1
|
Li H, Li H, Zuo N, Lang D, Du W, Zhang P, Pan B. Can the concentration of environmentally persistent free radicals describe its toxicity to Caenorhabditis elegans? Evidence provided by neurotoxicity and oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133823. [PMID: 38442598 DOI: 10.1016/j.jhazmat.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging pollutants stabilized on or inside particles. Although the toxicity of EPFR-containing particles has been confirmed, the conclusions are always ambiguous because of the presence of various compositions. A clear dose-response relationship was always challenged by the fact that the concentrations of these coexisted components simultaneously changed with EPFR concentrations. Without these solid dose-response pieces of evidence, we could not confidently conclude the toxicity of EPFRs and the description of potential EPFR risks. In this study, we established a particle system with a fixed catechol concentration but different reaction times to obtain particles with different EPFR concentrations. Caenorhabditis elegans (C. elegans) in response to different EPFR concentrations was systematically investigated at multiple biological levels, including behavior observations and biochemical and transcriptome analyses. Our results showed that exposure to EPFRs disrupted the development and locomotion of C. elegans. EPFRs cause concentration-dependent neurotoxicity and oxidative damage to C. elegans, which could be attributed to reactive oxygen species (ROS) promoted by EPFRs. Furthermore, the expression of key genes related to neurons was downregulated, whereas antioxidative genes were upregulated. Overall, our results confirmed the toxicity from EPFRs and EPFR concentration as a rational parameter to describe the extent of toxicity.
Collapse
Affiliation(s)
- Huijie Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ning Zuo
- Yunnan Research Academy of Eco-environmental Science, Kunming 650034, China
| | - Di Lang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Du
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
3
|
Samrot AV, Noel Richard Prakash LX. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life (Basel) 2023; 13:life13030767. [PMID: 36983922 PMCID: PMC10059981 DOI: 10.3390/life13030767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological, physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role of the antioxidants against the nanotoxicity are briefly explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- Correspondence:
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| |
Collapse
|
4
|
Yi TT, Zhang LM, Huang XN. Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the miR-194-5p/PTGS2 axis. Kaohsiung J Med Sci 2023; 39:154-165. [PMID: 36647717 DOI: 10.1002/kjm2.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) leads to extensive degradation of the quality of life of patients. Glycyrrhizic acid (GA) has been reported to exert neuroprotective effects on status epilepticus. Herein, the current study set out to explore the functional mechanism of GA in TLE young rats. Firstly, TLE young rat models were established using the lithium chloride and pilocarpine regimen and then subjected to treatment with different doses of GA, miR-194-5p-antagomir, or/and sh-prostaglandin-endoperoxide synthase 2 (PTGS2) to observe changes in iron content, glutathione and malondialdehyde levels, and GPX4 (glutathione peroxidase 4) and PTGS2 protein levels in the hippocampus. Neuronal injury and apoptosis were assessed through HE, Nissl, and TUNEL staining. Additionally, the expression patterns of miR-194-5p were detected. The binding site of miR-194-5p and PTGS2 was verified with a dual-luciferase assay. Briefly, different doses of GA (20, 40, and 60 mg/kg) reduced the epileptic score, frequency, and duration in TLE young rats, along with reductions in iron content, lipid peroxidation, neuronal injury, and apoptosis in the hippocampus. Silencing of miR-194-5p partly annulled the action of GA on inhibiting ferroptosis and attenuating neuronal injury in TLE young rats. Additionally, PTGS2 was validated as a target of miR-194-5p. GA inhibited ferroptosis and ameliorated neuronal injury in TLE young rats via the miR-194-5p/PTGS2 axis. Overall, our findings indicated that GA exerts protective effects on TLE young rats against neuronal injury by inhibiting ferroptosis through the miR-194-5p/PTGS2 axis.
