1
|
Diaz-Ruano AB, Gomez-Jimenez E, Llamas-Jimenez G, Ramirez-Muñoz A, Espejo-Hijano P, Rubio-Navarro A, Picon-Ruiz M. Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents. Life Sci 2025; 371:123604. [PMID: 40189193 DOI: 10.1016/j.lfs.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.
Collapse
Affiliation(s)
- Ana Belen Diaz-Ruano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Eliana Gomez-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Gloria Llamas-Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Arena Ramirez-Muñoz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Pablo Espejo-Hijano
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
| | - Alfonso Rubio-Navarro
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit ″Modeling Nature″ (MNat), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
2
|
Strazzabosco G, Liboni A, Pezzi G, Alogna A, Bortolotti D. Insights into Liposomal and Gel-Based Formulations for Dermatological Treatments. Gels 2025; 11:245. [PMID: 40277680 PMCID: PMC12027463 DOI: 10.3390/gels11040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Dermatological diseases pose a significant challenge due to their chronic nature, complex pathophysiology, and the need for effective, patient-friendly treatments. Recent advancements in liposomal and gel-based formulations have played a crucial role in improving drug delivery, therapeutic efficacy, and patient compliance. Liposomal formulations have garnered considerable attention in dermatology due to their ability to encapsulate both hydrophilic and lipophilic compounds, enabling controlled drug release and enhanced skin penetration. However, challenges such as formulation complexity, stability issues, and regulatory constraints remain. Similarly, gel-based formulations are widely used due to their ease of application, biocompatibility, and ability to retain active ingredients. However, they also face limitations, including restricted penetration depth, susceptibility to microbial contamination, and challenges in achieving sustained drug release. The integration of liposomal and gel-based technologies offers a promising strategy to overcome current challenges and optimize dermatological drug delivery. This review explores both well-established therapies and recent innovations, offering a comprehensive overview of their applications in the treatment of prevalent dermatological conditions. Ultimately, continued research is essential to refine these formulations, expanding their clinical utility and enhancing therapeutic effectiveness in dermatology.
Collapse
Affiliation(s)
- Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Alessia Liboni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Giulia Pezzi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Andrea Alogna
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| |
Collapse
|
3
|
Dwivedi R, Bala R, Madaan R, Singh S, Sindhu RK. Terpene-based novel invasomes: pioneering cancer treatment strategies in traditional medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:1-14. [PMID: 38996385 DOI: 10.1515/jcim-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Health care workers have faced a significant challenge because of the rise in cancer incidence around the world during the past 10 years. Among various forms of malignancy skin cancer is most common, so there is need for the creation of an efficient and safe skin cancer treatment that may offer targeted and site-specific tumor penetration, and reduce unintended systemic toxicity. Nanocarriers have thus been employed to get around the issues with traditional anti-cancer drug delivery methods. Invasomes are lipid-based nanovesicles having small amounts of terpenes and ethanol or a mixture of terpenes and penetrate the skin more effectively. Compared to other lipid nanocarriers, invasomes penetrate the skin at a substantially faster rate. Invasomes possess a number of advantages, including improved drug effectiveness, higher compliance, patient convenience, advanced design, multifunctionality, enhanced targeting capabilities, non-invasive delivery methods, potential for combination therapies, and ability to overcome biological barriers,. These attributes position invasomes as a promising and innovative platform for the future of cancer treatment. The current review provides insights into invasomes, with a fresh organizational scheme and incorporates the most recent cancer research, including their composition, historical development and methods of preparation, the penetration mechanism involving effect of various formulation variables and analysis of anticancer mechanism and the application of invasomes.
