1
|
Zhou S, Qin Y, Lei A, Liu H, Sun Y, Zhang J, Deng C, Chen Y. The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review. J Drug Target 2025; 33:853-876. [PMID: 39883061 DOI: 10.1080/1061186x.2025.2461091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.
Collapse
Affiliation(s)
- Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yutao Qin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Anwen Lei
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Xuancheng City People's Hospital, Xuancheng, Anhui Province, China
| | - Hai Liu
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yu Chen
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Gu W. A bibliometric analysis of programmed cell death in oral cancer literature: research patterns and emerging trends (2000-2024). Discov Oncol 2025; 16:585. [PMID: 40261469 PMCID: PMC12014878 DOI: 10.1007/s12672-025-02410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Programmed cell death (PCD) plays a crucial role in oral cancer pathogenesis and treatment. However, a comprehensive bibliometric analysis of the global research landscape in this field has not been conducted. This study aims to analyze the evolution and current trends of PCD research in oral cancer from 2000 to 2024. METHODS Publications were retrieved from the Web of Science Core Collection database using relevant keywords related to oral cancer and PCD. VOSviewer 1.6.20 and CiteSpace 6.1R6 software were employed to conduct bibliometric analysis, including publication trends, citation analysis, co-authorship networks, keyword co-occurrence, and research hotspots. The time span was set from January 2000 to December 2024. RESULTS A total of 963 publications were identified and analyzed. The annual publication output showed a steady increase, with a significant growth rate after 2010, dividing the study period into three distinct phases. The most productive countries were China (58.42%), South Korea (12.27%), and Japan (10.04%), with China Medical University and Kaohsiung Medical University being the leading institutions. Research hotspots evolved from traditional apoptosis studies to emerging forms of PCD such as autophagy, ferroptosis, and pyroptosis. Keyword analysis revealed three major research clusters: basic molecular mechanisms (centered around ROS and oxidative stress), clinical aspects (including prognosis and cell proliferation), and cell death pathways. Citation burst analysis identified emerging trends in targeting multiple PCD pathways simultaneously for oral cancer therapy, with special focus on treatment resistance and survival. CONCLUSION This bibliometric analysis provides a comprehensive overview of global research trends in PCD and oral cancer over the past two decades. The findings highlight the shift from basic mechanistic studies focusing on apoptosis to more diverse PCD pathways and translational research. Emerging research directions include the exploration of synergistic mechanisms among multiple PCD pathways, development of AI-based personalized treatment plans, investigation of microenvironment regulation of PCD, and application of novel drug delivery systems. These trends demonstrate the field's evolution toward more integrated, personalized approaches in oral cancer treatment. This study offers valuable insights for researchers and funding agencies to identify research gaps and potential collaboration opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
4
|
Heydari M, Saifi M, Ghanbari-Movahed M, Salari N, Faghihi SH, Mohammadi M. Recent advances in improved efficacies of gold nano-formulations in treatment of skin cancer: a systematic review. Arch Dermatol Res 2025; 317:301. [PMID: 39833557 DOI: 10.1007/s00403-025-03817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Skin cancer is the commonest malignancy for the population. Conventional skin cancer treatments include chemotherapy and surgery, but a large number of the chemotherapeutic drugs applied currently have undesirable possessions. The aim of this study is to provide a complete and acute assessment of the antitumor capability of gold nano-formulations in skin cancer as a new and more effectual delivery system for targeted therapy. In this systematic review, we conducted our first search in December 2021. In order to find related studies, 3 databases PubMed, Scopus and ScienceDirect. In order to maintain comprehensiveness in the search, no time limit was considered in the search process and finally the information obtained from the search was transferred to the information management software (EndNote). In order to maximize the number of articles that were related to our topic, a list of references identified in relevant articles was also manually searched and reviewed. Our final search was updated in late December 2021. There was evidence for a correlation between anticancer activities and treatment with gold nano-formulations. Additionally, studies shown that specific functionalization of the gold nanoparticles (Au NPs) which increase targetability to specific populations of cells could increase the application of Au NPs to the effective delivery of drugs to tumor cells. Our study demonstrated that gold nano-formulations are possible candidates for skin cancer treatment and might provide additional support for the clinical use of these anticancer agents in the future.