Collapse
Affiliation(s)
- Ting-Ting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiang-Nan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Ruangchuay S, Wang QQ, Wang LY, Lin J, Wang YC, Zhong GH, Maneenoon K, Huang ZB, Chusri S. Antioxidant and antiaging effect of traditional Thai rejuvenation medicines in Caenorhabditis elegans. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:362-373. [PMID: 33789838 DOI: 10.1016/j.joim.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/19/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study explored the rejuvenation mechanisms of Thai polyherbal medicines using different approaches, including in vitro methods, as well as a well-defined nematode model, Caenorhabditis elegans. METHODS THP-R-SR012 decoction was selected from 23 polyherbal medicines, based on metal-chelating and chain-breaking antioxidant capacities. The influences of this extract on the survival and some stress biomarkers of C. elegans under paraquat-induced oxidative stress were evaluated. Furthermore, lifespan analysis and levels of lipofuscin accumulation were examined in senescent nematodes. The phytochemical profile of THP-R-SR012 was analyzed. RESULTS Supplementation with THP-R-SR012 decoction significantly increased the mean lifespan and reduced the oxidative damage to C. elegans under oxidative stress conditions. Further, THP-R-SR012 supplementation slightly influenced the lifespan and the level of lipofuscin accumulation during adulthood. Antioxidant-related phytochemical constituents of THP-R-SR012 decoction were rutin, naringenin, 3,4-dihydroxybenzoic acid, gallic acid, glycyrrhizic acid, demethoxycurcumin and 18α-glycyrrhetinic acid. CONCLUSION The antioxidant potential of THP-R-SR012 was due to its scavenging properties, its enhancement of antioxidant-related enzyme activities, and the presence of the antioxidant-related compound. These results support the traditional use of THP-R-SR012 decoction as a tonic for nourishing and strengthening the whole body.
Collapse
Affiliation(s)
- Sutticha Ruangchuay
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Qiang-Qiang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Liang-Yi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Jing Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Yong-Chao Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Guo-Huan Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Katesarin Maneenoon
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ze-Bo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand.
| |
Collapse
|
6
|
Guo T, Cheng L, Zhao H, Liu Y, Yang Y, Liu J, Wu Q. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020; 10:16933. [PMID: 33037257 PMCID: PMC7547681 DOI: 10.1038/s41598-020-73712-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The increased application of graphene oxide (GO), a new carbon-based engineered nanomaterial, has generated a potential toxicity in humans and the environment. Previous studies have identified some dysregulated microRNAs (miRNAs), such as up-regulated mir-235, in organisms exposed to GO. However, the detailed mechanisms of the dysregulation of miRNA underlying GO toxicity are still largely elusive. In this study, we employed Caenorhabditis elegans as an in vivo model to investigate the biological function and molecular basis of mir-235 in the regulation of GO toxicity. After low concentration GO exposure, mir-235 (n4504) mutant nematodes were sensitive to GO toxicity, implying that mir-235 mediates a protection mechanism against GO toxicity. Tissue-specific assays suggested that mir-235 expressed in intestine is required for suppressing the GO toxicity in C. elegans. daf-12, a gene encoding a member of the steroid hormone receptor superfamily, acts as a target gene of mir-235 in the nematode intestine in response to GO treatment, and RNAi knockdown of daf-12 suppressed the sensitivity of mir-235(n4503) to GO toxicity. Further genetic analysis showed that DAF-12 acted in the upstream of DAF-16 in insulin/IGF-1 signaling pathway and PMK-1 in p38 MAPK signaling pathway in parallel to regulate GO toxicity. Altogether, our results revealed that mir-235 may activate a protective mechanism against GO toxicity by suppressing the DAF-12-DAF-16 and DAF-12-PMK-1 signaling cascade in nematodes, which provides an important molecular basis for the in vivo toxicity of GO at the miRNA level.