Collapse
Affiliation(s)
- Renu Dwivedi
- School of Pharmaceutical Sciences, Bahra University, Solan, Himachal Pradesh, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rakesh K Sindhu
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Cheng Z, Huang H, Yin M, Liu H. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. Exp Hematol Oncol 2025; 14:11. [PMID: 39891180 PMCID: PMC11786384 DOI: 10.1186/s40164-025-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Liposomes and lipid nanoparticles are common lipid-based drug delivery systems and play important roles in cancer treatment and vaccine manufacture. Although significant progress has been made with these lipid-based nanocarriers in recent years, efficient clinical translation of active targeted liposomal nanocarriers remains extremely challenging. In this review, we focus on targeted liposomes, stimuli-responsive strategy and combined therapy in cancer treatment. We also summarize advances of liposome and lipid nanoparticle applications in nucleic acid delivery and tumor vaccination. In addition, we discuss limitations and challenges in the clinical translation of these lipid nanomaterials and make recommendations for the future research in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Infectious Disease, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Meilong Yin
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Zahednezhad F, Allahyari S, Sarfraz M, Zakeri-Milani P, Feyzizadeh M, Valizadeh H. Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. Expert Opin Drug Deliv 2024; 21:1363-1384. [PMID: 39282895 DOI: 10.1080/17425247.2024.2394611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting. AREAS COVERED Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties. EXPERT OPINION Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
6
|
Aljabali AAA, Obeid MA, Gammoh O, El-Tanani M, Mishra V, Mishra Y, Kapre S, Srivatsa Palakurthi S, Hassan SS, Nawn D, Lundstrom K, Hromić-Jahjefendić A, Serrano-Aroca Á, Redwan EM, Uversky VN, Tambuwala MM. Nanomaterial-Driven Precision Immunomodulation: A New Paradigm in Therapeutic Interventions. Cancers (Basel) 2024; 16:2030. [PMID: 38893150 PMCID: PMC11171400 DOI: 10.3390/cancers16112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah 711302, West Bengal, India;
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
7
|
Gatto MS, Johnson MP, Najahi-Missaoui W. Targeted Liposomal Drug Delivery: Overview of the Current Applications and Challenges. Life (Basel) 2024; 14:672. [PMID: 38929656 PMCID: PMC11204409 DOI: 10.3390/life14060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In drug development, it is not uncommon that an active substance exhibits efficacy in vitro but lacks the ability to specifically reach its target in vivo. As a result, targeted drug delivery has become a primary focus in the pharmaceutical sciences. Since the approval of Doxil® in 1995, liposomes have emerged as a leading nanoparticle in targeted drug delivery. Their low immunogenicity, high versatility, and well-documented efficacy have led to their clinical use against a wide variety of diseases. That being said, every disease is accompanied by a unique set of physiological conditions, and each liposomal product must be formulated with this consideration. There are a multitude of different targeting techniques for liposomes that can be employed depending on the application. Passive techniques such as PEGylation or the enhanced permeation and retention effect can improve general pharmacokinetics, while active techniques such as conjugating targeting molecules to the liposome surface may bring even further specificity. This review aims to summarize the current strategies for targeted liposomes in the treatment of diseases.
Collapse
Affiliation(s)
| | | | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (M.S.G.); (M.P.J.)
| |
Collapse
|
8
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
9
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
10
|
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, Focke‐Tejkl M, Schütz GJ, Sevcsik E, Stockinger H, Brameshuber M, Huppa JB. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep 2023; 24:e57842. [PMID: 37768718 PMCID: PMC10626418 DOI: 10.15252/embr.202357842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.
