1
|
Li Z, Xiao C, Yang X, Li Z. Progress in the mechanical properties of nanoparticles for tumor-targeting delivery. Chem Soc Rev 2025. [PMID: 40341776 DOI: 10.1039/d3cs00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Cancer nanomedicines have attracted significant attention in the past several decades, and the physicochemical properties, such as the size, shape, composition, surface charge, hydrophobicity, and mechanical properties, of nanoparticles have been optimized for potent cancer therapy. Since publishing our 2020 tutorial review "Influence of nanomedicine mechanical properties on tumor targeting delivery" in Chemical Society Reviews, substantial advancements have been made in understanding the role of mechanical properties in cancer nanomedicine. Notably, in vivo transport processes that are dependent on the mechanical properties of nanomedicine, including long circulation, tumor accumulation, and deep penetration, have been extensively studied using various nano-drug delivery systems. These studies have demonstrated that leveraging these mechanical properties can significantly enhance the antitumor efficacy of nanomedicine. In this review, we categorize the advancements in the mechanical properties of cancer nanomedicine into three distinct themes: the interactions between nanoparticles with varied mechanical properties and cells (2002 - present), the impact of these properties on in vivo delivery processes (2007 - present), and the strategic use of mechanical properties to boost cancer therapy (2023 - present). We analyze how different mechanical properties of organic, inorganic, hybrid, and biological nanoparticles affect their delivery processes at the macroscopic level, i.e., in tissues, organs and cells. At the microscopic level, their biological and physical interactions with biological barriers, physiological structures, cell membranes, organelles, and other structures reveal the potential mechanism of nanoparticles' mechanical properties in determining their antitumor efficacy. Furthermore, we address the current challenges and future prospects in the mechanical properties of cancer nanomedicine, as well as the clinical translation potential of nanoparticles with diverse mechanical characteristics.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Romero-Ben E, Goswami U, Soto-Cruz J, Mansoori-Kermani A, Mishra D, Martin-Saldaña S, Muñoz-Ugartemendia J, Sosnik A, Calderón M, Beloqui A, Larrañaga A. Polymer-based nanocarriers to transport therapeutic biomacromolecules across the blood-brain barrier. Acta Biomater 2025; 196:17-49. [PMID: 40032217 DOI: 10.1016/j.actbio.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Therapeutic biomacromolecules such as genetic material, antibodies, growth factors and enzymes represent a novel therapeutic alternative for neurological diseases and disorders. In comparison to traditional therapeutics, which are mainly based on small molecular weight drugs that address the symptoms of these disorders, therapeutic biomacromolecules can reduce undesired side effects and target specific pathological pathways, thus paving the way towards personalized medicine. However, these biomacromolecules undergo degradation/denaturation processes in the physiological environment and show poor capacity to cross the blood-brain barrier (BBB). Consequently, they rarely reach the central nervous system (CNS) in their active form. Herein, we critically overview several polymeric nanocarriers that can protect and deliver therapeutic biomacromolecules across the BBB. Polymeric nanocarriers are first categorized based on their architecture (biodegradable solid nanoparticles, nanogels, dendrimers, self-assembled nanoparticles) that ultimately determines their physico-chemical properties and function. The available polymeric formulations are then thoroughly analyzed, placing particular attention on those strategies that ensure the stability of the biomacromolecules during their encapsulation process and promote their passage across the BBB by controlling their physical (e.g., mechanical properties, size, surface charge) and chemical (e.g., surface functional groups, targeting motifs) properties. Accordingly, this review gives a unique perspective on polymeric nanocarriers for the delivery of therapeutic biomacromolecules across the BBB, representing a concise, complete and easy-to-follow guide, which will be of high interest for chemists, material scientists, pharmacologists, and biologists. Besides, it also provides a critical perspective about the limited clinical translation of these systems. STATEMENT OF SIGNIFICANCE: The increasing incidence of central nervous system disorders is a major health concern. The use of therapeutic biomacromolecules has been placed in the spotlight of many investigations. However, reaching therapeutic concentration levels of biomacromolecules in the central nervous system is restricted by the blood-brain barrier and, thus, this represents the main clinical challenge when developing efficient therapies. Herein, we provide a critical discussion about the use of polymeric nanocarriers to deliver therapeutic biomacromolecules into the central nervous system, highlighting potential future directions to overcome the current challenges.