Collapse
Affiliation(s)
- Tiantian Guo
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Lu Cheng
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Huimin Zhao
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yingying Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yunhan Yang
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Qiuli Wu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Quality Control of Xiebai San Standard Decoction Assisted by Network Pharmacology Strategy. Chromatographia 2020. [DOI: 10.1007/s10337-020-03897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. Neurotoxicology 2019; 77:30-39. [PMID: 31862286 DOI: 10.1016/j.neuro.2019.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) and graphene-based nanomaterials have been widely applied in recent years, but their potential health risk and neurotoxic potentials remain poorly understood. In this study, neurotoxic potential of GO and its underlying molecular and cellular mechanism were investigated using the nematode, Caenorhabditis elegans. Deposition of GO in the head region and increased reactive oxygen species (ROS) was observed in C. elegans after exposure to GO. The neurotoxic potential of GO was then investigated, focusing on neurotransmitters contents and neuronal activity using AFD sensory neurons. The contents of all neurotransmitters, such as, tyrosine, tryptophan, dopamine, tyramine, and GABA, decreased significantly by GO exposure. Decreased fluorescence of Pgcy-8:GFP, a marker of AFD sensory neuron, by GO exposure suggested GO could cause neuronal damage on AFD neuron. GO exposure led decreased expression of ttx-1 and ceh-14, genes required for the function of AFD neurons also confirmed possible detrimental effect of GO to AFD neuron. To understand physiological meaning of AFD neuronal damage by GO exposure, locomotive behavior was then investigated in wild-type as well as in loss-of-function mutants of ttx-1 and ceh-14. GO exposure significantly altered locomotor behavior markers, such as, speed, acceleration, stop time, etc., in wild-type C. elegans, which were mostly rescued in AFD neuron mutants. The present study suggested the GO possesses neurotoxic potential, especially on neurotransmitters and AFD neuron in C. elegans. These findings provide useful information to understand the neurotoxic potential of GO and other graphene-based nanomaterials, which will guide their safe application.
Collapse
Affiliation(s)
- Mina Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
9
|
Wang C, Feng K, Fu Z, Yang W, Wang P, Wang T, Gao X, Yu H, Han L. Systematic quality evaluation of Peiyuan Tongnao capsule by offline two-dimensional liquid chromatography/quadrupole-Orbitrap mass spectrometry and adjusted parallel reaction monitoring of quality markers. Anal Bioanal Chem 2019; 411:7747-7760. [DOI: 10.1007/s00216-019-02119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/10/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
|
10
|
Yang Y, Xu G, Xu S, Chen S, Xu A, Wu L. Effect of ionic strength on bioaccumulation and toxicity of silver nanoparticles in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:291-298. [PMID: 30205331 DOI: 10.1016/j.ecoenv.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The behavior of silver nanoparticles (AgNPs) is influenced by environmental factors which altered their bioaccumulation and toxicity. In this study, we comprehensively investigated the influence of ionic strength on the ecotoxicity of AgNPs to Caenorhabditis elegans (C. elegans) through the transfer from Escherichia coli (E. coli). Three different exposure media (deionized water, EPA water and KM) were used to pretreat AgNPs. E. coli was then exposed to these transformed AgNPs and fed to C. elegans. Our results indicated that ionic strength significantly enhanced the reproductive toxicity (germ cell corpses, brood size and lifespan) and neurotoxicity (head trash and body bend) of AgNPs in C. elegans. Moreover, ICP-MS analysis showed that higher ionic strength increased bioaccumulation of AgNPs in E. coli and the resulting Ag body burden of E. coli affected the transfer of AgNPs to C. elegans, which might be responsible for the increased toxicity to nematodes. Furthermore, we also found that the reactive oxygen species (ROS) level in C. elegans was significantly increased after exposed to E. coli contaminated with ionic strength-treated AgNPs, which might play another important role for the enhanced toxicity of AgNPs. Overall, this study showed that the bioavailability and potential ecotoxicity of AgNPs are associated with the environmental factors.