Collapse
Affiliation(s)
- Mohammadbagher Heydari
- Department of General Surgery, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Saifi
- Department of General Surgery, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sayed Hassan Faghihi
- Department Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Mohammadi
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
5
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
6
|
Liu X, Bai Y, Zhou B, Yao W, Song S, Liu J, Zheng C. Recent advances in hepatocellular carcinoma-targeted nanoparticles. Biomed Mater 2024; 19:042004. [PMID: 38697209 DOI: 10.1088/1748-605x/ad46d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Dash SR, Das C, Das B, Jena AB, Paul S, Sinha S, Tripathy J, Kundu CN. Near infrared-responsive quinacrine-gold hybrid nanoparticles deregulate HSP-70/P300-mediated H3K14 acetylation in ER/PR+ breast cancer stem cells. Nanomedicine (Lond) 2024; 19:581-596. [PMID: 38293827 DOI: 10.2217/nnm-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Aim: This study aimed to determine if quinacrine-gold hybrid nanoparticles (QAuNPs) + near-infrared (NIR) deregulate HSP-70/P300 complex-mediated H3K14 acetylation in estrogen receptor/progesterone receptor (ER/PR+) breast cancer stem cells (CSCs). Materials & methods: Various cells and mouse-based systems were used as models. Results: QAuNP + NIR treatment reduced the nuclear translocation of HSP-70, affected the histone acetyltransferase activity of P300 and specifically decreased H3K14 acetylation in ER/PR+ breast CSCs. Finally, HSP-70 knockdown showed a reduction in P300 histone acetyltransferase activity, decreased H3K14 acetylation and inhibited activation of the TGF-β gene. Conclusion: This study revealed that QAuNP + NIR irradiation inhibits oncogenic activation of the TGF-β gene by decreasing H3K14 acetylation mediated through the HSP-70/P300 nuclear complex in ER/PR+ breast CSCs.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Atala Bihari Jena
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jasaswini Tripathy
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
8
|
Amanat MA, Farrukh A, Ishaq MUBM, Bin Shafqat B, Haidri SH, Amin R, Sameen R, Kamal T, Riaz MN, Quresh W, Ikram R, Ali GM, Begum S, Bangash SAK, Kaleem I, Bashir S, Khattak SH. The Potential of Nanotechnology to Replace Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:820-831. [PMID: 37264662 DOI: 10.2174/1574888x18666230601140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/03/2023]
Abstract
Stem cells, which were initially identified in the 1900s, are distinct cells with the potential to replenish themselves as well as differentiate into specialised cells with certain forms and functions. Cancer stem cells play a significant role in the growth and recurrence of the tumours and, similar to normal stem cells, are capable of proliferating and differentiating. Traditional cancer treatments are ineffective against cancer stem cells, which leads to tumour regrowth. Cancer stem cells are thought to emerge as a result of epithelial-to-mesenchymal transition pathways. Brain, prostate, pancreatic, blood, ovarian, lung, liver, melanomas, AML, and breast cancer stem cells are among the most prevalent cancer forms. This review aims to comprehend the possibility of using specific forms of nanotechnology to replace cancer stem cells. In terms of nanotechnology, magnetic nanoparticles can deliver medications, especially to the target region without harming healthy cells, and they are biocompatible. In order to kill glioma cancer stem cells, the gold nanoparticles bond with DNA and function as radio sensitizers. In contrast, liposomes can circulate and traverse biological membranes and exhibit high therapeutic efficacy, precise targeting, and better drug release. Similar to carbon nanotubes, grapheme, and grapheme oxide, these substances can be delivered specifically when utilized in photothermal therapy. Recent treatments including signaling pathways and indicators targeted by nanoparticles are being researched. Future research in nanotechnology aims to develop more effective and targeted medicinal approaches. The results of the current investigation also showed that this technology's utilization will improve medical therapy and treatment.
