1
|
Choi B, Lee S, Chung S, Barcelona EE, Hong J, Lee SJ. PLGA nanoparticle-mediated anti-inflammatory gene delivery for the treatment of neuropathic pain. Nanomedicine (Lond) 2025; 20:943-954. [PMID: 40186589 PMCID: PMC12051573 DOI: 10.1080/17435889.2025.2487410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
AIM This study aimed to mitigate neuropathic pain behavior in a sciatic nerve transection (SNT)-induced mouse model by delivering anti-inflammatory cytokines - interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta 1 (TGF-β1) - via poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). MATERIALS & METHODS Upon gene delivery of IL-4, IL-10, and TGF- β1, the anti-inflammatory effects and induction of microglia M2 polarization were evaluated. Plasmid (IL-4, IL-10, and TGF-β1)-encapsulated PLGA NPs (PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1) were synthesized and characterized for size, zeta potential, cellular toxicity, and cellular uptake. The analgesic effect of anti-inflammatory gene delivery using PLGA NPs was then assessed in a mouse model of neuropathic pain. RESULTS Gene delivery of IL-4, IL-10, and TGF-β1 showed a significant anti-inflammatory effect in LPS-treated cells and IL-4 strongly promoted microglia M2 polarization in vitro. PLGA NPs successfully delivered the anti-inflammatory cytokine-coding genes into mouse spinal cord cells, specifically targeting microglia. PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1 NPs produced analgesic effects in a SNT-induced mouse neuropathic pain model. Notably, PLGA@IL-4 demonstrated the most effective and remarkably long-lasting analgesic effect, strongly enhancing microglia M2 polarization in spinal cord microglia. CONCLUSION Gene therapy using PLGA NPs for overexpression of anti-inflammatory cytokines could be a promising strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Boomin Choi
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ellane Eda Barcelona
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinpyo Hong
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Pham TL, Sharma R, Neupane C, Gao F, Cha GH, Kim H, Nam MH, Lee SE, Yang S, Sim H, Lee S, Hur GM, Kim HW, Park JB. Neuronal STING-GAT1 signaling maintains paclitaxel-induced neuropathic pain in the spinal cord. Pain 2025:00006396-990000000-00886. [PMID: 40310867 DOI: 10.1097/j.pain.0000000000003593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 02/10/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Stimulator of interferon genes (STING), a pivotal immune regulator, has emerged as a contributor to nociception, yet its role in chronic pains remains still unknown. Here, we demonstrate that STING plays a dual role in normal and neuropathic pain in mature male rodents. Stimulator of interferon genes maintains type I interferon (IFN-I) level restraining pain sensitivity in normal and sham control, while activated STING/interferon regulatory factor 3 (IRF3) signaling increases the expression of gamma-aminobutyric acid (GABA) transporter 1 (GAT1) in the spinal cord (SC), thus, generating paclitaxel (PTX)-induced peripheral neuropathy. Genetic interference of STING (STING-/- mice) attenuated PTX-induced mechanical hypersensitivity with attenuated PTX-induced GAT1 increase, preventing PTX-induced increase in tonic GABAA inhibition of the spinal dorsal horn neurons. Stimulator of interferon genes regulates GAT expression through a TANK-binding kinase 1 (TBK1)-IRF3 signaling pathway, with IRF3 as a crucial transcription factor. Silencing neuronal STING, as opposed to its astrocytic counterpart, effectively restrained the PTX-induced mechanical hypersensitivity and GAT1 increase in the SC. Pharmacological inhibition of STING (H-151) efficiently diminished the TBK1/IRF3/GAT1 signaling pathway to alleviate PTX-induced mechanical hypersensitivity. Our findings show that STING-IRF3 serves a dual role: suppressing physiological nociception through IFN-I and acting as a transcriptional regulator of GAT1, contributing to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Thuy Linh Pham
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
- Department of Obstetrics and Gynecology, Viet Tiep Friendship Hospital, Hai Phong, Vietnam
| | - Ramesh Sharma
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Feifei Gao
- Department of Infectious Biology, Chungnam National University, Daejeon, South Korea
| | - Guang-Ho Cha
- Department of Infectious Biology, Chungnam National University, Daejeon, South Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sunjung Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hunju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Sanghoon Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Gang Min Hur
- Pharmacology and Medical Science, Chungnam National University, Daejeon, South Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
4
|
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, Wang C, Sun T, Liu S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed Pharmacother 2024; 177:117011. [PMID: 38917758 DOI: 10.1016/j.biopha.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia are essential for maintaining homeostasis and responding to pathological events in the central nervous system (CNS). Their dynamic and multidimensional states in different environments are pivotal factors in various CNS disorders. However, therapeutic modulation of microglial states is challenging due to the intricate balance these cells maintain in the CNS environment and the blood-brain barrier's restriction of drug delivery. Nanomedicine presents a promising avenue for addressing these challenges, offering a method for the targeted and efficient modulation of microglial states. This review covers the challenges faced in microglial therapeutic modulation and potential use of nanoparticle-based drug delivery systems. We provide an in-depth examination of nanoparticle applications for modulating microglial states in a range of CNS disorders, encompassing neurodegenerative and autoimmune diseases, infections, traumatic injuries, stroke, tumors, chronic pain, and psychiatric conditions. This review highlights the recent advancements and future prospects in nanomedicine for microglial modulation, paving the way for future research and clinical applications of therapeutic interventions in CNS disorders.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Meng Guan
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
5
|
Islambulchilar Z, Barfar A, Mirzaeei S. Development of fexofenadine self-microemulsifying delivery systems: an efficient way to improve intestinal permeability. Ther Deliv 2024; 15:593-604. [PMID: 38941109 PMCID: PMC11412145 DOI: 10.1080/20415990.2024.2363635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: The present study aimed to prepare and evaluate fexofenadine self-microemulsifying drug-delivery systems (SMEDDS) formulation and to determine and compare its intestinal permeability using in situ single-pass intestinal perfusion (SPIP) technique.Methods: Fexofenadine-loaded SMEDDS were prepared and optimized. Droplet size, polydispersity index, zeta potential, drug release and intestinal permeability were evaluated.Results: Optimized formulation consisted of 15% oil, 80% surfactant and 5% cosolvent. Droplet size and drug loading of optimized formulation was 13.77 nm and 60 mg/g and it has released 90% of its drug content. Intestinal permeability of fexofenadine was threefold enhanced in SMEDDS compared with free fexofenadine.Conclusion: The results of our study revealed that SMEDDS could be a promising tool for oral delivery of fexofenadine with enhanced dissolution rate and intestinal permeability.