Collapse
Affiliation(s)
- Yaning Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Guangmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| |
Collapse
|
11
|
Farahani M, Rezaei-Tavirani M, Zali H, Arefi Oskouie A, Omidi M, Lashay A. Deciphering the transcription factor-microRNA-target gene regulatory network associated with graphene oxide cytotoxicity. Nanotoxicology 2018; 12:1014-1026. [PMID: 30325693 DOI: 10.1080/17435390.2018.1513090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Graphene oxide (GO) has recently emanated as a promising material in cancer treatment. To unveil the underlying mechanisms of microRNAs (miRNAs) and potential target genes involved in GO cytotoxicity, we firstly compiled GO-related miRNAs and genes in human cancer cell lines treated with GO from public databases and published works. Besides miRNAs as post-transcriptional regulators of gene expression, transcription factors (TFs) are also the main regulators at the transcriptional level. In the following, we explored the regulatory relationships between miRNAs, target genes, and TFs. Thereafter, a gene regulatory network consisting of GO-responsive miRNAs, GO-responsive genes, and known human TFs was constructed. Then, 3-node regulatory motif types were detected in the resulting network. Among them, miRNA-FFL (feed-forward loop) was identified as a significant motif type. A total of 184 miRNA-FFLs were found and merged to generate a regulatory sub-network. Pathway analysis of the resulting sub-network highlighted adherens junction, focal adhesion, and TGFβ signaling pathways as the major pathways that previous studies demonstrate them to be the affected pathways in GO-treated cells. Functional investigations displayed that miRNAs might be involved in the control of apoptosis through disruption of cell adhesion in response to cytotoxicity. Moreover, GO-cell interactions can lead to miRNA targeting of genes (i.e. Rac1 and RhoA) involved in the cytoskeleton assembly process. These specific toxic properties support biomedical applications of GO, especially for cancer therapy.
Collapse
Affiliation(s)
- Masoumeh Farahani
- a Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- b Proteomics Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hakimeh Zali
- c Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Afsaneh Arefi Oskouie
- a Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Meisam Omidi
- d Protein Research Center , Shahid Beheshti University , Tehran , Iran
| | - Alireza Lashay
- e Eye Research Center, Farabi Eye Hospital , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Ren M, Zhao L, Ding X, Krasteva N, Rui Q, Wang D. Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 2018; 15:26. [PMID: 29929559 PMCID: PMC6013870 DOI: 10.1186/s12989-018-0262-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/21/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intestinal barrier is crucial for animals against translocation of engineered nanomaterials (ENMs) into secondary targeted organs. However, the molecular mechanisms for the role of intestinal barrier against ENMs toxicity are still largely unclear. The intestine of Caenorhabditis elegans is a powerful in vivo experimental system for the study on intestinal function. In this study, we investigated the molecular basis for intestinal barrier against toxicity and translocation of graphene oxide (GO) using C. elegans as a model animal. RESULTS Based on the genetic screen of genes required for the control of intestinal development at different aspects using intestine-specific RNA interference (RNAi) technique, we identified four genes (erm-1, pkc-3, hmp-2 and act-5) required for the function of intestinal barrier against GO toxicity. Under normal conditions, mutation of any of these genes altered the intestinal permeability. With the focus on PKC-3, an atypical protein kinase C, we identified an intestinal signaling cascade of PKC-3-SEC-8-WTS-1, which implies that PKC-3 might regulate intestinal permeability and GO toxicity by affecting the function of SEC-8-mediated exocyst complex and the role of WTS-1 in maintaining integrity of apical intestinal membrane. ISP-1 and SOD-3, two proteins required for the control of oxidative stress, were also identified as downstream targets for PKC-3, and functioned in parallel with WTS-1 in the regulation of GO toxicity. CONCLUSIONS Using C. elegans as an in vivo assay system, we found that several developmental genes required for the control of intestinal development regulated both the intestinal permeability and the GO toxicity. With the focus on PKC-3, we raised two intestinal signaling cascades, PKC-3-SEC-8-WTS-1 and PKC-3-ISP-1/SOD-3. Our results will strengthen our understanding the molecular basis for developmental machinery of intestinal barrier against GO toxicity and translocation in animals.
