1
|
Sergeev AV, Rudyak VY, Kozhunova EY, Chertovich AV, Khokhlov AR. Theoretical Study of Microgel Functional Groups' Mobility. J Phys Chem B 2023; 127:11083-11090. [PMID: 38095423 DOI: 10.1021/acs.jpcb.3c06599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Polymer microgels, micrometer-sized cross-linked polymer particles, are considered to be a promising type of advanced materials for a wide range of applications. To enhance the microgels' applicability, it is essential to incorporate various functional groups into a microparticle polymer network. Yet, the availability of functional groups for the interaction with surroundings depends strongly on the properties of the polymer network and has a great impact on further effective usage. In this theoretical study, we address this question and, with the help of coarse-grained molecular dynamics computer simulations, assess the segmental mobility and accessibility of functional groups bound to polymer network depending on microgel architecture and solvent quality. Additionally, we evaluate the minimum number of functional groups needed to facilitate the hopping mechanism between the functional groups (i.e., charge transfer). As an example of practical implementation of the obtained results, we estimate the optimal network topology for redox-active microgels to provide the maximum charge capacity for the dispersion electrolyte in redox-flow batteries.
Collapse
Affiliation(s)
- A V Sergeev
- Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - V Yu Rudyak
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - E Yu Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - A V Chertovich
- Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - A R Khokhlov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Sybachin A, Pigareva V. Ensembles of carboxymethyl cyclodextrins on cationic liposomes as highly efficient nanocontainers for the delivery of hydrophobic compounds. Biochim Biophys Acta Gen Subj 2023; 1867:130363. [PMID: 37037388 DOI: 10.1016/j.bbagen.2023.130363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
The increase of payload is one of the key tasks in creation of nanocontainers for the delivery of bioactive substances (BAS). In this work the adsorption of anionic carboxymethyl cyclodextrins (CMCDs) on the surface of cationic liposomes was studied as mechanism of formation of capacious nanocontainers for the encapsulation and delivery of hydrophobic BAS. The formation and physico-chemical characteristics of complexes were studied by means of laser microelectrophoresis, dynamic light-scattering, conductometry and atomic force microscopy (AFM). As a model, bioactive molecule hydrophobic curcumin was chosen for the investigation. The encapsulation of curcumin was controlled by UV-Vis spectrometry. Interaction of CMCDs/liposomes complexes with model cell membranes was visualized by fluorescent microscopy. Finally, cytotoxicity of nanocontainers was studied by MTT-test. It was estimated that colloid stable complexes with net positive charge could contain up to 2.5÷5 CMCD molecules per one cationic lipid. Incorporation of curcumin in CMCDs does not change the character of interaction of oligosaccharides with liposomal membranes of individual liposome. CMCDs/liposomes complexes adsorb on model cell membranes without significant loss of CMCD molecules. This fact in addition to low cytotoxicity of cationic CMCDs/liposomes complexes demonstrates potential of their application as nanovehicles for the delivery of BAS.
Collapse
Affiliation(s)
- Andrey Sybachin
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Vladislava Pigareva
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1-3, Moscow 119991, Russia
| |
Collapse
|
3
|
Synthesis of Magneto-Controllable Polymer Nanocarrier Based on Poly(N-isopropylacrylamide-co-acrylic Acid) for Doxorubicin Immobilization. Polymers (Basel) 2022; 14:polym14245440. [PMID: 36559806 PMCID: PMC9784437 DOI: 10.3390/polym14245440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, the preparation procedure and properties of anionic magnetic microgels loaded with antitumor drug doxorubicin are described. The functional microgels were produced via the in situ formation of iron nanoparticles in an aqueous dispersion of polymer microgels based on poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-PAA). The composition and morphology of the resulting composite microgels were studied by means of X-ray diffraction, Mössbauer spectroscopy, IR spectroscopy, scanning electron microscopy, atomic-force microscopy, laser microelectrophoresis, and static and dynamic light scattering. The forming nanoparticles were found to be β-FeO(OH). In physiological pH and ionic strength, the obtained composite microgels were shown to possess high colloid stability. The average size of the composites was 200 nm, while the zeta-potential was -27.5 mV. An optical tweezers study has demonstrated the possibility of manipulation with microgel using external magnetic fields. Loading of the composite microgel with doxorubicin did not lead to any change in particle size and colloidal stability. Magnetic-driven interaction of the drug-loaded microgel with model cell membranes was demonstrated by fluorescence microscopy. The described magnetic microgels demonstrate the potential for the controlled delivery of biologically active substances.