Collapse
Affiliation(s)
- Elena Romero-Ben
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Upashi Goswami
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Jackeline Soto-Cruz
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Amirreza Mansoori-Kermani
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain; Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo PIaggio 34, Pontedera 56025, Italy
| | - Dhiraj Mishra
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Jone Muñoz-Ugartemendia
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain.
| |
Collapse
|
3
|
Radeva L, Yoncheva K. Nanogels-Innovative Drug Carriers for Overcoming Biological Membranes. Gels 2025; 11:124. [PMID: 39996667 PMCID: PMC11854394 DOI: 10.3390/gels11020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Nanogels are promising drug delivery systems since they possess undeniable advantages such as high loading capacity for hydrophilic and hydrophobic drugs, stabilization of sensitive drugs, biocompatibility, and biodegradability. The present review summarizes experimental studies related to carriers, drug loading, and membrane transport of nanogels. In particular, the review discusses the properties, advantages, and limitations of polymeric carriers with respect to the behavior of the prepared nanogels in in vivo conditions. The potential of nanogel systems for encapsulation of hydrophilic or hydrophobic drugs and the mechanisms of loading and drug release are also emphasized. Moreover, the challenges related to nanogel transport through the barriers presented in parenteral, oral, ocular, nasal, and dermal routes of administration are also considered.
Collapse
|
4
|
Hui Y, Liu Y, Yang G, Weng Y, Hou F, Wang X, Fang S, Gao H, Zhao CX. Critical Role of Nanomaterial Mechanical Properties in Drug Delivery, Nanovaccines and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413779. [PMID: 39737655 DOI: 10.1002/adma.202413779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Indexed: 01/01/2025]
Abstract
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked. Tuning the mechanical properties of nanomaterials and designing them for biomedical applications is thus crucial. This review begins by discussing the various mechanical cues in biological processes, including how viruses and cells adjust their mechanical properties throughout their life cycles. Basic concepts and terminology related to NP mechanical properties are introduced. Next, five different groups of nanomaterials with tunable mechanical properties are explored. The review then examines the impact of NP mechanical properties on their interactions in vitro and in vivo, covering tumor-targeted drug delivery, nanovaccines, and emerging applications such as oral and intranasal drug delivery. Current challenges in the field and perspectives on future developments are also provided.
Collapse
Affiliation(s)
- Yue Hui
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yun Liu
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Yilun Weng
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fei Hou
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia
| |
Collapse
|
5
|
Song Q, Zhang K, Li S, Weng S. Trichosanthes kirilowii Maxim. Polysaccharide attenuates diabetes through the synergistic impact of lipid metabolism and modulating gut microbiota. Curr Res Food Sci 2025; 10:100977. [PMID: 39906503 PMCID: PMC11791362 DOI: 10.1016/j.crfs.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Polysaccharide, a chain of sugars bound by glycosidic bonds, have a wide range of physiological activities, including hypoglycemic activity. In present study, we established T2DM mice models to explore the effects and mechanism of Trichosanthes kirilowii Maxim polysaccharide (TMSP1) on high-fat diet/streptozotocin (HF-STZ) induced diabetes mice. The results showed that high-fat diet significantly increased the oral glucose tolerance test (OGTT), viscera index, oxidative stress, impaired glucose tolerance, decreased body weight, immune response and short-chain fatty acid (SCFAs) content, and disrupted the balance of intestinal flora structure. However, after 6 weeks of TMSP1 intervention decreased lipid accumulation, ameliorated gut microbiota dysbiosis by increasing SCFAs-producing bacteria and mitigated intestinal inflammation and oxidative stress. Moreover, TMSP1 significantly restored the integrity of the intestinal epithelial barrier and mucus barrier. The results of fecal microbiota transplantation confirmed that TMSP1 exerted hypoglycemic effect through regulating intestinal flora to a certain extent. Collectively, the findings revealed TMSP1 intervention inhibits hyperglycemia by improving gut microbiota disorder, lipid metabolism, and inflammation. Hence, TMSP1 may be an effective measure to ameliorate HF-STZ induced diabetes.