Collapse
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| | - Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009 China
| |
Collapse
|
13
|
Xiao G, Chen H, Krasteva N, Liu Q, Wang D. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnology 2018; 16:45. [PMID: 29703212 PMCID: PMC5921546 DOI: 10.1186/s12951-018-0373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, how the animals evade the environmental nanomaterials is still largely unclear. In this study, we employed in vivo assay system of Caenorhabditis elegans to investigate the aversive behavior of nematodes to graphene oxide (GO) and the underlying neuronal basis. RESULTS In this assay model, we detected the significant aversive behavior of nematodes to GO at concentrations more than 50 mg/L. Loss-of-function mutation of nlg-1 encoding a neuroligin with the function in connecting pre- and post-synaptic neurons suppressed the aversive behavior of nematodes to GO. Moreover, based on the neuron-specific activity assay, we found that the NLG-1 activity in AIY or AIB interneurons was required for the regulation of aversive behavior to GO. The neuron-specific activities of NLG-1 in AIY or AIB interneurons were also required for the regulation of GO toxicity. CONCLUSIONS Using nlg-1 mutant as a genetic tool, we identified the AIY and AIB interneurons required for the regulation of aversive behavior to GO. Our results provide an important neuronal basis for the aversive response of animals to environmental nanomaterials.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, 1113, Bulgaria
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Ding X, Wang J, Rui Q, Wang D. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:29-37. [PMID: 29107776 DOI: 10.1016/j.scitotenv.2017.10.307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The in vivo toxicity and translocation of thiolated graphene oxide (GO-SH) are still largely unclear. We hypothesized that long-term exposure to GO-SH may cause the adverse effects on environmental organisms. We here employed in vivo assay system of Caenorhabditis elegans to investigate the possible toxicity and translocation of GO-SH after long-term exposure. In wild-type nematodes, we observed that prolonged exposure to GO-SH at concentrations>100μg/L resulted in the toxicity on functions of both primary targeted organs such as the intestine and secondary targeted organs such as the neurons and the reproductive organs. The severe accumulation of GO-SH was further detected in the body of wild-type nematodes. The translocation of GO-SH into secondary targeted organs such as reproductive organs through intestinal barrier might be associated with the enhancement in intestinal permeability in GO-SH exposed wild-type nematodes. Prolonged exposure to GO-SH (100μg/L) decreased the expression of gas-1 encoding a subunit of mitochondrial complex I, and mutation of gas-1 caused the formation of GO-SH toxicity at concentration>10μg/L and more severe accumulation of GO-SH in the body of animals. Therefore, our results confirm the possibility for prolonged exposure to GO-SH in inducing adverse effects on nematodes. Our data highlight the potential adverse effects of GO-SH in the range of μg/L on environmental organisms after long-term exposure.
Collapse
Affiliation(s)
- Xuecheng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity. Sci Rep 2017; 7:14560. [PMID: 29109437 PMCID: PMC5673931 DOI: 10.1038/s41598-017-15271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
We performed a systematic identification of microRNAs (miRNAs) involved in the control of innate immunity. We identified 7 novel miRNA mutants with altered survival, colony forming in the body, and expression pattern of putative antimicrobial genes after Pseudomonas aeruginosa infection. Loss-of-function mutation of mir-45, mir-75, mir-246, mir-256, or mir-355 induced resistance to P. aeruginosa infection, whereas loss-of-function mutation of mir-63 or mir-360 induced susceptibility to P. aeruginosa infection. DAF-2 in the insulin signaling pathway acted as a target for intestinal mir-355 to regulate innate immunity. mir-355 functioned as an important link between p38 MAPK signaling pathway and insulin signaling pathway in the regulation of innate immunity. Our results provide an important molecular basis for further elucidation of the functions of various miRNAs in the regulation of innate immunity.