Collapse
Affiliation(s)
- Muhammad Ammar Amanat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | | | | | - Binyameen Bin Shafqat
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Saqib Hussain Haidri
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rehab Amin
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Rafia Sameen
- Department of Biochemistry and Biotechnology, Faculty of Science, University of Gujrat, Gujrat Pakistan
| | - Tahira Kamal
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Naeem Riaz
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
- Animal biotechnology program, Animal Sciences Institute (ASI), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Waleed Quresh
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Rabia Ikram
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | - Sania Begum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| | | | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| | - Sahir Hameed Khattak
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre, Islamabad, Pakistan
| |
Collapse
|
9
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Baskar G, Palaniyandi T, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A, Rajendran BK, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnol Bioeng 2023; 120:3105-3115. [PMID: 37243814 DOI: 10.1002/bit.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Oral cancer is a common and deadly kind of tissue invasion, has a high death rate, and may induce metastasis that mostly affects adults over the age of 40. Most in vitro traditional methods for studying cancer have included the use of monolayer cell cultures and several animal models. There is a worldwide effort underway to reduce the excessive use of laboratory animals since, although being physiologically adequate, animal models rarely succeed in exactly mimicking human models. 3D culture models have gained great attention in the area of biomedicine because of their capacity to replicate parent tissue. There are many benefits to using a drug delivery approach based on nanoparticles in cancer treatment. Because of this, in vitro test methodologies are crucial for evaluating the efficacy of prospective novel nanoparticle drug delivery systems. This review discusses current advances in the utility of 3D cell culture models including multicellular spheroids, patient-derived explant cultures, organoids, xenografts, 3D bioprinting, and organoid-on-a-chip models. Aspects of nanoparticle-based drug discovery that have utilized 2D and 3D cultures for a better understanding of genes implicated in oral cancers are also included in this review.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Sudhakar Natarajan
- Department of HIV/AIDS, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Gopu Govindasamy
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital and Madras Medical College, Chennai, India
| |
Collapse
|
11
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
12
|
Nayak D, Paul S, Das C, Bhal S, Kundu CN. Quinacrine and Curcumin in combination decreased the breast cancer angiogenesis by modulating ABCG2 via VEGF A. J Cell Commun Signal 2023; 17:609-626. [PMID: 36326988 PMCID: PMC10409692 DOI: 10.1007/s12079-022-00692-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear. Here, using in vitro (CSCs enriched side population [SP] cells), ex vivo (patient derived primary cells), in ovo (fertilized egg embryo) and in vivo (patient derived primary tissue mediated xenograft (PDX)) system, we have systematically studied the role of ABCG2 in angiogenesis and the regulation of the process by Curcumin (Cur) and Quinacrine (QC). Cur + QC inhibited the proliferation, invasion, migration and expression of representative markers of metastasis and angiogenesis. Following hypoxia, ABCG2 enriched cells released angiogenic factor vascular endothelial growth factor A (VEGF A) and induced the angiogenesis via PI3K-Akt-eNOS cascade. Cur + QC inhibited the ABCG2 expression and thus reduced the angiogenesis. Interestingly, overexpression of ABCG2 in SP cells and incubation of purified ABCG2 protein in media induced the angiogenesis but knockdown of ABCG2 decreased the vascularization. In agreement with in vitro results, ex vivo data showed similar phenomena. An induction of vascularization was noticed in PDX mice but reduction of vascularization was also observed after treatment of Cur + QC. Thus, data suggested that in hypoxia, ABCG2 enhances the production of angiogenesis factor VEGF A which in turn induced angiogenesis and Cur + QC inhibited the process by inhibiting ABCG2 in breast cancer.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Subhasmita Bhal
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT, Deemed to be University, Campus-11, 751024, Patia, Bhubaneswar, Odisha, India.
