1
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
2
|
Tagad HD, Marin A, Wang R, Yunus AS, Fuerst TR, Andrianov AK. Fluorine-Functionalized Polyphosphazene Immunoadjuvant: Synthesis, Solution Behavior and In Vivo Potency. Molecules 2023; 28:4218. [PMID: 37241958 PMCID: PMC10221343 DOI: 10.3390/molecules28104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The inclusion of fluorine motifs in drugs and drug delivery systems is an established tool for modulating their biological potency. Fluorination can improve drug specificity or boost the vehicle's ability to cross cellular membranes. However, the approach has yet to be applied to vaccine adjuvants. Herein, the synthesis of fluorinated bioisostere of a clinical stage immunoadjuvant-poly[di(carboxylatophenoxy)phosphazene], PCPP-is reported. The structure of water-soluble fluoropolymer-PCPP-F, which contains two fluorine atoms per repeat unit-was confirmed using 1H, 31P and 19F NMR, and its molecular mass and molecular dimensions were determined using size-exclusion chromatography and dynamic light scattering. Insertion of fluorine atoms in the polymer side group resulted in an improved solubility in acidic solutions and faster hydrolytic degradation rate, while the ability to self-assemble with an antigenic protein, lysozyme-an important feature of polyphosphazene vaccine adjuvants-was preserved. In vivo assessment of PCPP-F demonstrated its greater ability to induce antibody responses to Hepatitis C virus antigen when compared to its non-fluorinated counterpart. Taken together, the superior immunoadjuvant activity of PCPP-F, along with its improved formulation characteristics, demonstrate advantages of the fluorination approach for the development of this family of macromolecular vaccine adjuvants.
Collapse
Affiliation(s)
- Harichandra D. Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
3
|
Jin GW, Rejinold NS, Choy JH. Polyphosphazene-Based Biomaterials for Biomedical Applications. Int J Mol Sci 2022; 23:15993. [PMID: 36555633 PMCID: PMC9781794 DOI: 10.3390/ijms232415993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Republic of Korea
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
6
|
Chen C, Zhou Z, Niu K, Du C, Liang A, Yang L. Efficacy and Safety of Nasal Immunisation with Somatostatin DNA Vaccine for Growth Promotion in Fattening Pigs. Animals (Basel) 2022; 12:3072. [PMID: 36428299 PMCID: PMC9686601 DOI: 10.3390/ani12223072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to evaluate the efficacy and safety of the SS DNA vaccine on growing pigs. Randomly, 147 pigs were divided into four groups, treatment 1 (T1, 3 × 109 CFU/mL, n = 39), T2 (3 × 108 CFU/mL, n = 35), T3 (3 × 107 CFU/mL, n = 35) and control group (phosphate-buffered saline, n = 38). All animals received two vaccinations separated by 45 days and the same diet and management. The results showed that all treatment groups (T1, T2 and T3) had significantly higher slaughter weight (d 185) than the Ctrl group (p < 0.05), and daily gain between 50 and 110 days of age was significantly higher in all treatment groups than in the Ctrl group (p < 0.05). Antibody-positive pigs have significantly higher daily weight gain than that in antibody-negative pigs (p < 0.05). The results of the meat quality analysis showed no significant changes between the P (antibody-positive pigs) and N (antibody-negative pigs) groups. Furthermore, the results showed that antibody titres at 110 and 185 days had a significant positive correlation with the daily weight gain (p < 0.05) and a significant negative correlation with the backfat thickness (p < 0.05). Evaluating the safety of vaccines by PCR amplification of target genes (GS/2SS), faecal, soil and water samples had no target genes detected by PCR amplification in these samples after 5 days, and no GS/2SS were detected in the blood and tissues for the experimental period. Moreover, no abnormalities were found in pathological sections of the P group compared with the N group. In conclusion, SS DNA vaccines can promote the growth of fattening pigs to a certain extent without altering the meat quality, and it has no effects on the safety of the surrounding environment.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zichao Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Du
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| |
Collapse
|
7
|
Marin A, Taraban MB, Patel V, Yu YB, Andrianov AK. Supramolecular Protein-Polyelectrolyte Assembly at Near Physiological Conditions-Water Proton NMR, ITC, and DLS Study. Molecules 2022; 27:7424. [PMID: 36364250 PMCID: PMC9656440 DOI: 10.3390/molecules27217424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2023] Open
Abstract
The in vivo potency of polyphosphazene immunoadjuvants is inherently linked to the ability of these ionic macromolecules to assemble with antigenic proteins in aqueous solutions and form physiologically stable supramolecular complexes. Therefore, in-depth knowledge of interactions in this biologically relevant system is a prerequisite for a better understanding of mechanism of immunoadjuvant activity. Present study explores a self-assembly of polyphosphazene immunoadjuvant-PCPP and a model antigen-lysozyme in a physiologically relevant environment-saline solution and neutral pH. Three analytical techniques were employed to characterize reaction thermodynamics, water-solute structural organization, and supramolecular dimensions: isothermal titration calorimetry (ITC), water proton nuclear magnetic resonance (wNMR), and dynamic light scattering (DLS). The formation of lysozyme-PCPP complexes at near physiological conditions was detected by all methods and the avidity was modulated by a physical state and dimensions of the assemblies. Thermodynamic analysis revealed the dissociation constant in micromolar range and the dominance of enthalpy factor in interactions, which is in line with previously suggested model of protein charge anisotropy and small persistence length of the polymer favoring the formation of high affinity complexes. The paper reports advantageous use of wNMR method for studying protein-polymer interactions, especially for low protein-load complexes.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Marc B. Taraban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Vanshika Patel