Collapse
|
16
|
Sonane M, Moin N, Satish A. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO 2 and ZnO nanoparticles. CHEMOSPHERE 2017; 187:240-247. [PMID: 28854380 DOI: 10.1016/j.chemosphere.2017.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
The exponential increase in the usage of engineered nanoparticles (ENPs) has raised global concerns due to their potential toxicity and environmental impacts. Nano-TiO2 and nano-ZnO have been extensively used in various applications. Thus, there is a need for determining the toxic potentials of ENPs as well as, to develop the possible attenuation method for ENPs toxicity. Both in the in vitro and in vivo systems, exposure to the majority of ENPs have shown Reactive Oxygen Species (ROS) generation, which leads to oxidative stress mediated inflammation, genotoxicity, and cytotoxicity. Hence, with the rationale of determining easy and economical protection against ENPs exposure, the amelioration effect of the antioxidants (curcumin and vitamin-C) against the nano-TiO2 and nano-ZnO induced ROS and lethality were investigated in Caenorhabditis elegans. We not only employed pre-treatment and along with treatment approach, but also determined the effect of antioxidants at different time points of treatment. Our study revealed that both the antioxidants efficiently ameliorate nanoparticles induced ROS as well as lethality in worms. Further, the pretreatment approach was more effective than the along with treatment. Therefore, our study indicates the possibility of evading the nanotoxicity by incorporating curcumin and vitamin-C in everyday diet.
Collapse
Affiliation(s)
- Madhavi Sonane
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Nida Moin
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
17
|
Zhao L, Wan H, Liu Q, Wang D. Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 2017; 14:27. [PMID: 28728598 PMCID: PMC5520286 DOI: 10.1186/s12989-017-0208-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Hanxiao Wan
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Qizhan Liu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Wu Q, Han X, Wang D, Zhao F, Wang D. Coal combustion related fine particulate matter (PM 2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res (Camb) 2017; 6:432-441. [PMID: 30090511 PMCID: PMC6062267 DOI: 10.1039/c7tx00107j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
We employed an in vivo assay system of Caenorhabditis elegans to determine if and which microRNAs (miRNAs) were dysregulated upon exposure to coal combustion related fine particulate matter (PM2.5) by profiling the miRNAs using SOLiD sequencing. From this, expression of 25 miRNAs was discovered to become dysregulated by exposure to PM2.5. Using the corresponding C. elegans deletion mutants, 5 miRNAs (mir-231, mir-232, mir-230, mir-251 and mir-35) were found to be involved in the control of PM2.5 toxicity. Furthermore, mutation of mir-231 or mir-232 induced a resistance to PM2.5 toxicity, whereas mutation of mir-230, mir-251, or mir-35 induced a susceptibility to PM2.5 toxicity. SMK-1, an ortholog of the mammalian SMEK protein, was identified as a molecular target for mir-231 in the regulation of PM2.5 toxicity. In addition, the genes of sod-3, sod-4 and ctl-3, which are necessary for protection against oxidative stress, were determined to be important downstream targets of smk-1 in the regulation of PM2.5 toxicity. The triggering of this mir-231-SMK-1-SOD-3/SOD-4/CTL-3 signaling pathway may be a critical molecular basis for the role of oxidative stress in the induction of coal combustion related PM2.5 toxicity.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Xiaoxiao Han
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Di Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Fang Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
19
|
Ren M, Zhao L, Lv X, Wang D. Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 2017; 11:578-590. [DOI: 10.1080/17435390.2017.1329954] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mingxia Ren
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xiao Lv
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Qu M, Li Y, Wu Q, Xia Y, Wang D. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 2017; 11:520-533. [PMID: 28368775 DOI: 10.1080/17435390.2017.1315190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022]
Abstract
ERK signaling is one of the important mitogen-activated protein kinases (MAPKs). However, the role of ERK signaling in the regulation of response to engineered nanomaterial exposure is still largely unclear. In this study, using in vivo assay system of Caenorhabditis elegans, we investigated the function of ERK signaling in response to graphene oxide (GO) exposure and the underlying molecular mechanism. GO exposure increased the expression of MEK-2/MEK and MPK-1/ERK in the ERK signaling pathway. Mutation of mek-2 or mpk-1 resulted in a susceptibility to GO toxicity. Both the MEK-2 and the MPK-1 acted in neurons to regulate the response to GO exposure, and the neuronal expression of MEK-2 or MPK-1 caused a resistance to GO toxicity. In the neurons, SKN-1b/Nrf acted downstream of the MPK-1, and AEX-3, a guanine exchange factor for GTPase, further acted downstream of the SKN-1b to regulate the response to GO exposure. Therefore, a signaling cascade of MEK-2-MPK-1-SKN-1b/-AEX-3 was identified in the neurons required for the regulation of response to GO exposure. Moreover, genetic interaction assay demonstrated that the neuronal ERK signaling-mediated signaling pathway and the intestinal p38 MAPK-mediated signaling pathway functioned synergistically in the regulation of response to GO exposure. Our results highlight the crucial function of the neuronal ERK signaling in the regulation of response to nanomaterial exposure in organisms.