| |
Collapse
|
13
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
14
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
15
|
Pradhan R, Paul S, Das B, Sinha S, Dash SR, Mandal M, Kundu CN. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J Nutr Biochem 2023; 113:109257. [PMID: 36572069 DOI: 10.1016/j.jnutbio.2022.109257] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the highly abundant components in the tumor microenvironment (TME). They secrete several cytokines, which amplified tumor progression, invasion, stemness, metastasis, and angiogenesis. Here, we evaluate the potentiality of cytokines for the formation of cancer stem cells (CSCs) in oral cancer cells niche and investigate the anti-inflammatory and anti-carcinogenic effect of Resveratrol-nanoparticle (Res-NP). We first differentiated quiescent human fibroblasts into CAFs in vitro in response to PDGF-B and TGF-β stimulation and these CAFs were found to increase CXCL-12 and IL-6 secretion. CSCs-enriched population was created by incubating H-357 cells with CAFs and cytokine-enriched CAFs-conditioned media (CAFs-CM). Likewise, CSCs-populated environment was also generated after incubating CAFs-CM to patient-derived primary oral cancer cells. It was noted that CXCL-12 and IL-6 secreted from CAFs significantly promoted CSCs growth, proliferation, aggressiveness, metastasis, and angiogenesis. However, Res-NP reduced CSCs growth and proliferation by abrogating the secretion of CXCL-12 and IL-6. A significant decrease in the expression of metastatic and angiogenic markers, in ovo blood vascularization, intracellular NO generation, MMPs expression and tube formation was found upon Res-NP treatment. Reduction of representative CSCs and angiogenesis markers were also noted after Res-NP treatment in xenograft mice model. CXCL-12 physically interact with IL-6 and this interaction was diminished after Res-NP treatment. Moreover, the expression of CD133 and VEGF-A were down-regulated either on Res-NP or CXCL-12/IL-6-specific inhibitors treated CSCs-enriched cells. Thus, the data suggest that CSCs growth is CXCL-12 and IL-6 dependent and Res-NP obstruct carcinogenesis and metastasis by inhibiting CXCL-12 and IL-6 production in in vitro, in vivo, in ovo, and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
18
|
Surface functionalization of lipidic core nanoparticles with albumin: A great opportunity for quinacrine in lung cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
20
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
21
|
Azees PAA, Natarajan S, Amaechi BT, Thajuddin N, Raghavendra VB, Brindhadevi K, Pugazhendhi A. An empirical review on the risk factors, therapeutic strategies and materials at nanoscale for the treatment of oral malignancies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Dash SR, Chatterjee S, Sinha S, Das B, Paul S, Pradhan R, Sethy C, Panda R, Tripathy J, Kundu CN. NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102502. [PMID: 34843984 DOI: 10.1016/j.nano.2021.102502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are the tumor cell subpopulations that can self-renew, differentiate, initiate and maintain tumor growth. CSCs are frequently drug-resistant, resulting in tumor recurrence, metastasis, and angiogenesis. Herein, using in vitro oral squamous cell carcinoma (OSCC) CSCs and in vivo xenograft mice model, we have systematically studied the apoptotic potentiality of quinacrine-gold hybrid nanoparticle (QAuNP) and its underlying mechanism after NIR irradiation. QAuNP + NIR caused DNA damage and induced apoptosis in SCC-9-CSCs by deregulating mitochondrial membrane potential (ΔΨm) and activation of ROS. Upregulation of CASPASE-3 and DR-5/DR-4 and reduction of heat shock protein (HSP-70) up to 5-fold were also noticed upon the treatment. The increased expression of DR-5 and CASPASE-3 and decreased expression of HSP-70, CD-44 and Ki-67 were also noted in the xenograft mice treated with QAuNP + NIR + TRAIL. Thus, data suggest that the combined treatment enhances apoptosis in OSCC-CSCs by modulating HSP-70 in the DISC.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Rupayana Panda
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Jasaswini Tripathy
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
23
|
Wang X, Niu X, Sha W, Feng X, Yu L, Zhang Z, Wang W, Yuan Z. An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomater Sci 2021; 9:6308-6324. [PMID: 34519724 DOI: 10.1039/d1bm00834j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As an excellent candidate material for nano-sensitizers, gold nanostructures have shown great potential in radiotherapy. Nevertheless, severe hypoxia and low accumulation of nanomedicine caused by poor perfusion at the tumor site have significantly reduced radiotherapy efficacy. Vascular normalization has gained attention owing to its ability to relieve hypoxia and increase perfusion. The synergistic therapy of tumor vascular normalization and radiotherapy has become a new option to increase anti-cancer efficacy. However, the commonly used strategy of suppressing a single growth factor to induce vascular normalization is limited by tumor compensatory effects. In this work, we developed a strategy to inhibit oxidative stress