Collapse
Affiliation(s)
- René Platzer
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Joschka Hellmeier
- TU Wien, Institute of Applied PhysicsViennaAustria
- Present address:
Max Planck Institute of Biochemistry, Molecular Imaging and BionanotechnologyMartinsriedGermany
| | - Janett Göhring
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Iago Doel Perez
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
- Present address:
Takeda Manufacturing Austria AGViennaAustria
| | - Philipp Schatzlmaier
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Clara Bodner
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Margarete Focke‐Tejkl
- Center for Pathophysiology, Infectiology, Immunology, Institute for Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
| | | | - Eva Sevcsik
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
12
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
13
|
Fumadó Navarro J, Lomora M. Mechanoresponsive Drug Delivery Systems for Vascular Diseases. Macromol Biosci 2023; 23:e2200466. [PMID: 36670512 DOI: 10.1002/mabi.202200466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Mechanoresponsive drug delivery systems (DDS) have emerged as promising candidates to improve the current effectiveness and lower the side effects typically associated with direct drug administration in the context of vascular diseases. Despite tremendous research efforts to date, designing drug delivery systems able to respond to mechanical stimuli to potentially treat these diseases is still in its infancy. By understanding relevant biological forces emerging in healthy and pathological vascular endothelium, it is believed that better-informed design strategies can be deduced for the fabrication of simple-to-complex macromolecular assemblies capable of sensing mechanical forces. These responsive systems are discussed through insights into essential parameter design (composition, size, shape, and aggregation state) , as well as their functionalization with (macro)molecules that are intrinsically mechanoresponsive (e.g., mechanosensitive ion channels and mechanophores). Mechanical forces, including the pathological shear stress and exogenous stimuli (e.g., ultrasound, magnetic fields), used for the activation of mechanoresponsive DDS are also introduced, followed by in vitro and in vivo experimental models used to investigate and validate such novel therapies. Overall, this review aims to propose a fresh perspective through identified challenges and proposed solutions that could be of benefit for the further development of this exciting field.
Collapse
Affiliation(s)
- Josep Fumadó Navarro
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| | - Mihai Lomora
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Upper Newcastle, Galway, H91 W2TY, Ireland
| |
Collapse
|
14
|
Monoclonal antibodies in breast cancer: A critical appraisal. Crit Rev Oncol Hematol 2023; 183:103915. [PMID: 36702424 DOI: 10.1016/j.critrevonc.2023.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In breast cancer, mAbs can play multifunctional roles like targeting cancer cells, sometimes directly attacking them, helping in locating and delivering therapeutic drugs to targets, inhibiting cell growth and blocking immune system inhibitors, etc. Monoclonal antibodies are also one of the important successful treatment strategies especially against HER2 but they have not been explored much for other types of breast cancers especially in triple negative breast cancers. Monoclonal antibodies impact the feasibility of antigen specificity, bispecific and trispecific mAbs have opened new doors for more targeted specific efficacy. Monoclonal antibodies can be used diversly and with efficacy as compared to other methods of treatment thus maining it a suitable candidate for breast cancer treatment. However, mAbs treatment also causes various side effects such as fever, trembling, fatigue, headache and muscle pain, nausea/vomiting, difficulty in breathing, rashes and bleeding. Understanding the pros and cons of this strategy, we have explored in this review, the current and future potential capabilities of monoclonal antibodies with respect to diagnosis and treatment of breast cancer. DATA AVAILABILITY: Not applicable.
Collapse
|
15
|
Yan J, Long X, Liang Y, Li F, Yu H, Li Y, Li Z, Tian Y, He B, Sun Y. Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ohradanova-Repic A, Skrabana R, Gebetsberger L, Tajti G, Baráth P, Ondrovičová G, Praženicová R, Jantova N, Hrasnova P, Stockinger H, Leksa V. Blockade of TMPRSS2-mediated priming of SARS-CoV-2 by lactoferricin. Front Immunol 2022; 13:958581. [PMID: 36081512 PMCID: PMC9445877 DOI: 10.3389/fimmu.2022.958581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
- *Correspondence: Vladimir Leksa, ; Anna Ohradanova-Repic,
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Ondrovičová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biochemistry, Comenius University, Bratislava, Slovakia
| | - Nikola Jantova
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biochemistry, Comenius University, Bratislava, Slovakia
| | - Patricia Hrasnova
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biochemistry, Comenius University, Bratislava, Slovakia
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Vladimir Leksa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Vladimir Leksa, ; Anna Ohradanova-Repic,
| |
Collapse
|
17
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
18
|