Collapse
Affiliation(s)
- Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Department of Pharmaceutics, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Centre, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Shin HJ, Kim IS, Choi SG, Lee K, Park H, Shin J, Kim D, Beom J, Yi YY, Gupta DP, Song GJ, Chung WS, Lee CJ, Kim DW. Rejuvenating aged microglia by p16 ink4a-siRNA-loaded nanoparticles increases amyloid-β clearance in animal models of Alzheimer's disease. Mol Neurodegener 2024; 19:25. [PMID: 38493185 PMCID: PMC10943801 DOI: 10.1186/s13024-024-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Age-dependent accumulation of amyloid plaques in patients with sporadic Alzheimer's disease (AD) is associated with reduced amyloid clearance. Older microglia have a reduced ability to phagocytose amyloid, so phagocytosis of amyloid plaques by microglia could be regulated to prevent amyloid accumulation. Furthermore, considering the aging-related disruption of cell cycle machinery in old microglia, we hypothesize that regulating their cell cycle could rejuvenate them and enhance their ability to promote more efficient amyloid clearance. First, we used gene ontology analysis of microglia from young and old mice to identify differential expression of cyclin-dependent kinase inhibitor 2A (p16ink4a), a cell cycle factor related to aging. We found that p16ink4a expression was increased in microglia near amyloid plaques in brain tissue from patients with AD and 5XFAD mice, a model of AD. In BV2 microglia, small interfering RNA (siRNA)-mediated p16ink4a downregulation transformed microglia with enhanced amyloid phagocytic capacity through regulated the cell cycle and increased cell proliferation. To regulate microglial phagocytosis by gene transduction, we used poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, which predominantly target microglia, to deliver the siRNA and to control microglial reactivity. Nanoparticle-based delivery of p16ink4a siRNA reduced amyloid plaque formation and the number of aged microglia surrounding the plaque and reversed learning deterioration and spatial memory deficits. We propose that downregulation of p16ink4a in microglia is a promising strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung Gyu Choi
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kayoung Lee
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyewon Park
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Dayoung Kim
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yoon Young Yi
- Department of Pediatrics, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Deepak Prasad Gupta
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do, Republic of Korea
| | - Gyun Jee Song
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do, Republic of Korea
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Oral Anatomy and Developmental Biology, College of Dentistry Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Wang W, Kojima H, Gao M, Yin X, Uchida T, Ni J. Optimization of O/W Emulsion Solvent Evaporation Method for Itraconazole Sustained Release Microspheres. Chem Pharm Bull (Tokyo) 2023; 71:520-527. [PMID: 37394601 DOI: 10.1248/cpb.c22-00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Itraconazole, a commonly used antifungal drug in the clinic approved by U.S. Food and Drug Administration (FDA), has been gradually found to have anti-tumor, angiogenesis inhibition and other pharmacological activities. However, its poor water solubility and potential toxicity limited its clinical application. In order to improve the water solubility and reduce the side effects caused by the high concentration of itraconazole, a novel preparation method of itraconazole sustained release microspheres was established in this study. Firstly, five kinds of polylactic acid-glycolic acid (PLGA) microspheres loaded with itraconazole were prepared by oil/water (O/W) emulsion solvent evaporation and then characterized by infrared spectroscopy. Then the particle size and morphology of the microspheres were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). After that, the particle size distribution, drug loading rate, entrapment efficiency, and drug release experiments were evaluated. Our results showed the microspheres prepared in this study had uniform particle size distribution and good integrity. Further study found that the average drug loading of the five kinds of microspheres prepared with PLGA 7505, PLGA 7510, PLGA 7520, PLGA 5020 and PLGA 0020 were 16.88, 17.72, 16.72, 16.57, and 16.64%, respectively, and the encapsulation rate all reached about 100%. More surprisingly, the release experimental results showed that the microspheres prepared with PLGA 7520 did not show sudden release, showing good sustained release performance and high drug release rate. To sum up, this study optimized the preparation method of sustained-release microspheres without sudden release, which provides a new solution for the delivery of itraconazole in the clinic.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Pharmacy, China-Japan Friendship Hospital
| | - Honami Kojima
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Ming Gao
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| | - Takahiro Uchida
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| |
Collapse
|