in tumors by generating chelating agents in response to hydrogen peroxide, thereby inhibiting multi-angiogenic factors simultaneously to normalize blood vessels. Concretely, sodium alginate (SA) reacted with 8-quinoline boric acid (QBA) to form SA-QBA. Then gold nanoparticles (Au NPs) were modified with SA-QBA to obtain Au@SA-QBA. The system was simple in structure and could generate 8HQ in response to H2O2in vitro to inhibit oxidative stress and reduce the expression of VEGF, bFGF, and Ang-2. In vivo, the perfusion unit (PU) increased by 78% after Au@SA-QBA treatment, and the coverage of pericytes increased by 32%, which in turn induced vascular normalization. In addition, blood routine and blood biochemical tests confirmed its good biocompatibility and 8HQ was not detected in the supernatant after homogenization of major organs. More importantly, after the synergistic treatment of vascular normalization and radiotherapy (4 Gy), the tumor growth inhibition rate was increased by 38.6% compared to the Au@SA-treated group with negligible side effects to normal tissues.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Weizhou Sha
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
25
|
Exosomal miR-218-5p/miR-363-3p from Endothelial Progenitor Cells Ameliorate Myocardial Infarction by Targeting the p53/JMY Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529430. [PMID: 34326916 PMCID: PMC8302385 DOI: 10.1155/2021/5529430] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Accumulating evidence has shown that endothelial progenitor cell-derived exosomes (EPC-Exos) can ameliorate myocardial fibrosis. The purpose of the present study was to investigate the effects of EPC-Exos-derived microRNAs (miRNAs) on myocardial infarction (MI). A miRNA-Seq dataset of miRNAs differentially expressed between EPCs and exosomes was collected. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the miRNA expression indicated by miRNA-Seq. Immunofluorescence, cell proliferation, and angiogenesis assays were employed to investigate the effects of miRNAs on cardiac fibroblasts (CFs) in vitro. Interactions between miRNAs and their respective targets were examined via immunoblotting, qRT-PCR, and luciferase reporter assays. An MI rat model was constructed, and various staining and immunohistochemical assays were performed to explore the mechanisms underlying the miRNA-mediated effects on MI. miR-363-3p and miR-218-5p were enriched in EPC-Exos, and miR-218-5p and miR-363-3p mimic or inhibitor enhanced or suppressed CF proliferation and angiogenesis, respectively. miR-218-5p and miR-363-3p regulated p53 and junction-mediating and regulatory protein (JMY) by binding to the promoter region of p53 and the 3′ untranslated region of JMY. Additionally, treatment of CFs with Exo-miR-218-5p or Exo-miR-363-3p upregulated p53 and downregulated JMY expression, promoted mesenchymal-endothelial transition, and inhibited myocardial fibrosis. Administration of exosomes containing miR-218-5p mimic or miR-363-3p mimic ameliorated left coronary artery ligation-induced MI and restored myocardial tissue integrity in the MI model rats. In summary, these results show that the protective ability of EPC-Exos against MI was mediated by the shuttled miR-218-5p or miR-363-3p via targeting of the p53/JMY signaling pathway.
Collapse
|
26
|
Pradhan R, Chatterjee S, Hembram KC, Sethy C, Mandal M, Kundu CN. Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 2021; 92:108624. [PMID: 33705943 DOI: 10.1016/j.jnutbio.2021.108624] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/02/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022]
Abstract
Tumor associated macrophages in the tumor microenvironment secrete multiple cytokines, which regulate cancer cells growth and invasiveness. We systematically studied the role of cytokines in the induction of cancer stem like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells. A highly M1-like macrophages-enriched conditioned medium (CM) was generated by treating fixed doses of PMA and LPS in THP-1 cells alone as well as co-cultured of H-357 plus THP-1 cells. These M1-like macrophages increased the production of cytokines (e.g., TNF-α, IL-6, IL-1β, etc.). A CSCs populated environment was created after addition of cytokine-enriched-CM of co-culture of H-357 and THP-1 cells to cancer cells and cytokine enriched CM of THP-1 cells to patient derived primary oral cancer cells, respectively. After incubation with CM, enhancement of stemness, angiogenic and metastatic properties of both H-357 and primary oral cancer cells were noted. Res-NP decreased the cytokines level in CSCs-enriched cells and reduced the invasion, proliferation and growth of CSCs. Representative metastatic (CD133, ALDH1, CXCR4, etc.) and angiogenic markers (MMPs, iNOS, VEGF-A, etc.) were decreased after Res-NP treatment in CSCs enriched oral cancer cells niche. It also disrupted angiogenesis, depleted nitric oxide production in fertilized chick embryos and reduced the expression of metastatic and angiogenic markers in xenograft mice model system. Thus, this study concluded that CSCs-mediated stemness is a cytokine dependent phenomena and treatment of Res-NP inhibit this process in in vitro, in vivo and ex vivo systems.