Collapse
Affiliation(s)
- Qiaoying Song
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Kunpeng Zhang
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shuyan Li
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shaoting Weng
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| |
Collapse
|
6
|
Firuzpour F, Saleki K, Aram C, Rezaei N. Nanocarriers in glioblastoma treatment: a neuroimmunological perspective. Rev Neurosci 2024:revneuro-2024-0097. [PMID: 39733347 DOI: 10.1515/revneuro-2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/08/2024] [Indexed: 12/31/2024]
Abstract
Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60-75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6-14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood-brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.
Collapse
Affiliation(s)
- Faezeh Firuzpour
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
| | - Kiarash Saleki
- USERN Office, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, 47176-41367, Babol, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Cena Aram
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| |
Collapse
|
7
|
Novikau IS, Novak EV, Kantorovich SS. The impact of cross-linker distribution on magnetic nanogels: encapsulation, transport and controlled release of the tracer. SOFT MATTER 2024; 20:8765-8774. [PMID: 39449291 DOI: 10.1039/d4sm00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Magnetic nanogels (MNGs) are highly attractive for biomedical applications because of their potential for remote control of the rheology and internal structure of these soft colloids with biocompatible magnetic fields. In this contribution, using molecular dynamics simulations, we investigate the impact of the cross-linker distribution in the body of a MNG on the shape and magnetic response to constant and AC magnetic fields and relate those properties to the behaviour of non-magnetic tracers placed in the MNGs and left to escape. We find that if no AC magnetic field is applied, although the escape times of the tracer particles barely depend on morphology, the highest degree of subdiffusion is observed for the gels with a non-uniform cross-linkerer distribution. We also find how the eigen frequency at which particles relax locally in the polymer matrix affects the dynamic magnetic response of the gel. We show that a magnetic field-induced wobbling can facilitate drug release from gels.
Collapse
Affiliation(s)
- Ivan S Novikau
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| | - Ekaterina V Novak
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
| | - Sofia S Kantorovich
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| |
Collapse
|
8
|
Mastella P, Todaro B, Luin S. Nanogels: Recent Advances in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1300. [PMID: 39120405 PMCID: PMC11314474 DOI: 10.3390/nano14151300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing preparation methods, physicochemical and biological properties, and recent applications of NGs may be useful to help explore new directions for their development. This article presents a comprehensive overview of the latest NG synthesis methodologies, highlighting advances in formulation with different types of hydrophilic or amphiphilic polymers. It also underlines recent biomedical applications of NGs in drug delivery and imaging, with a short section dedicated to biosafety considerations of these innovative nanomaterials. In conclusion, this article summarizes recent innovations in NG synthesis and their numerous applications, highlighting their considerable potential in the biomedical field.
Collapse
Affiliation(s)
- Pasquale Mastella
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Biagio Todaro
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium;
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
9
|
Lamson NG, Pickering AJ, Wyckoff J, Ganesh P, Calle EA, Straehla JP, Hammond PT. Trafficking through the blood-brain barrier is directed by core and outer surface components of layer-by-layer nanoparticles. Bioeng Transl Med 2024; 9:e10636. [PMID: 39036092 PMCID: PMC11256136 DOI: 10.1002/btm2.10636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 07/23/2024] Open
Abstract
Drug-carrying nanoparticles are a promising strategy to deliver therapeutics into the brain, but their translation requires better characterization of interactions between nanomaterials and endothelial cells of the blood-brain barrier (BBB). Here, we use a library of 18 layer-by-layer electrostatically assembled nanoparticles (NPs) to independently assess the impact of NP core and surface materials on in vitro uptake, transport, and intracellular trafficking in brain endothelial cells. We demonstrate that NP core stiffness determines the magnitude of transport, while surface chemistry directs intracellular trafficking. Finally, we demonstrate that these factors similarly dictate in vivo BBB transport using intravital imaging through cranial windows in mice. We identify that hyaluronic acid surface chemistry increases transport across the BBB in vivo, and flow conditions are necessary to replicate this finding in vitro. Taken together, these findings highlight the importance of assay geometry, cell biology, and fluid flow in developing nanocarriers for delivery to the brain.