Collapse
|
4
|
Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine 2022; 17:4861-4877. [PMID: 36262189 PMCID: PMC9574265 DOI: 10.2147/ijn.s382192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bioavailability is an eternal topic that cannot be circumvented by peroral drug delivery. Adequate blood drug exposure after oral administration is a prerequisite for effective treatment. Nanovesicles as pleiotropic oral vehicles can solubilize, encapsulate, stabilize an active ingredient and promote the payload absorption via various mechanisms. Vesicular systems with nanoscale size, such as liposomes, niosomes and polymersomes, provide a versatile platform for oral delivery of drugs with distinct nature. The amphiphilicity of vesicles in structure allows hydrophilic and lipophilic molecule(s) either or both to be loaded, being encapsulated in the aqueous cavity or the inner core, respectively. Depending on high oral transport efficiency based on their structural flexibility, gastrointestinal stability, biocompatibility, and/or intestinal epithelial affinity, nanovesicles can markedly augment the oral bioavailability of various poorly absorbed drugs. Vesicular drug delivery systems (VDDSs) demonstrate a lot of preferences and are becoming more prominent of late years in biomedical applications. Equally, these systems can potentiate a drug's therapeutic index by ameliorating the oral absorption. This review devotes to comment on various VDDSs with special emphasis on the peroral drug delivery. The classification of nanovesicles, preparative processes, intestinal transport mechanisms, in vivo fate, and design rationale were expounded. Knowledge on vesicles-mediated oral drug delivery for bioavailability enhancement has been properly provided. It can be concluded that VDDSs with many merits will step into an energetic arena in oral drug delivery.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Correspondence: Shiping Zhu, Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
5
|
Dave R, Randhawa G, Kim D, Simpson M, Hoare T. Microgels and Nanogels for the Delivery of Poorly Water-Soluble Drugs. Mol Pharm 2022; 19:1704-1721. [PMID: 35319212 DOI: 10.1021/acs.molpharmaceut.1c00967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g., core-shell structures), introducing hydrophobic domains in microgels, leveraging host-guest interactions, and/or applying "smart" environmentally responsive materials with switchable hydrophobicity. In particular, the challenge of promoting hydrophobic drug loading without compromising the inherent advantages of microgels as delivery vehicles and ensuring practically relevant release kinetics from such structures is highlighted, with an eye toward the practical translation of such vehicles to the clinic.
Collapse
Affiliation(s)
- Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Daeun Kim
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Madeline Simpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
Panova IG, Sudareva EA, Novoskoltseva OA, Spiridonov VV, Shtilman MI, Richtering W, Yaroslavov AA. Temperature-induced unloading of liposomes bound to microgels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Pigareva VA, Alekhina YA, Grozdova ID, Zhu X, Spiridonov VV, Sybachin AV. Magneto‐sensitive and enzymatic hydrolysis‐resistant systems for the targeted delivery of paclitaxel based on polylactide micelles with an external polyethylene oxide corona. POLYM INT 2021. [DOI: 10.1002/pi.6306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Yulia A Alekhina
- Physics Department Lomonosov Moscow State University Moscow Russia
| | - Irina D Grozdova
- Chemistry Department Lomonosov Moscow State University Moscow Russia
| | - Xiaomin Zhu
- DWI – Leibniz‐Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular Chemistry of RWTH Aachen University Aachen Germany
| | | | - Andrey V Sybachin
- Chemistry Department Lomonosov Moscow State University Moscow Russia
| |
Collapse
|
8
|
Sybachin AV, Stepanova DA. Modification of Multiliposomal Nanocontainers with Albumin as a Method for Increasing Their Resistance to Enzymatic Hydrolysis. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Abstract
Abstract
In the review we describe a method for concentration of anionic liposomes with encapsulated water-soluble substances within a small volume via electrostatic liposome adsorption on the surface of polymer particles with grafted cationic chains (spherical polycationic brushes), or cationic microgel particles. Dozens of intact liposomes can be bound to each polymer particle, the resulting polymer/liposome complex does not dissociate into the original components in a physiological solution. This allows fabrication of multi-liposomal complexes (MLCs) with a required ratio of encapsulated substances. Two approaches are discussed for the synthesis of stimuli-sensitive MLCs. The first is to incorporate the conformation switch, morpholinocyclohexanol-based lipid, into the liposomal membrane thus forming pH-sensitive liposomes capable of releasing their cargo when acidifying the surrounding solution. These liposomes complexed with the brushes release encapsulated substances much faster than the uncomplexed liposomes. The second is to adsorb liposomes on cationic thermo-responsive microgels. The resulting MLCs contracts upon heating over a volume phase transition temperature from the swollen to the collapsed state of microgel, thus causing the adsorbed liposomes to change drastically their morphology and release an encapsulated substance. Complexation of anionic liposomes with chitosan microgels and polylactide micelles gives MLCs which degrade in the presence of enzymes down to small particles, 10–15 nm in diameter. A novel promising approach suggests that immobilized liposomes can act as a capacious depot for biologically active compounds and ensure their controllable leakage to surrounding solution.