Khan A, Aljarbou AN, Khan S, Khan MA. Her-2 directed systemic delivery of fatty acid synthase (FASN) siRNA with novel liposomal carrier systems in the breast cancer mouse model. J Drug Target 2022; 30:634-645. [PMID: 35112640 DOI: 10.1080/1061186x.2022.2038613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the current advancements in the gene silencing therapy in vitro, the systemic delivery of siRNA still remains a challenging task for its transition into clinics. We have previously developed the Her2-targeted fatty acid synthase (FASN) siRNA-encapsulating immunoliposomes (ILs) with a great stability in the presence of serum. We report here the therapeutic potential of the lipid-based novel formulations in the breast cancer mouse model. The growth inhibitory and gene silencing effects of various formulations were determined by measuring the size of the tumor, cell proliferation, apoptotic index and immunoassays against Her2-over expressed tumor xenografts in nude mice. The pegylated DSPC/Chol and DOPE/CHEMS immunoliposomes containing FASN-siRNA significantly decreased the tumor growth relative to non-targeted liposomes. They induced the 1.5-fold increase in cellular apoptosis and several fold decrease in proliferation as compared to non-targeted liposomal formulations of FASN-siRNA. Moreover, FASN-siRNA-ILs produced several fold increase in the ratios of p53/p21 and Bax/Bcl-2. The gene silencing effects of targeted FASN-liposomes were found significantly superior, resulting in 30%-40% downregulation in FASN as compared to non-targeted similar formulations. Both types of FASN immunoliposomes provided a highly efficient approach for targeted delivery in Her-2-expressed breast cancer and thus offered a promising anticancer strategy in the clinical therapy.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Buraydah, Qassim University, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| |
Collapse
|
19
|
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Quercetin-biapigenin nanoparticles are effective to penetrate the blood-brain barrier. Drug Deliv Transl Res 2022; 12:267-281. [PMID: 33709285 DOI: 10.1007/s13346-021-00917-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Search for efficient therapeutic agents for central nervous system (CNS) disorders has been extensive. Nevertheless, blood-brain barrier (BBB) is an obstacle that prevents the majority of compounds to act in these diseases. It is, thus, of extreme relevance the BBB overcome, in order to deliver a drugs therapeutically active concentration to the action site, with the least losses and interaction with other organs, tissues, or cells. The present study aimed to investigate the potential protective effect of quercetin-biapigenin encapsulated into poly(Ɛ-polycaprolactone) (PCL) nanoparticles against t-BOOH-induced oxidative stress in several brain cell lines, as well as evaluate the permeability of those active molecules through an in vitro BBB model. The three cell lines under study (BV-2, hcmec/D3, and U87) presented different reactions to t-BOOH. In general, quercetin-biapigenin PCL-loaded nanoparticles were able to minimize compound toxicity they convey, regardless the cell line. Quercetin-biapigenin PCL-loaded nanoparticles (Papp of approximately 80 × 10-6 cm/s) revealed to be more permeable than free compounds (Papp of approximately 50 × 10-6 cm/s). As of our knowledge, this is the first report of quercetin-biapigenin PCL-loaded nanoparticle activity in brain cells. It is also the first determining its permeability through BBB, as an effective nanocarrier for brain delivery.
Collapse
Affiliation(s)
- Ana Isabel Oliveira
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal.
| | - Cláudia Pinho
- Centro de Investigação Em Saúde E Ambiente (CISA), Escola Superior de Saúde -Politécnico do Porto (ESS-P.Porto), 4000-072, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- CESPU, Instituto de Investigação E Formação Avançada Em Ciências E Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116, Gandra, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), Biology Department, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
20
|
El Abd Y, Tabll A, Smolic R, Smolic M. Mini-review: The market growth of diagnostic and therapeutic monoclonal antibodies - SARS CoV-2 as an example. Hum Antibodies 2022; 30:15-24. [PMID: 34958012 DOI: 10.3233/hab-211513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The emergence of novel viruses poses severe challenges to global public health highlighting the crucial necessity for new antivirals. MAIN BODY Monoclonal antibodies (mAbs) are immunoglobulins that bind to a single epitope. Mouse mAbs are generated by classic hybridoma technology and are mainly used for immunodiagnostics. For immunotherapy, it is critical to use monoclonal antibodies in their human form to minimize adverse reactions. They have been successfully used to treat numerous illnesses, accordingly, an increasing number of mAbs, with high potency against emerging viruses is the target of every biopharmaceutical company. The diagnostic and therapeutic mAbs market grows rapidly into a multi-billion-dollar business. Biopharmaceuticals are innovative resolutions which revolutionized the treatment of significant chronic diseases and malignancies. Currently, a variety of therapeutic options that include antiviral medications, monoclonal antibodies, and immunomodulatory agents are available for the management of COVID-19. SHORT CONCLUSION The invasion of mAbs in new medical sectors will increase the market magnitude as it is expected to generate revenue of about 300 billion $ by 2025. In the current mini-review, the applications of monoclonal antibodies in immune-diagnosis and immunotherapy will be demonstrated, particularly for COVID-19 infection and will focus mainly on monoclonal antibodies in the market.