Collapse
Affiliation(s)
- Nicholas G. Lamson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Andrew J. Pickering
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jeffrey Wyckoff
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Priya Ganesh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Elizabeth A. Calle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Joelle P. Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Division of Pediatric Hematology/OncologyBoston Children's HospitalBostonMassachusettsUSA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
10
|
Traldi F, Resmini M. Impact of Protein Corona Formation on the Thermoresponsive Behavior of Acrylamide-Based Nanogels. Biomacromolecules 2024; 25:1340-1350. [PMID: 38242644 PMCID: PMC10865348 DOI: 10.1021/acs.biomac.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The ability to fine-tune the volume phase transition temperature (VPTT) of thermoresponsive nanoparticles is essential to their successful application in drug delivery. The rational design of these materials is limited by our understanding of the impact that nanoparticle-protein interactions have on their thermoresponsive behavior. In this work, we demonstrate how the formation of protein corona impacts the transition temperature values of acrylamide-based nanogels and their reversibility characteristics, in the presence of lysozyme, given its relevance for the ocular and intranasal administration route. Nanogels were synthesized with N-isopropylacrylamide or N-n-propylacrylamide as backbone monomers, methylenebis(acrylamide) (2.5-20 molar %) as a cross-linker, and functionalized with negatively charged monomers 2-acrylamido-2-methylpropanesulfonic acid, N-acryloyl-l-proline, or acrylic acid; characterization showed comparable particle diameter (c.a.10 nm), but formulation-dependent thermoresponsive properties, in the range 28-54 °C. Lysozyme was shown to form a complex with the negatively charged nanogels, lowering their VPTT values; the hydrophilic nature of the charged comonomer controlled the drop in VPTT upon complex formation, while matrix rigidity only had a small, yet significant effect. The cross-linker content was found to play a major role in determining the reversibility of the temperature-dependent transition of the complexes, with only 20 molar % cross-linked-nanogels displaying a fully reversible transition. These results demonstrate the importance of evaluating protein corona formation in the development of drug delivery systems based on thermoresponsive nanoparticles.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
11
|
Varshney S, Alam MA, Kaur A, Dhoundiyal S. Niosomes: A Smart Drug Delivery System for Brain Targeting. Pharm Nanotechnol 2024; 12:108-125. [PMID: 37226788 DOI: 10.2174/2211738511666230524143832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Niosomes are lipid-based nanovesicles that have the potential to act as drug-delivery vehicles for a variety of agents. They are effective drug delivery systems for both ASOs and AAV vectors, with advantages such as improved stability, bioavailability, and targeted administration. In the context of brain-targeted drug delivery, niosomes have been investigated as a drug delivery system for brain targeting, but more research is needed to optimize their formulation to improve their stability and release profile and address the challenges of scale-up and commercialization. Despite these challenges, several applications of niosomes have demonstrated the potential of novel nanocarriers for targeted drug delivery to the brain. This review briefly overviews the current use of niosomes in treating brain disorders and diseases.
Collapse
Affiliation(s)
- Sandesh Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Chen SM, Zeng FS, Fu WW, You HT, Mu XY, Chen GF, Lv H, Li WJ, Xie MY. White hyacinth bean polysaccharide ameliorates diabetes via microbiota-gut-brain axis in type 2 diabetes mellitus rats. Int J Biol Macromol 2023; 253:127307. [PMID: 37813213 DOI: 10.1016/j.ijbiomac.2023.127307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Gut played a potent role in onset and progression of metabolic disorders, presenting an exciting direction for diabetes prevention. Here, the anti-diabetic effects of White hyacinth bean polysaccharides (WHBP) were observed, including the reduction of blood glucose levels and improvement of intestinal impairment in type 2 diabetes mellitus (T2DM) rats. Further data concerning intestinal protection suggested that WHBP restored intestinal barrier, as evidenced by inhibition of intestinal pathological damage, up-regulation of Zonula occluden-1 expression and manipulation of the redox system in T2DM rats. Moreover, WHBP-mediated anti-diabetic effects were in parallel with the adjustment of changes in gut microbiota composition of T2DM rats. Meanwhile, hypersecretion of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone levels, which were critical coordinators of the hypothalamic-pituitary-adrenal (HPA) axis, were suppressed in T2DM rats exposed to WHBP, indicating that WHBP-mediated health benefits were referring to regulate brain feedback in reduction of HPA axis. Concomitantly, further suggested and expanded on gut-brain communication by data of microbial metabolites short-chain fatty acids, mediators of gut-brain interactions, were remarkably raised in cecum contents of T2DM rats subjected to WHBP. Collectively, WHBP performed anti-diabetic effects were associated with control of microbiota-gut-brain axis implicated in intestinal barrier, HPA axis, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Su-Mei Chen
