicelles--are reviewed. In a second part, we present our original and unpublished findings on the sustained release of anti-cancer drugs such as paclitaxel, doxorubicin and camptothecin using block copolymer micelles [PEG-b-poly(dioxanone-co-methyl dioxanone)]. Copolymers with variable lengths of hydrophobic and hydrophilic blocks have been synthesized and successfully loaded with paclitaxel, doxorubicin and camptothecin anti-cancer drugs, with micelles size in the range 130-300 nm. Drug encapsulation efficiencies varied between 15% and 70% depending on drug and copolymer composition. The drug binding constants, which give a good insight into drug encapsulation and release, were evaluated from UV spectroscopy as we reported previously for anti-TB drugs. Through variation of the methyl dioxanone content of the copolymer, our systems can be tailored for sustained release of the different drugs.
Collapse
Affiliation(s)
- Roubeena Jeetah
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius.
| |
Collapse
|