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Y. Bruce Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
8
|
Recent Trends in the Development of Polyphosphazenes for Bio-applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Zhao K, Xie Y, Lin X, Xu W. The Mucoadhesive Nanoparticle-Based Delivery System in the Development of Mucosal Vaccines. Int J Nanomedicine 2022; 17:4579-4598. [PMID: 36199476 PMCID: PMC9527817 DOI: 10.2147/ijn.s359118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mucosal tissue constitutes the largest interface between the body and the external environment, regulating the entry of pathogens, particles, and molecules. Mucosal immunization is the most effective way to trigger a protective mucosal immune response. However, the majority of the currently licensed vaccines are recommended to be administered by intramuscular injection, which has obvious shortcomings, such as high production costs, low patient compliance, and lack of mucosal immune response. Strategies for eliciting mucosal and systemic immune responses are being developed, including appropriate vaccine adjuvant, delivery system, and bacterial or viral vectors. Biodegradable mucoadhesive nanoparticles (NPs) are the most promising candidate for vaccine delivery systems due to their inherent immune adjuvant property and the ability to protect the antigen from degradation, sustain the release of loaded antigen, and increase the residence time of antigen at the administration site. The current review outlined the complex structure of mucosa, the mechanism of interaction between NPs and mucosa, factors affecting the mucoadhesion of NPs, and the application of the delivery system based on mucoadhesive NPs in the field of vaccines. Moreover, this review demonstrated that the biodegradable and mucoadhesive NP-based delivery system has the potential for mucosal administration of vaccines.
Collapse
Affiliation(s)
- Kai Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Correspondence: Kai Zhao, Tel +86 576 88660338, Email
| | - Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
| | - Xuezheng Lin
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China
- Xuezheng Lin, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, 318000, People’s Republic of China, Email
| | - Wei Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People’s Republic of China
| |
Collapse
|
10
|
Lin M, Marin A, Ellis B, Eubanks LM, Andrianov AK, Janda KD. Polyphosphazene: A New Adjuvant Platform for Cocaine Vaccine Development. Mol Pharm 2022; 19:3358-3366. [PMID: 35984034 DOI: 10.1021/acs.molpharmaceut.2c00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is a highly addictive drug that has seen a steady uptrend causing severe health problems worldwide. Currently, there are no approved therapeutics for treating cocaine use disorder; hence, there is an urgent need to identify new medications. Immunopharmacotherapeutics is a promising approach utilizing endogenous antibodies generated through active vaccination, and if properly programmed, can blunt a drug's psychoactive and addictive effects. However, drug vaccine efficacy has largely been limited by the modest levels of antibodies induced. Herein, we explored an adjuvant system consisting of a polyphosphazene macromolecule, specifically poly[di(carboxylatoethylphenoxy)-phosphazene] (PCEP), a biocompatible synthetic polymer that was solicited for improved cocaine conjugate vaccine delivery performance. Our results demonstrated PCEP's superior assembling efficiency with a cocaine hapten as well as with the combined adjuvant CpG oligodeoxynucleotide (ODN). Importantly, this combination led to a higher titer response, balanced immunity, successful sequestering of cocaine in the blood, and a reduction in the drug in the brain. Moreover, a PCEP-cocaine conjugate vaccine was also found to function well via intranasal administration, where its efficacy was demonstrated through the antibody titer, affinity, mucosal IgA production, and a reduction in cocaine's locomotor activity. Overall, a comprehensive evaluation of PCEP integrated within a cocaine vaccine established an advance in the use of synthetic adjuvants in the drugs of abuse vaccine field.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Zhao J, Zhu L, Xu L, Li F, Deng H, Huang Y, Gu S, Sun X, Zhou Y, Xu Z. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus With NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression. Front Microbiol 2022; 13:846079. [PMID: 35308386 PMCID: PMC8924499 DOI: 10.3389/fmicb.2022.846079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are highly infectious swine diseases and cause significant financial loss in China. The respiratory system and reproductive system are the main target systems. Previous studies showed that the existing PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines could not provide complete protection against PRV variant strains and NADC30-like PRRSV strains in China. In this study, the PRV variant strain XJ and NADC30-like PRRSV strain CHSCDJY-2019 are used as the parent for constructing a recombinant pseudorabies virus (rPRV)-NC56 with gE/gI/TK gene deletion and co-expressing NADC30-like PRRSV GP5 and M protein. The rPRV-NC56 proliferated stably in BHK-21 cells, and it could stably express GP5 and M protein. Due to the introduction of the self-cleaving 2A peptide, GP5 and M protein were able to express independently and form virus-like particles (VLPs) of PRRSV in rPRV-NC56-infected BHK-21 cells. The rPRV-NC56 is safe for use in mice; it can colonize and express the target protein in mouse lungs for a long time. Vaccination with rPRV-NC56 induces PRV and NADC30-like PRRSV specific humoral and cellular immune responses in mice, and protects 100% of mice from virulent PRV XJ strain. Furthermore, the virus-neutralizing antibody (VNA) elicited by rPRV-NC56 showed significantly lower titer against SCNJ-2016 (HP-PRRSV) than that against CHSCDJY-2019 (NADC30-like PRRSV). Thus, rPRV-NC56 appears to be a promising candidate vaccine against NADC30-like PRRSV and PRV for the control and eradication of the variant PRV and NADC30-like PRRSV.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianggang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|