Collapse
Affiliation(s)
- Yasmine El Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Technology and Innovation Commercialization Office (TICO), National Research Centre, Dokki, Egypt
| | - Ashraf Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Robert Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Division of Gastroenterology/Hepatology, Department of Medicine, University Hospital Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
21
|
Pivetta TP, Botteon CEA, Ribeiro PA, Marcato PD, Raposo M. Nanoparticle Systems for Cancer Phototherapy: An Overview. NANOMATERIALS 2021; 11:nano11113132. [PMID: 34835896 PMCID: PMC8625970 DOI: 10.3390/nano11113132] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces' functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.
Collapse
Affiliation(s)
- Thais P. Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Caroline E. A. Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Priscyla D. Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Fax: +351-21-294-85-49
| |
Collapse
|
22
|
Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A. Advances in antibody nanoconjugates for diagnosis and therapy: A review of recent studies and trends. Int J Biol Macromol 2021; 185:664-678. [PMID: 34224755 DOI: 10.1016/j.ijbiomac.2021.06.191] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn't affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Akrami-Hasan-Kohal
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Khaledi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
24
|
Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res 2021; 32:195-210. [PMID: 33729077 DOI: 10.1080/08982104.2021.1903035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a broad term used to describe a group of diseases that have more than 270 types. Today, due to the suffering of patients from the side effects of existing methods in the treatment of cancer such as chemotherapy and radiotherapy, the employment of targeted methods in the treatment of this disease has been received much consideration. In recent years, nanoparticles have revolutionized in the treatment of many diseases such as cancer. Among these nanoparticles, liposomes are more considerable. Active targeted liposomes show an important role in the selective action of the drug on cancer cells. Until now, a variety of anti-cancer agents have been reported for targeted delivery to cancer cells using liposomes. The results of in vitro and studies in vivo have been shown that selective action of the targeted liposomes is increased with reduced side effects and toxicity compared with free drugs or non-targeted liposomes. This systematic review expresses the reports of this type of drug delivery system. Search terms were searched through several online databases including PubMed, Scopus, and Science Direct from 1990 to 2019 and the quality evaluation was performed. Out of 11,676 published articles, 196 articles met the inclusion criteria. The current report reviews developments in the liposomes targeted with aptamer, transferrin, folate, and monoclonal antibodies.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parna Khalil Dezfuli
- School of Pharmacy Library, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268:118932. [PMID: 33400933 DOI: 10.1016/j.lfs.2020.118932] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
26
|
Abstract
Nanometer-sized liposomes decorated with macromolecules are increasingly used as drug delivery vehicles due to their long lifetimes and target cell specificity, but surface characterization methods often change their properties, which leads to incorrect results. Ligand binding is commonly applied for characterizing these surface modifications. Here, we use a nanofluidic-based label-free sensor for real-time sensing of ligands binding to liposomes. The liposomes are trapped in a nanochannel with a salt concentration gradient, and as the trapping position depends on the liposomes' zeta potential, it changes when charged ligands bind to the liposomes. Our sensing method does not require immobilization of the liposomes or labeling of the ligands with fluorophores, which may both affect the sensing. The zeta potential sensing is demonstrated by measuring hybridization of DNA targets with complementary DNA probes on liposome surfaces. DNA hybridization is monitored for both ensembles and individual liposomes, the latter allows for analysis of ensemble heterogeneity, and we demonstrate sensitivity to changes in surface charge down to 1.5%. DNA hybridization is used to demonstrate label-free sensing, but the method also has potential applications within exosome characterization, where biorecognition of, e.g., surface DNA, proteins, and antibodies is a promising candidate for early stage cancer diagnostics.