- Future Institute of Technology of Nanchang University, Nanchang 330031, China
| | - Fan-Sen Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wang-Wei Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hui-Ting You
- School of Stomatology, Nanchang University, Nanchang 330006, China
| | - Xiao-Yu Mu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Guang-Feng Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hao Lv
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
13
|
Pan J, Cai Y, Zhang C, Xu S. Intra-articular delivery of geraniol encapsulated by pH/redox-responsive nanogel ameliorates osteoarthritis by regulating oxidative stress and inflammation. J Mol Histol 2023; 54:579-591. [PMID: 37848748 PMCID: PMC10635995 DOI: 10.1007/s10735-023-10163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Osteoarthritis (OA) remains a challenging condition due to limited drug bioavailability within the avascular and dense cartilage matrix. This study introduces a pH/redox-responsive nanogel for enhanced delivery of geraniol in OA therapy. We investigated geraniol's role in preventing chondrocyte matrix degradation and designed a pH/redox-responsive nanogel as a delivery platform. Our methods included Western blot, histological staining, and immunohistochemistry. Geraniol treatment reduced Keap1 expression while elevating Nrf2 and HO-1 levels, effectively inhibiting cartilage matrix degradation. The pH/redox-responsive nanogel further enhanced geraniol's therapeutic impact. Our study demonstrates that geraniol encapsulated within a pH/redox-responsive nanogel mitigates OA by regulating oxidative stress and inflammation. This innovative approach holds potential as an effective OA therapeutic strategy.
Collapse
Affiliation(s)
- Jun Pan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Youzhi Cai
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
14
|
López-Iglesias C, Klinger D. Rational Design and Development of Polymeric Nanogels as Protein Carriers. Macromol Biosci 2023; 23:e2300256. [PMID: 37551821 DOI: 10.1002/mabi.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Proteins have gained significant attention as potential therapeutic agents owing to their high specificity and reduced toxicity. Nevertheless, their clinical utility is hindered by inherent challenges associated with stability during storage and after in vivo administration. To overcome these limitations, polymeric nanogels (NGs) have emerged as promising carriers. These colloidal systems are capable of efficient encapsulation and stabilization of protein cargoes while improving their bioavailability and targeted delivery. The design of such delivery systems requires a comprehensive understanding of how the synthesis and formulation processes affect the final performance of the protein. This review highlights critical aspects involved in the development of NGs for protein delivery, with specific emphasis on loading strategies and evaluation techniques. For example, factors influencing loading efficiency and release kinetics are discussed, along with strategies to optimize protein encapsulation through protein-carrier interactions to achieve the desired therapeutic outcomes. The discussion is based on recent literature examples and aims to provide valuable insights for researchers working toward the advancement of protein-based therapeutics.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela, 15782, Spain
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Straße 2-4, 14195, Berlin, Germany
| |
Collapse
|
15
|
Ashwani PV, Gopika G, Arun Krishna KV, Jose J, John F, George J. Stimuli-Responsive and Multifunctional Nanogels in Drug Delivery. Chem Biodivers 2023; 20:e202301009. [PMID: 37718283 DOI: 10.1002/cbdv.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Nanogels represent promising drug delivery systems in the biomedical field, designed to overcome challenges associated with standard treatment approaches. Stimuli-responsive nanogels, often referred to as intelligent materials, have garnered significant attention for their potential to enhance control over properties such as drug release and targeting. Furthermore, researchers have recently explored the application of nanogels in diverse sectors beyond biomedicine including sensing materials, catalysts, or adsorbents for environmental applications. However, to fully harness their potential as practical delivery systems, further research is required to better understand their pharmacokinetic behaviour, interactions between nanogels and bio distributions, as well as toxicities. One promising future application of stimuli-responsive multifunctional nanogels is their use as delivery agents in cancer treatment, offering an alternative to overcome the challenges with conventional approaches. This review discusses various synthetic methods employed in developing nanogels as efficient carriers for drug delivery in cancer treatment. The investigations explore, the key aspects of nanogels, including their multifunctionality and stimuli-responsive properties, as well as associated toxicity concerns. The discussions presented herein aim to provide the readers a comprehensive understanding of the potential of nanogels as smart drug delivery systems in the context of cancer therapy.