Collapse
Affiliation(s)
- Rajalaxmi Pradhan
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur-721302, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India.
| |
Collapse
|
27
|
The prospects of nanotherapeutic approaches for targeting tumor-associated macrophages in oral cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102371. [PMID: 33662592 DOI: 10.1016/j.nano.2021.102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
OSCC (oral squamous cell carcinoma) is currently one of the most formidable cancers plagued by challenges like low overall survivability, lymph node associated metastasis, drug resistance, and poor diagnostics. The tumor microenvironment (TME) and its constituent stromal elements are crucial modulators of tumor growth and treatment response, more specifically so with regards to resident tumor associated macrophages (TAMs) and their liaison with the different stromal elements in the tumor niche (Figure 1). Interestingly, there isn't much information on TAM-targeted nanotherapy in OSCC where the first line of therapeutics for oral cancer is surgery with other therapeutics such as chemo- and radiotherapy acting only as adjuvant therapy for oral cancer. In the face of this real time situation, there have been some successful attempts at targeted therapy for OSCC cells and we believe they might elicit favorable responses against TAMs as well. Demanding our immediate attention, this review intends to provide a glimpse of the prevailing anti-TAM treatment strategies, which present great prospect for an uncharted territory like OSCC.
Collapse
|
28
|
Andraos C, Gulumian M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1680. [PMID: 33111484 PMCID: PMC7988657 DOI: 10.1002/wnan.1680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Cancer nanomedicine has evolved in recent years and is only expected to increase due to the ease with which nanomaterials (NMs) may be manipulated to the advantage of the cancer patient. The success of nanomedicine is dependent on the cell death mechanism, which in turn is dependent on the organelle initially targeted. The success of cancer nanomedicine is also dependent on other cellular mechanisms such as the induction of autophagy dysfunction, manipulation of the tumor microenvironment (TME) and secretome or induction of host immune responses. Current cancer phototherapies for example, photothermal- or photodynamic therapies as well as radio enhancement also form a major part of cancer nanomedicine. In general, cancer nanomedicine may be grouped into those NMs exhibiting inherent anti-cancer properties that is, self-therapeutic NMs (Group 1), NMs leading to localization of phototherapies or radio-enhancement (Group 2), and NMs as nanocarriers in the absence or presence of external radiation (Group 3). The recent advances of these three groups, together with their advantages and disadvantages as well as their cellular mechanisms and ultimate outcomes are summarized in this review. By exploiting these different intracellular mechanisms involved in initiating cell death pathways, it is possible to synthesize NMs that may have the desirable characteristics to maximize their efficacy in cancer therapy. Therefore, a summary of these important physicochemical characteristics is also presented that need to be considered for optimal cancer cell targeting and initiation of mechanisms that will lead to cancerous cell death. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
| | - Mary Gulumian
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
- Haematology and Molecular Medicine DepartmentUniversity of the WitwatersrandJohannesburgSouth Africa
- Water Research Group, Unit for Environmental Sciences and ManagementNorth West UniversityPotchefstroomSouth Africa
| |
Collapse
|
29
|
Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem 2021; 21:416-427. [PMID: 32698746 DOI: 10.2174/1871520620666200721123046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Quinacrine (QC) is a tricyclic compound and a derivative of 9-aminoacridine. It has been widely used to treat malaria and other parasitic diseases since the last century. Interestingly, studies have revealed that it also displays anti-cancer activities. Here, we have discussed the anti-cancer mechanism of QC along with its potentiality to specifically target cancer stem cells. The anti-cancer action of this drug includes DNA intercalation, inhibition of DNA repair mechanism, prevention of cellular growth, cell cycle arrest, inhibition of DNA and RNA polymerase activity, induction of autophagy, promotion of apoptosis, deregulation of cell signaling in cancer cells and cancer stem cells, inhibition of metastasis and angiogenesis. In addition, we have also emphasized on the synergistic effect of this drug with other potent chemotherapeutic agents and mentioned its different applications in anti-cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
31
|
Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 2021; 170:284-297. [PMID: 33340624 DOI: 10.1016/j.ijbiomac.2020.12.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Amany Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy, Pharos University of Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
32
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020; 12:E2021. [PMID: 32718058 PMCID: PMC7464732 DOI: 10.3390/cancers12082021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, a growing interest in the improvement of radiation therapies has led to the development of gold-based nanomaterials as radiosensitizer. Although the radiosensitization effect was initially attributed to a dose enhancement mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of chemical and biological contributions. Despite extensive experimental validation, the debate regarding the mechanism(s) of gold nanoparticle radiosensitization is limiting its clinical translation. This article reviews the current state of knowledge by addressing how gold nanoparticles exert their radiosensitizing effects from a transdisciplinary perspective. We also discuss the current and future challenges to go towards a successful clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| |
Collapse
|
35
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
36
|
Hembram KC, Dash SR, Das B, Sethy C, Chatterjee S, Bindhani BK, Kundu CN. Quinacrine Based Gold Hybrid Nanoparticles Caused Apoptosis through Modulating Replication Fork in Oral Cancer Stem Cells. Mol Pharm 2020; 17:2463-2472. [PMID: 32407635 DOI: 10.1021/acs.molpharmaceut.0c00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of cancer stem cells (CSCs) in the tumor microenvironment is responsible for the development of chemoresistance and recurrence of cancer. Our previous investigation revealed the anticancer mechanism of quinacrine-based silver and gold hybrid nanoparticles (QAgNP and QAuNP) in oral cancer cells, but to avoid cancer recurrence, it is important to study the effect of these nanoparticles (NPs) on CSCs. Here, we developed an in vitro CSCs model using SCC-9 oral cancer cells and validated via FACS analysis. Then, 40-60% of cells were found to be CD44+/CD133+ and CD24-. QAuNP showed excellent anti-CSC growth potential against SCC-9-cancer stem like cells (IC50 = 0.4 μg/mL) with the down-regulation of representative CSC markers. Prolonged exposure of QAuNP induced the S-phase arrest and caused re-replication shown by the extended G2/M population and apoptosis to SCC-9-CSC like cells. Up-regulation of BAX, PARP cleavage, and simultaneous down-regulation of Bcl-xL in prolonged treatment to CSCs suggested that the majority of the cells have undergone apoptosis. QAuNP treatment also caused a loss in DNA repair in CSCs. Mostly, the base excision repair (BER) components (Fen-1, DNA ligase-1, Pol-β, RPA, etc.) were significantly down-regulated after QAuNP treatment, which suggested its action against DNA repair machinery. The replication fork maintenance-related proteins, RAD 51 and BRCA-2, were also deregulated. Very surprisingly, depletion of WRN (an interacting partner for Pre-RC and Fen-1) and a significant increase in expression of fork-degrading nuclease MRE-11 in 96 h treated NPs were observed. Results suggest QAuNP treatment caused excessive DNA damage and re-replication mediated replication stress (RS) and stalling of the replication fork. Inhibition of BER components hinders the flap clearance activity of Fen-1, and it further caused RS and stopped DNA synthesis. Overall, QAuNP treatment led to irreparable replication fork movement, and the stalled replication fork might have degraded by MRE-11, which ultimately results in apoptosis and the death of the CSCs.