Collapse
Affiliation(s)
- Martin K. Rasmussen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonas N. Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020; 154-155:151-162. [PMID: 32926944 DOI: 10.1016/j.addr.2020.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Drug encapsulated liposomes and monoclonal antibodies (Mabs) are two distinctively different classes of therapeutics, but both aim to become the ultimate "magic bullet". While PEGylated liposomes rely on the enhanced permeability and retention (EPR) effect for accumulation in solid tumor tissues, Mabs are designed to bind tightly to specific surface antigens on target cells to exert effector functions. Immunoliposome (IL) refers to the structural combination of liposomes and antibodies, whereas the antibodies are usually decorated on the liposome surface. ILs can therefore take advantage of interactions between antibodies and cancer cells for more efficient endocytosis and intracellular drug delivery. The antibody structure, affinity, density, as well as the liposome surface properties and drug to lipid ratios all contribute to the IL pharmacokinetic(PK) and pharmacodynamic(PD) behaviors. The optimal formulation parameters may vary for different target cells and tissues. Furthermore, besides the delivery of cytotoxic drugs to cancer cells, new ILs are being developed to interact with multiple target receptors, multiple target cells and trigger multiple therapeutic effects. We envision that the IL format can be a great platform for the molecular engineering of multi-valent, multi-specific interactions to achieve complex biological functions for therapeutic benefits, especially in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxing Di
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Fang Xie
- Department of Biomedical Engineering, Johns Hopkins University, United States of America
| | - Yuhong Xu
- College of Pharmacy and Chemistry, Dali University, China.
| |
Collapse
|
28
|
Darwish M, Shatz W, Leonard B, Loyet K, Barrett K, Wong JL, Li H, Abraham R, Lin M, Franke Y, Tam C, Mortara K, Zilberleyb I, Blanchette C. Nanolipoprotein Particles as a Delivery Platform for Fab Based Therapeutics. Bioconjug Chem 2020; 31:1995-2007. [DOI: 10.1021/acs.bioconjchem.0c00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Martine Darwish
- Genentech, South San Francisco, California 94088, United States
| | - Whitney Shatz
- Genentech, South San Francisco, California 94088, United States
| | - Brandon Leonard
- Genentech, South San Francisco, California 94088, United States
| | - Kelly Loyet
- Genentech, South San Francisco, California 94088, United States
| | - Kathy Barrett
- Genentech, South San Francisco, California 94088, United States
| | - Janice L. Wong
- Genentech, South San Francisco, California 94088, United States
| | - Hong Li
- Genentech, South San Francisco, California 94088, United States
| | - Ryan Abraham
- Genentech, South San Francisco, California 94088, United States
| | - May Lin
- Genentech, South San Francisco, California 94088, United States
| | - Yvonne Franke
- Genentech, South San Francisco, California 94088, United States
| | - Christine Tam
- Genentech, South San Francisco, California 94088, United States
| | - Kyle Mortara
- Genentech, South San Francisco, California 94088, United States
| | - Inna Zilberleyb
- Genentech, South San Francisco, California 94088, United States
| | | |
Collapse
|
29
|
Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 2020; 16:1205-1226. [PMID: 31530041 DOI: 10.1080/17425247.2019.1669558] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Liposomes and lipid-based nanoparticles (LNPs) effectively deliver cargo molecules to specific tissues, cells, and cellular compartments. Patients benefit from these nanoparticle formulations by altered pharmacokinetic properties, higher efficacy, or reduced side effects. While liposomes are an established delivery option for small molecules, Onpattro® (Sanofi Genzyme, Cambridge, MA) is the first commercially available LNP formulation of a small interfering ribonucleic acid (siRNA). Areas covered: This review article summarizes key features of liposomal formulations for small molecule drugs and LNP formulations for RNA therapeutics. We describe liposomal formulations that are commercially available or in late-stage clinical development and the most promising LNP formulations for ASOs, siRNAs, saRNA, and mRNA therapeutics. Expert opinion: Similar to liposomes, LNPs for RNA therapeutics have matured but still possess a niche application status. RNA therapeutics, however, bear an immense hope for difficult to treat diseases and fuel the imagination for further applications of RNA drugs. LNPs face similar challenges as liposomes including limitations in biodistribution, the risk to provoke immune responses, and other toxicities. However, since properties of RNA molecules within the same group are very similar, the entire class of therapeutic molecules would benefit from improvements in a few key parameters of the delivery technology.