Collapse
Affiliation(s)
- P V Ashwani
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - G Gopika
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - K V Arun Krishna
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Josena Jose
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
16
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Montizaan D, Saunders C, Yang K, Sasidharan S, Maity S, Reker-Smit C, Stuart MCA, Montis C, Berti D, Roos WH, Salvati A. Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303267. [PMID: 37236202 DOI: 10.1002/smll.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Catherine Saunders
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Keni Yang
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Sajitha Sasidharan
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
18
|
Vashist A, Raymond AD, Chapagain P, Vashist A, Arias AY, Kolishetti N, Nair M. Multi-functional auto-fluorescent nanogels for theranostics. J Neurovirol 2023; 29:252-257. [PMID: 37248372 PMCID: PMC10404193 DOI: 10.1007/s13365-023-01138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Here in the present article, the state of art for nanotechnology-enabled nanogel theranostics and the upcoming concepts in nanogel-based therapeutics are summarized. The benefits, innovation, and prospects of nanogel technology are also briefly presented.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Atul Vashist
- Department of Infection & Immunology, Translational Health Science and Technology, Faridabad, Haryana 121001 India
| | - Adriana Yndart Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| |
Collapse
|
19
|
Martins C, Araújo M, Malfanti A, Pacheco C, Smith SJ, Ucakar B, Rahman R, Aylott JW, Préat V, Sarmento B. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300029. [PMID: 36852650 DOI: 10.1002/smll.202300029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
| | - Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Stuart J Smith
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Ruman Rahman
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
20
|
Sam R, Divanbeigi Kermani M, Ohadi M, Salarpour S, Dehghan Noudeh G. Different Applications of Temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol 2023; 28:492-500. [PMID: 37129530 DOI: 10.1080/10837450.2023.2209796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temperature-sensitive drug delivery systems (TSDDS) are one of the systems that have received more attention in medical science these days due to their advantages. As these systems are sensitive to temperature, drug delivery to the target becomes more specific. Temperature-sensitive nanogels have many applications, including microbial infections, cancer therapy, transdermal use and tissue repair. These systems are characterized by minimal toxicity, improved therapeutic efficacy and reduced exposure to normal cells. This mini-review is prepared with different types of temperature-sensitive nanogel formation, release mechanisms, and their different applications. Various systems reported under these categories for targeted and controlled delivery of different classes of drugs, such as anti-cancer and antibiotic drugs with special emphasis on anti-cancer drugs and tissue healing, are discussed in this mini-review.
Collapse
Affiliation(s)
- Reyhaneh Sam
- Student research committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghan Noudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Dols-Perez A, Fornaguera C, Feiner-Gracia N, Grijalvo S, Solans C, Gomila G. Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids Surf B Biointerfaces 2023; 222:113019. [PMID: 36435028 DOI: 10.1016/j.colsurfb.2022.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.