Collapse
Affiliation(s)
- Man Qu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
- b School of Public Health , Southeast University , Nanjing , China
| | - Yunhui Li
- b School of Public Health , Southeast University , Nanjing , China
| | - Qiuli Wu
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
| | - Yankai Xia
- c State Key Laboratory of Reproductive Medicine , Institute of Toxicology, Nanjing Medical University , Nanjing , China
| | - Dayong Wang
- a Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School, Southeast University , Nanjing , China
| |
Collapse
|
21
|
Chen H, Li H, Wang D. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans. Sci Rep 2017; 7:41655. [PMID: 28128356 PMCID: PMC5269675 DOI: 10.1038/srep41655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.
Collapse
Affiliation(s)
- He Chen
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huirong Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Xiao G, Zhi L, Ding X, Rui Q, Wang D. Value of mir-247 in warning of graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra09100a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our results imply the important potential of mir-247 in warning the formation of GO toxicity in the range of μg L−1 in nematodes.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
| | - Lingtong Zhi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xuecheng Ding
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qi Rui
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Dayong Wang
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
| |
Collapse
|
23
|
Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans. Sci Rep 2016; 6:39261. [PMID: 27958363 PMCID: PMC5153639 DOI: 10.1038/srep39261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
In this study, we investigated the possible involvement of Wnt signals in the control of graphene oxide (GO) toxicity using the in vivo assay system of Caenorhabditis elegans. In nematodes, the Wnt ligands, CWN-1, CWN-2, and LIN-44, were found to be involved in the control of GO toxicity. Mutation of cwn-1 or lin-44 gene induced a resistant property to GO toxicity and resulted in the decreased accumulation of GO in the body of nematodes, whereas mutation of cwn-2 gene induces a susceptible property to GO toxicity and an enhanced accumulation of GO in the body of nematodes. Genetic interaction assays demonstrated that mutation of cwn-1 or lin-44 was able to suppress the susceptibility to GO toxicity shown in the cwn-2 mutants. Loss-of-function mutations in all three of these Wnt ligand genes resulted in the resistance of nematodes to GO toxicity. Moreover, the Wnt ligands might differentially regulate the toxicity and translocation of GO through different mechanisms. These findings could be important in understanding the function of Wnt signals in the regulation of toxicity from environmental nanomaterials.
Collapse
|
24
|
Zhu Z, Zhang D, Lee H, Jin Y. Caenorhabditis elegans: An important tool for dissecting microRNA functions. ACTA ACUST UNITED AC 2016; 1:34-36. [PMID: 28529981 DOI: 10.15761/bgg.1000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans (C. elegans), a member of the phylum Nematoda, carries the evolutionarily conserved genes comparing to mammals. Due to its short lifespan and completely sequenced genome, C. elegans becomes a potentially powerful model for mechanistic studies in human diseases. In this mini review, we will outline the current understandings on C. elegans as a model organism for microRNA (miRNA)-related research in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Ziwen Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, USA
| |
Collapse
|
25
|
Wang D. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1003-1011. [PMID: 30090407 DOI: 10.1039/c6tx00056h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Quantum dots (QDs), semiconductor nanomaterials with tiny light-emitting particles, act as important alternatives to conventional fluorescent dyes for biomedical imaging. With the increased tendency towards QD applications, concerns about the likelihood of adverse health impacts from exposure to QDs have also received attention. The nematode Caenorhabditis elegans is an important non-mammalian alternative model for the toxicological study of environmental toxicants including engineered nanomaterials. In this review, we summarize recent progress on the biological effects, translocation, and metabolism of QDs in the in vivo assay system of C. elegans. Moreover, certain perspectives or suggestions are further raised for the future toxicological study of QDs in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|