Collapse
Affiliation(s)
- Ludger M Ickenstein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| |
Collapse
|
30
|
Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. NANOMATERIALS 2020; 10:nano10020341. [PMID: 32079276 PMCID: PMC7075144 DOI: 10.3390/nano10020341] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
Invasomes are novel vesicular systems that exhibit improved transdermal penetration compared to conventional liposomes. These vesicles contain phospholipids, ethanol, and terpene in their structures; these components confer suitable transdermal penetration properties to the soft vesicles. The main advantages of these nanovesicles lie in their ability to increase the permeability of the drug into the skin and decrease absorption into the systemic circulation, thus, limiting the activity of various drugs within the skin layer. In this paper, several features of invasomes, including their structure, mechanism of penetration, applications, characterization, and potential advantages in dermal drug delivery, are highlighted. Overall, this review suggests that enhanced transdermal penetration of drugs using invasomes provides an appropriate opportunity for the development of lipid vesicular carriers.
Collapse
|
31
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1258] [Impact Index Per Article: 251.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
32
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
33
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Teng C, Chai Z, Yuan Z, Ren L, Lin C, Yan Z, He W, Qin C, Yang L, Han X, Yin L. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102105. [PMID: 31740406 DOI: 10.1016/j.nano.2019.102105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/26/2019] [Accepted: 09/27/2019] [Indexed: 01/25/2023]
Abstract
PEG coating was regarded as one effective method to improve the tumor-targeting efficiency of hyaluronic acid-based nanoparticles (HBN). However, the research of interaction between PEG coating and different receptors such as stabilin-2 and CD44 was limited. Herein, we synthesized a series of PEGylated hyaluronic acid with Curcumin (PHCs) to evaluate the role of PEG coating density in the interaction between HA and its receptors, which influenced tissues targeting activity, pharmacokinetic profiles and therapeutic efficacy of HBN. Compared with other counterparts, PHC HBN with about 5% PEG coating density preferably accumulated in the tumor mass, rather than in the liver, and hold desirable anti-cancer effect. These results indicated that to obtain optimized anticancer effect of HBN, the cellular uptake efficiency between different types of the cells should be carefully balanced by different PEG densities.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhuodong Chai
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhongyue Yuan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; University of the Pacific, Stockton, California, USA
| | - Lianjie Ren
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; Center for Drug Evaluation, CFDA, Beijing, PR China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhen Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Chao Qin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Lei Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Xiaopeng Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Lifang Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
35
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
36
|
Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular mechanisms of drug resistance, overall curative outcomes remain low, especially in metastatic disease. Nanotechnology, in particular nanoparticles (NPs), continue to progressively impact the way by which tumours are diagnosed and treated. The unique physicochemical properties of materials at the nanoscale grant access to a diverse molecular toolkit that can be manipulated for use in respiratory oncology. This realisation has resulted in several clinically approved NP formulations and many more in clinical trials. However, NPs are not a panacea and have yet to be utilised to maximal effect in lung cancer, and medicine in a wider context. This review serves to: describe the complexity of lung cancer, the current diagnostic and therapeutic environment, and highlight the recent advancements of nanotechnology based approaches in diagnosis and treatment of respiratory malignancies. Finally, a brief outlook on the future directions of nanomedicine is provided; presently the full potential of the field is yet to be realised. By gleaning lessons and integrating advancements from neighbouring disciplines, nanomedicine can be elevated to a position where the current barriers that stymie full clinical impact are lifted.