Collapse
Affiliation(s)
- Aurora Dols-Perez
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Institut de Bioenginyeria de Catalunya (IBEC), C/ Balidiri i Reixac 15-21, 08028 Barcelona, Spain; Departament of Electronics and Biomedical Engineering, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Cristina Fornaguera
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Grup d'Enginyeria de Materials (Gemat) - Institut Químic de Sarrià (IQS) - Universitat Ramon Llull (URL), Barcelona, Spain
| | - Natalia Feiner-Gracia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Conxita Solans
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Balidiri i Reixac 15-21, 08028 Barcelona, Spain; Departament of Electronics and Biomedical Engineering, Universitat de Barcelona, C/ Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Verma K, Kapoor D, Jain S, Singh R, Sharma S. Transporter Systems and Metabolism at the Blood–Brain Barrier and Blood–CSF Barrier. DRUG DELIVERY STRATEGIES IN NEUROLOGICAL DISORDERS: CHALLENGES AND OPPORTUNITIES 2023:47-73. [DOI: 10.1007/978-981-99-6807-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Rabanel JM, Mirbagheri M, Olszewski M, Xie G, Le Goas M, Latreille PL, Counil H, Hervé V, Silva RO, Zaouter C, Adibnia V, Acevedo M, Servant MJ, Martinez VA, Patten SA, Matyjaszewski K, Ramassamy C, Banquy X. Deep Tissue Penetration of Bottle-Brush Polymers via Cell Capture Evasion and Fast Diffusion. ACS NANO 2022; 16:21583-21599. [PMID: 36516979 DOI: 10.1021/acsnano.2c10554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers in vitro and in vivo and compared it to nanospheres of similar composition. In vitro internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter. These observations performed under static, no-flow conditions were complemented by dynamic assays performed in microvessel arrays on chip and confirmed that BB polymers can escape the vasculature compartment via a paracellular route. BB polymers injected in mice and zebrafish larvae exhibit higher penetration in brain tissues and faster extravasation of microvessels located in the brain compared to nanospheres of similar sizes. The superior diffusivity of BBs in extracellular matrix-like gels combined with their ability to efficiently cross endothelial barriers via a paracellular route position them as promising drug carriers to translocate across the blood-brain barrier and penetrate dense tissue such as the brain, two unmet challenges and ultimate frontiers in nanomedicine.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marziye Mirbagheri
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Marine Le Goas
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Pierre-Luc Latreille
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Hermine Counil
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vincent Hervé
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Rummenigge Oliveira Silva
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Charlotte Zaouter
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vahid Adibnia
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mariana Acevedo
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marc J Servant
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, United Kingdom EH9 3FD
| | - Shunmoogum A Patten
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Charles Ramassamy
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Xavier Banquy
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
24
|
A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc Natl Acad Sci U S A 2022; 119:e2118697119. [PMID: 35648828 PMCID: PMC9191661 DOI: 10.1073/pnas.2118697119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood–brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood–brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood–brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood–brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.
Collapse
|
25
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
26
|
Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021; 13:2045. [PMID: 34959326 PMCID: PMC8705716 DOI: 10.3390/pharmaceutics13122045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.
Collapse
Affiliation(s)
| | | | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.R.); (N.M.H.)
| |
Collapse
|
27
|
Zhang H, Keskin D, de Haan-Visser WH, Zu G, van Rijn P, Zuhorn IS. Aliphatic Quaternary Ammonium Functionalized Nanogels for Gene Delivery. Pharmaceutics 2021; 13:1964. [PMID: 34834380 PMCID: PMC8618000 DOI: 10.3390/pharmaceutics13111964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is a promising treatment for hereditary diseases, as well as acquired genetic diseases, including cancer. Facing the complicated physiological and pathological environment in vivo, developing efficient non-viral gene vectors is needed for their clinical application. Here, poly(N-isopropylacrylamide) (p(NIPAM)) nanogels are presented with either protonatable tertiary amine groups or permanently charged quaternized ammonium groups to achieve DNA complexation ability. In addition, a quaternary ammonium-functionalized nanogel was further provided with an aliphatic moiety using 1-bromododecane to add a membrane-interacting structure to ultimately facilitate intracellular release of the genetic material. The ability of the tertiary amine-, quaternized ammonium-, and aliphatic quaternized ammonium-functionalized p(NIPAM) nanogels (i.e., NGs, NGs-MI, and NGs-BDD, respectively) to mediate gene transfection was evaluated by fluorescence microscopy and flow cytometry. It is observed that NGs-BDD/pDNA complexes exhibit efficient gene loading, gene protection ability, and intracellular uptake similar to that of NGs-MI/pDNA complexes. However, only the NGs-BDD/pDNA complexes show a notable gene transfer efficiency, which can be ascribed to their ability to mediate DNA escape from endosomes. We conclude that NGs-BDD displays a cationic lipid-like behavior that facilitates endosomal escape by perturbing the endosomal/lysosomal membrane. These findings demonstrate that the presence of aliphatic chains within the nanogel is instrumental in accomplishing gene delivery, which provides a rationale for the further development of nanogel-based gene delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| |
Collapse
|
28
|
Abstract
Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.
Collapse
Affiliation(s)
- Cuixia Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | | | - Wing-Fu Lai
- School of Education, University of Bristol, Bristol, UK.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
29
|
Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021; 7:gels7020063. [PMID: 34073626 PMCID: PMC8162335 DOI: 10.3390/gels7020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood-brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.
Collapse
|