Collapse
Affiliation(s)
- Alexander A. Yaroslavov
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| | - Andrey V. Sybachin
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| |
Collapse
|
10
|
Imelbaeva KM, Stepanova DA. Unexpected Influence of the Neutral Lipid Nature on pH-Regulated Release of Salt from the Anionic Fliposomes. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s107036322004026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Panova IG, Khaydapova DD, Ilyasov LO, Umarova AB, Yaroslavov AA. Polyelectrolyte complexes based on natural macromolecules for chemical sand/soil stabilization. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Sybachin AV, Stepanova DA, Melik-Nubarov NS, Yaroslavov AA. The Interaction of Colloid–Liposome–Protein Ternary Complex with Biological Membrane. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19060117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Synthesis of microgels based on carboxymethylcellulose cross-linked with zinc(II) ions and heterocyclic effectors of NO-synthase. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Li H, Mergel O, Jain P, Li X, Peng H, Rahimi K, Singh S, Plamper FA, Pich A. Electroactive and degradable supramolecular microgels. SOFT MATTER 2019; 15:8589-8602. [PMID: 31642835 DOI: 10.1039/c9sm01390c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we synthesized electroactive and degradable microgels based on biomacromolecular building blocks, which enable the controlled release of therapeutic drugs. Functional chitosan-poly(hydroquinone) (Ch:PHQ) microgels exhibiting redox-active and pH-sensitive properties were synthesized by an oxidative polymerization in an inverse miniemulsion system. Physically crosslinked microgels were formed by polymerization of hydroquinone in the presence of chitosan through the formation of hydrogen bonds between PHQ and Ch. A series of microgel samples with variable Ch : PHQ ratios were synthesized. These obtained microgels exhibit pH-responsive properties due to the protonation/deprotonation of amino-groups of chitosan in the microgel system. Poly(hydroquinone) is a redox-active polymer exhibiting a two-electron/proton-transfer behavior and conveys this property to the microgels as confirmed by cyclic voltammetry. In addition, the microgels can be switched by electrochemical means: they swell in the oxidized state or shrink in the reduced state. In the presence of urea or lysozyme, the microgels undergo a fast degradation due to the disruption of hydrogen bonds acting as physical crosslinks in the microgel networks or due to the cleavage of glucosidic linkages of the incorporated chitosan scaffold, respectively. Doxorubicin (DOX), an anticancer drug, could be effectively encapsulated into the microgels and released in the presence of an enzyme, indicating that these biodegradable microgels could be used as drug delivery vehicles for tumor cells.
Collapse
Affiliation(s)
- Helin Li
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Electrostatic complexes between thermosensitive cationic microgels and anionic liposomes: Formation and triggered release of encapsulated enzyme. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Murray BS. Microgels at fluid-fluid interfaces for food and drinks. Adv Colloid Interface Sci 2019; 271:101990. [PMID: 31330395 DOI: 10.1016/j.cis.2019.101990] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Various aspects of microgel adsorption at fluid-fluid interfaces of relevance to emulsion and foam stabilization have been reviewed. The emphasis is on the wider non-food literature, with a view to highlighting how this understanding can be applied to food-based systems. The various different types of microgel, their methods of formation and their fundamental behavioral traits at interfaces are covered. The latter includes aspects of microgel deformation and packing at interfaces, their deformability, size, swelling and de-swelling and how this affects their surface activity and stabilizing properties. Experimental and theoretical methods for measuring and modelling their behaviour are surveyed, including interactions between microgels themselves at interfaces but also other surface active species. It is concluded that challenges still remain in translating all the possibilities synthetic microgels offer to microgels based on food-grade materials only, but Nature's rich tool box of biopolymers and biosurfactants suggests that this field will still open up important new avenues of food microstructure development and control.