Collapse
Affiliation(s)
- Krushna Chandra Hembram
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Birendra Kumar Bindhani
- Plant Biotechnology and Nanotechnology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
37
|
Korolev DV, Postnov VN, Romanova TN, Zorin VN, Shulmeyster GA, Naumysheva EB, Evreinova NV, Murin IV. Chemisorption of Glycidyl Spacer on Magnetic Nanoparticles and Immobilization of Albumin and Quinacrine. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Nayak D, Tripathi N, Kathuria D, Siddharth S, Nayak A, Bharatam PV, Kundu C. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway. Int J Biochem Cell Biol 2019; 119:105682. [PMID: 31877386 DOI: 10.1016/j.biocel.2019.105682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cancer stem cell like cells (CSCs) present a challenge in the management of cancers due to their involvement in the development of resistance against various chemotherapeutic agents. Over expression of ABCG2 transporter gene is one of the factors responsible for drug resistance in CSCs, which causes efflux of therapeutic drugs from these cells. The development of inhibitors against CSCs has not achieved any significant success, till date. In this work, we have evaluated the anti-proliferative activity of curcumin (Cur) and quinacrine (QC) against CSCs using in vitro model system. Cur and QC synergistically inhibited the proliferation, migration and invasion of CSCs enriched side population (SP) cells of cigarette smoke condensate induced breast epithelial transformed (MCF-10A-Tr) generated metastatic cells. Cur + QC combination increased the DNA damage and inhibited the DNA repair pathways in SP cells. Uptake of QC increased in Cur pre-treated SP cells and this combination inhibited the ABCG2 activity by the reduction of ATP hydrolysis in cells. In vitro DNA binding reconstitution system suggests that QC specifically binds to DNA and caused DNA damage inside the cell. Decreased level of ABCG2, representative cell survival and DNA repair proteins were noted after Cur + QC treatment in SP cells. The molecular docking studies were performed to examine the binding behaviour of these drugs with ABCG2, which showed that QC (-53.99 kcal/mol) and Cur (-45.90 kcal/mol) occupy a highly overlapping interaction domain. This suggested that in Cur pre-treated cells, the Cur occupied the ligand-binding site in ABCG2, thus making the ligand binding site unavailable for the QC. This causes an increase in the intracellular concentration of QC. The results indicate that Cur + QC combination causes CSCs death by increasing the concentration of QC in the cells and thus causing the DNA damage and inhibiting the DNA repair pathways through modulating the ABCG2 activity.
Collapse
Affiliation(s)
- Deepika Nayak
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Neha Tripathi
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Deepika Kathuria
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Sumit Siddharth
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Anmada Nayak
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Chanakya Kundu
- Cancer Biology Division, School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
39
|
Darweesh RS, Ayoub NM, Nazzal S. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomedicine 2019; 14:7643-7663. [PMID: 31571869 PMCID: PMC6756918 DOI: 10.2147/ijn.s223941] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels. It is a highly regulated process as determined by the interplay between pro-angiogenic and anti-angiogenic factors. Under certain conditions the balance between angiogenesis stimulators and inhibitors is altered, which results in a shift from physiological to pathological angiogenesis. Therefore, the goal of therapeutic targeting of angiogenic process is to normalize vasculature in target tissues by enhancing angiogenesis in disease conditions of reduced vascularity and blood flow, such as tissue ischemia, or alternatively to inhibit excessive and abnormal angiogenesis in disorders like cancer. Gold nanoparticles (AuNPs) are special particles that are generated by nanotechnology and composed of an inorganic core containing gold which is encircled by an organic monolayer. The ability of AuNPs to alter vasculature has captured recent attention in medical literature as potential therapeutic agents for the management of pathologic angiogenesis. This review provides an overview of the effects of AuNPs on angiogenesis and the molecular mechanisms and biomedical applications associated with their effects. In addition, the main synthesis methods, physical properties, uptake mechanisms, and toxicity of AuNPs are briefly summarized.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX75235-6411, USA
| |
Collapse
|
40
|
Hembram KC, Chatterjee S, Sethy C, Nayak D, Pradhan R, Molla S, Bindhani BK, Kundu CN. Comparative and Mechanistic Study on the Anticancer Activity of Quinacrine-Based Silver and Gold Hybrid Nanoparticles in Head and Neck Cancer. Mol Pharm 2019; 16:3011-3023. [DOI: 10.1021/acs.molpharmaceut.9b00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|