Collapse
|
37
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
38
|
Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. J Control Release 2018; 288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
|
39
|
Gonçalves F, Silva C, Ribeiro A, Cavaco-Paulo A. 1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27531-27539. [PMID: 30040883 DOI: 10.1021/acsami.8b10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the anchorage of pig odorant binding protein (OBP-I) into liposomal membrane was promoted by the fusion of OBP-I with the anchor SP-DS3 peptide and with the (GQ)20 spacer. The presence of the (GQ)20 spacer in the construct confers flexibility to the protein and increases the distance between the OBP binding site and the liposomal surface. The engineered proteins, OBP::SP-DS3 and OBP::(GQ)20::SP-DS3, were produced in Escherichia coli BL21(DE3) and characterized by circular dichroism spectroscopy and MALDI-TOF. The functionalization of liposomes with the OBP proteins was performed through ethanol injection, and similar liposomal anchorage (∼92-97%) was found for both OBP constructs. The effect of OBPs' proximity to the liposomes membrane on 1-aminoanthracene (1-AMA, model ligand) transduction was evaluated by measuring the amount of 1-AMA transduced into liposomes by fluorescence spectroscopy. While protein flexibility, given by the presence of the (GQ)20 spacer, seems to influence the binding efficiency, ∼45% for OBP::(GQ)20::SP-DS3 and ∼29% for OBP::SP-DS3, the distance between the proteins' binding site and the liposomal membrane determines their ability to transduce the 1-AMA into the liposomes (∼23% for OBP::SP-DS3 and ∼19% for OBP::(GQ)20::SP-DS3). The anchorage capacity and proximity effect were confirmed by an experimental control where the wild-type (wt) OBP was added to the liposomes, resulting in low 1-AMA transduction (∼3.5%) and low binding to OBPwt (∼9%). These findings evidence the effect of anchorage, carrier protein's flexibility, and proximity as key features for the entrapment of molecules into the liposomal membrane. The developed OBP-based devices are thus promising anchorage systems for the capture and storage of odors with potential applications in textile and cosmetic industries.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Carla Silva
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| |
Collapse
|
40
|
Zhang J, Du Z, Pan S, Shi M, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21590-21600. [PMID: 29798663 DOI: 10.1021/acsami.8b01806] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The therapeutic efficacy of chemotherapy is dramatically hindered by multidrug resistance (MDR), which is induced by the overexpression of P-glycoprotein (P-gp). The codelivery of an antitumor drug and siRNA is an effective strategy recently applied in overcoming P-gp-related MDR. In this study, a multifunctional drug delivery system with both pH-sensitive feature and active targetability was designed, in which MDR1-siRNA and DOX were successfully loaded. The resulting carrier EphA10 antibody-conjugated pH-sensitive doxorubicin (DOX), MDR1-siRNA coloading lipoplexes (shortened as DOX + siRNA/ePL) with high serum stability had favorable physicochemical properties. DOX + siRNA/ePL exhibited an incremental cellular uptake, enhanced P-gp downregulation efficacy, as well as a better cell cytotoxicity in human breast cancer cell line/adriamycin drug-resistant (MCF-7/ADR) cells. The results of the intracellular colocalization study indicated that DOX + siRNA/ePL possessed the ability for pH-responsive rapid endosomal escape in a time-dependent characteristic. Meanwhile, the in vivo antitumor activities suggested that DOX + siRNA/ePL could prolong the circulation time as well as specifically accumulate in the tumor cells via receptor-mediated endocytosis after intravenous administration into the blood system. The histological study further demonstrated that DOX + siRNA/ePL could inhibit the proliferation, induce apoptosis effect, and downregulate the P-gp expression in vivo. Altogether, DOX + siRNA/ePL was expected to be a suitable codelivery system for overcoming the MDR effect.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Zhouqi Du
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Jie Li
- Mudanjiang Medical University , Tongxiang Street No. 3 , Mudanjiang , Heilongjiang 157011 , PR China
| | - Chunrong Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| |
Collapse
|