Collapse
|
17
|
Ivashkov OV, Yakimova TM, Evtushenko EG, Gelissen AP, Plamper FA, Richtering W, Yaroslavov AA. On the mechanism of payload release from liposomes bound to temperature-sensitive microgel particles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Spiridonov VV, Panova IG, Sybachin AV, Kuznetsov VV, Afanasov MI, Alekhina YA, Melik-Nubarov NS, Yaroslavov AA. Magneto-Sensitive Multiliposomal Containers for Immobilization and Controlled Delivery of Bioactive Substances. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19030167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Sou K, Le DL, Sato H. Nanocapsules for Programmed Neurotransmitter Release: Toward Artificial Extracellular Synaptic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900132. [PMID: 30887709 DOI: 10.1002/smll.201900132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Nanocapsules present a promising platform for delivering chemicals and biomolecules to a site of action in a living organism. Because the biological action of the encapsulated molecules is blocked until they are released from the nanocapsules, the encapsulation structure enables triggering of the topical and timely action of the molecules at the target site. A similar mechanism seems promising for the spatiotemporal control of signal transduction triggered by the release of signal molecules in neuronal, metabolic, and immune systems. From this perspective, nanocapsules can be regarded as practical tools to apply signal molecules such as neurotransmitters to intervene in signal transduction. However, spatiotemporal control of the payload release from nanocapsules persists as a key technical issue. Stimulus-responsive nanocapsules that release payloads in response to external input of physical stimuli are promising platforms to enable programmed payload release. These programmable nanocapsules encapsulating neurotransmitters are expected to lead to new insights and perspectives related to artificial extracellular synaptic vesicles that might provide an experimental and therapeutic strategy for neuromodulation and nervous system disorders.
Collapse
Affiliation(s)
- Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Duc Long Le
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Pinguet CE, Ryll E, Steinschulte AA, Hoffmann JM, Brugnoni M, Sybachin A, Wöll D, Yaroslavov A, Richtering W, Plamper FA. PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes. PLoS One 2019; 14:e0210898. [PMID: 30653618 PMCID: PMC6336312 DOI: 10.1371/journal.pone.0210898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a strategy to counteract the salt-driven disassembly of multiliposomal complexes made by electrostatic co-assembly of anionic small unilamellar liposomes and cationic star-shaped polyelectrolytes (made of quaternized poly(dimethylaminoethyl methacrylate) (qPDMAEMA100)3.1). The combined action of (qPDMAEMA100)3.1 and a nonionic star-shaped polymer (PEO12-b-PPO45)4, which comprises diblock copolymer arms uniting a poly(ethylene oxide) PEO inner block and a poly(propylene oxide) PPO terminal block, leads to a stabilization of these complexes against disintegration in saline solutions. Hereby, the anchoring of the PPO terminal blocks to the lipid bilayer and the bridging between several liposomes are at the origin of the promoted structural stability. Two-focus fluorescence correlation spectroscopy verifies the formation of multiliposomal complexes with (PEO12-b-PPO45)4. The polyelectrolyte and the amphiphilic polymer work synergistically, as the joint action still assures some membrane integrity, which is not seen for the mere (PEO12-b-PPO45)4-liposome interaction alone.
Collapse
Affiliation(s)
- Camille E. Pinguet
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Esther Ryll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | | | - Jón M. Hoffmann
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Andrey Sybachin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Alexander Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
21
|
Yi X, Zheng Q, Ding B, Pan MH, Chiou YS, Li L, Li Z. Liposome-whey protein interactions and its relation to emulsifying properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Yaroslavov AA, Sybachin AV, Sandzhieva AV, Zaborova OV. Multifunctional Containers from Anionic Liposomes and Cationic Polymers/Colloids. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Sybachin AV, Khlynina PO, Spiridonov VV, Panova IG, Melik-Nubarov NS, Yaroslavov AA. Amino-terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drug-loaded anionic liposomes. POLYM INT 2018. [DOI: 10.1002/pi.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrey V Sybachin
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | - Polina O Khlynina
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | | | - Irina G Panova
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | | | | |
Collapse
|
24
|
Scotti A, Brugnoni M, Rudov AA, Houston JE, Potemkin II, Richtering W. Hollow microgels squeezed in overcrowded environments. J Chem Phys 2018; 148:174903. [DOI: 10.1063/1.5026100] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- A. Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - M. Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - A. A. Rudov
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- DWI–Leibniz Institute for Interactive Materials e.V., Aachen 52056, Germany
| | - J. E. Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - I. I. Potemkin
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- DWI–Leibniz Institute for Interactive Materials e.V., Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - W. Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| |
Collapse
|
25
|
Sandzhieva AV, Sybachin AV, Zaborova OV, Ballauff M, Yaroslavov AA. Cationic colloid–anionic liposome–protein ternary complex: formation, properties, and biomedical importance. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Sandzhieva AV, Sybachin AV, Zaborova OV, Yaroslavov AA. Competitive Reactions in Three-Component System Cationic Colloid–Anionic Liposome–Protein. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|